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Regularly Ideal Convergence and Regularly Ideal
Cauchy Double Sequences in 2-Normed Spaces
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Abstract. In this paper, we introduce the notions of (I2,I), (I∗2,I
∗)-convergence and (I2,I), (I∗2,I

∗)-
Cauchy double sequence in regular sense in 2-normed spaces. Also, we study some properties of these
concepts.

1. Introduction, Notations and Definitions

Throughout the paper N and R denote the set of all positive integers and the set of all real numbers,
respectively. The concept of convergence of a sequence of real numbers has been extended to statistical
convergence independently by Fast [6] and Schoenberg [26]. This concept was extended to the double
sequences by Mursaleen and Edely [17]. The idea of I-convergence was introduced by Kostyrko et al. [15]
as a generalization of statistical convergence which is based on the structure of the ideal I of subset of
the set of natural numbers [6, 7]. Nuray and Ruckle [21] independently introduced the same with another
name generalized statistical convergence. Das et al. [2] introduced the concept ofI2-convergence of double
sequences in a metric space and studied some properties. Dündar and Altay [4] studied the concepts of
I2-Cauchy andI∗2-Cauchy for double sequences and they gave the relation betweenI2 andI∗2-convergence
of double sequences of functions defined between linear metric spaces. A lot of development have been
made in this area after the works of [3, 16, 18–20, 25, 27–29].

The concept of 2-normed spaces was initially introduced by Gähler [8, 9] in the 1960’s. Since then, this
concept has been studied by many authors, see for instance [10–12, 14]. Şahiner et al. [27] and Gürdal [14]
studied I-convergence in 2-normed spaces. Gürdal and Açık [13] investigated I-Cauchy and I∗-Cauchy
sequences in 2-normed spaces. Sarabadan et al. [23, 24] investigated I2 and I∗2-convergence of double
sequences in 2-normed spaces. They also examined the concepts I2-limit points and I2-cluster points in
2-normed spaces. Dündar and Sever [5] introduced the notions of I2 and I∗2-Cauchy double sequences,
and studied their some properties with (AP2) in 2-normed spaces.

In this paper, we introduce the notions of (I2,I), (I∗2,I
∗)-convergence and (I2,I), (I∗2,I

∗)-Cauchy
double sequence in regular sense in 2-normed spaces. Also, we study some properties of these concepts.

Now, we recall the concept of ideal, ideal convergence of sequences, double sequences, 2-normed space
and some fundamental definitions and notations (See [1, 2, 8, 11, 13, 15, 22–24]).
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A double sequence x = (xmn)m,n∈N of real numbers is said to be convergent to L ∈ R in Pringsheim’s
sense, if for any ε > 0 there exists Nε ∈ N such that |xmn − L| < ε whenever m,n > Nε. In this case we write
P − limm,n→∞ xmn = L or limm,n→∞ xmn = L.

Let X , ∅. A class I of subsets of X is said to be an ideal in X provided:

(i) ∅ ∈ I,
(ii) A,B ∈ I implies A ∪ B ∈ I,

(iii) A ∈ I, B ⊂ A implies B ∈ I.

I is called a nontrivial ideal if X < I.
Let X , ∅. A non empty class F of subsets of X is said to be a filter in X provided:

(i) ∅ < F ,
(ii) A,B ∈ F implies A ∩ B ∈ F ,

(iii) A ∈ F , A ⊂ B implies B ∈ F .

If I is a nontrivial ideal in X, X , ∅, then the class

F (I) = {M ⊂ X : (∃A ∈ I)(M = X\A)}

is a filter on X, called the filter associated with I.
A nontrivial ideal I in X is called admissible if {x} ∈ I for each x ∈ X.
Throughout the paper we take I as a nontrivial admissible ideal inN.
Let I ⊂ 2N be a nontrivial ideal and (X, ρ) be a metric space. A sequence (xn) of elements of X is said to

be I-convergent to L ∈ X, if for each ε > 0 we have A(ε) = {n ∈N : ρ(xn,L) ≥ ε} ∈ I.
Throughout the paper we take I2 as a nontrivial admissible ideal inN ×N.
A nontrivial ideal I2 ⊂ 2N×N is called strongly admissible if {i} ×N and N × {i} belong to I2 for each

i ∈N.
It is evident that a strongly admissible ideal is also admissible.
Let I0

2 = {A ⊂N×N : (∃m(A) ∈N)(i, j ≥ m(A)⇒ (i, j) < A)}. Then I0
2 is a nontrivial strongly admissible

ideal and clearly an ideal I2 is strongly admissible if and only if I0
2 ⊂ I2.

Let (X, ρ) be a linear metric space and I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence
x = (xmn) in X is said to be I2-convergent to L ∈ X, if for any ε > 0 we have A(ε) = {(m,n) ∈ N ×N :
ρ(xmn,L) ≥ ε} ∈ I2 and is written I2 − limm,n→∞ xmn = L.

If I2 ⊂ 2N×N is a strongly admissible ideal, then usual convergence implies I2-convergence.
LetI2 be an ideal ofN×N andI be an ideal ofN, then a double sequence x = (xmn) inC, which is the set

of complex numbers, is said to be regularly (I2,I)-convergent (r(I2,I)-convergent), if it is I2-convergent
in Pringsheim’s sense and for every ε > 0, the following statements hold: {m ∈ N : |xmn − Ln| ≥ ε} ∈ I for
some Ln ∈ C, for each n ∈N and {n ∈N : |xmn − Km| ≥ ε} ∈ I for some Km ∈ C, for each m ∈N.

We say that an admissible ideal I ⊂ 2N satisfies the property (AP), if for every countable family of
mutually disjoint sets {A1,A2, . . .} belonging to I, there exists a countable family of sets {B1,B2, . . .} such that
A j∆B j is a finite set for j ∈N and B =

⋃
∞

j=1 B j ∈ I. (hence B j ∈ I for each j ∈N).
We say that an admissible ideal I2 ⊂ 2N×N satisfies the property (AP2), if for every countable family of

mutually disjoint sets {A1,A2, . . .} belonging to I2, there exists a countable family of sets {B1,B2, . . .} such
that A j∆B j ∈ I

0
2, i.e., A j∆B j is included in the finite union of rows and columns inN×N for each j ∈N and

B =
⋃
∞

j=1 B j ∈ I2 (hence B j ∈ I2 for each j ∈N).
Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on X is a function ‖·, ·‖ :

X × X→ R which satisfies (i) ‖x, y‖ = 0 if and only if x and y are linearly dependent; (ii) ‖x, y‖ = ‖y, x‖; (iii)
‖αx, y‖ = |α|‖x, y‖, α ∈ R; (iv) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖. The pair (X, ‖·, ·‖) is then called a 2-normed space.
As an example of a 2-normed space we may take X = R2 being equipped with the 2-norm ‖x, y‖ := the area
of the parallelogram spanned by the vectors x and y, which may be given explicitly by the formula

‖x, y‖ = |x1y2 − x2y1|, x = (x1, x2), y = (y1, y2).
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The sequence (xn)n∈N in 2-normed space (X, ‖·, ·‖) is said to be convergent to L ∈ X, if for each ε > 0 and
nonzero z ∈ X, ‖xn − L, z‖ < ε. In this case we write limn→∞ ‖xn − L, z‖ = 0 or limn→∞ xn = L.

The double sequence (xmn)m,n∈N in 2-normed space (X, ‖·, ·‖) is said to be convergent to L ∈ X in
Pringsheim’s sense, if for each ε > 0 and nonzero z ∈ X, ‖xmn − L, z‖ < ε. In this case we write
P − limm,n→∞ ‖xmn − L, z‖ = 0 or P − limm,n→∞ xmn = L.

LetI ⊂ 2N be a nontrivial ideal. The sequence (xn) in 2-normed space (X, ‖·, ·‖) is said to beI-convergent
to L ∈ X, if for each ε > 0 and nonzero z ∈ X, A(ε) = {n ∈ N : ‖xn − L, z‖ ≥ ε} ∈ I. In this case we write
I − limn→∞ ‖xn − L, z‖ = 0 or I − limn→∞ xn = L.

LetI ⊂ 2N be a nontrivial ideal. The sequence (xn) in 2-normed space (X, ‖·, ·‖) is said to beI∗-convergent
to L ∈ X, if there exists a set M = {m1 < m2 < · · · < mk < · · · } ⊂N, M ∈ F(I) such that limk→∞ ‖xmk − L, z‖ = 0,
for each nonzero z ∈ X.

Let (X, ‖·, ·‖) be a linear 2-normed space and I ⊂ 2N be an admissible ideal. The sequence (xn) is said to
be I-Cauchy sequence in X, if for each ε > 0 and nonzero z ∈ X there exists a number N = N(ε, z) such that
{n ∈N : ‖xn − xN, z‖ ≥ ε} ∈ I.

Let (X, ‖·, ·‖) be a linear 2-normed space and I ⊂ 2N be an admissible ideal. The sequence (xn) is said to
be I∗-Cauchy sequence in X, if there exists a set M = {m1 < m2 < · · · < mk < · · · } ⊂ N, M ∈ F(I) such that
limk,p→∞ ‖xmk − xmp , z‖ = 0, for each nonzero z ∈ X.

Let I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence x = (xmn)m,n∈N in 2-normed space
(X, ‖·, ·‖) is said to be I2-convergent to L ∈ X, if for each ε > 0 and nonzero z ∈ X, A(ε) = {(m,n) ∈ N ×N :
‖xmn − L, z‖ ≥ ε} ∈ I2. In this case we write I2 − limm,n→∞ xmn = L.

Let I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence x = (xmn)m,n∈N in 2-normed space
(X, ‖·, ·‖) is said to be I∗2-convergent to L ∈ X, if there exists a set M ∈ F(I2) (i.e. H = N ×N\M ∈ I2)
such that limm,n→∞ ‖xmn − L, z‖ = 0, for (m,n) ∈ M and for each nonzero z ∈ X. In this case we write
I
∗

2 − limm,n→∞ xmn = L.
Let (X, ‖·, ·‖) be a linear 2-normed space and I2 ⊂ 2N×N be a strongly admissible ideal. A double

sequence x = (xmn) in X is said to be I2-Cauchy if for each ε > 0 and nonzero z in X there exist s = s(ε, z),
t = t(ε, z) ∈N such that

A(ε) := {(m,n) ∈N ×N : ‖xmn − xst, z‖ ≥ ε} ∈ I2.

Let (X, ‖·, ·‖) be a linear 2-normed space andI2 ⊂ 2N×N be a strongly admissible ideal. A double sequence
x = (xmn) in X is said to be I∗2-Cauchy sequence if there exists a set M ∈ F (I2) (i.e., H = N ×N\M ∈ I2)
such that for each ε > 0 and for all (m,n), (s, t) ∈M,

‖xmn − xst, z‖ < ε, for each nonzero z in X,

where m,n, s, t > k0 = k0(ε) ∈N. In this case we write

lim
m,n,s,t→∞

‖xmn − xst, z‖ = 0.

Now, we begin with quoting the following lemmas due to Sarabadan et al. [24] and Dündar, Sever [5]
which are needed throughout the paper.

Lemma 1.1. [24, Theorem 4.3] Let I2 ⊂ 2N×N be a strongly admissible ideal with property (AP2) and (X, ‖·, ·‖)
be a finite dimensional 2-normed space, then for a double sequence x = (xmn) of X, I2 − limm,n→∞ xmn = L implies
I
∗

2 − limm,n→∞ xmn = L.

Lemma 1.2. [5, Theorem 3.2] Let (X, ‖·, ·‖) be a linear 2-normed space and I2 ⊂ 2N×N be a strongly admissible ideal.
If x = (xmn) in X is I2-convergent then x = (xmn) is I2-Cauchy double sequence.

Lemma 1.3. [5, Theorem 3.4] Let (X, ‖·, ·‖) be a linear 2-normed space and I2 ⊂ 2N×N be a strongly admissible ideal.
If x = (xmn) in X is I∗2-Cauchy double sequence then x = (xmn) is I2-Cauchy double sequence.
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2. Main Results

The proof of the following lemma is similar to the proof of [2, Theorem 1], so we omit it.

Lemma 2.1. Let (X, ‖·, ·‖) be a linear 2-normed space and I2 ⊂ 2N×N be a strongly admissible ideal. Then for
x = (xmn) be a double sequence of X, I∗2 − limm,n→∞ xmn = L implies I2 − limm,n→∞ xmn = L.

Lemma 2.2. Let (X, ‖·, ·‖) be a linear 2-normed space and I2 ⊂ 2N×N be a strongly admissible ideal. Then for
x = (xmn) be a double sequence of X, L ∈ X and for each nonzero z ∈ X,

P − lim
m,n→∞

‖xmn − L, z‖ = 0 implies I2 − lim
m,n→∞

‖xmn − L, z‖ = 0.

Proof. Let
P − lim

m,n→∞
‖xmn − L, z‖ = 0.

For each ε > 0 and nonzero z ∈ X there exists k0 = k0(ε) ∈N such that ‖xmn −L, z‖ < ε for all m,n ≥ k0. Then,

A(ε) = {(m,n) ∈N ×N : ‖xmn − L, z‖ ≥ ε}

⊂

(
N × {1, 2, . . . , (k0 − 1)} ∪ {1, 2, . . . , (k0 − 1)} ×N

)
.

Since I2 is a strongly admissible ideal we have
(
N × {1, 2, . . . , (k0 − 1)} ∪ {1, 2, . . . , (k0 − 1)} ×N

)
∈ I2 and so

A(ε) ∈ I2. Hence, this completes the proof.

Now, we study certain properties of regularly convergence, regularly (I2,I)-convergence and regularly
(I2,I)-Cauchy double sequences in 2-normed spaces.

Definition 2.3. Let (X, ‖·, ·‖) be a linear 2-normed space. A double sequence (xmn) in X is said to be regularly
convergent, if it is convergent in Pringsheim’s sense and the limits

lim
m→∞

xmn, (n ∈N) and lim
n→∞

xmn, (m ∈N),

exist for each fixed n ∈ N and m ∈ N, respectively. Note that if (xmn) is regularly convergent to L in X, then the
limits

lim
n→∞

lim
m→∞

xmn and lim
m→∞

lim
n→∞

xmn

exist and are equal to L. In this case we write

r − lim
m,n→∞

xmn = L or xmn
r
→ L.

Definition 2.4. Let I2 ⊂ 2N×N be a strongly admissible ideal, I ⊂ 2N be an admissible ideal and (X, ‖·, ·‖) be a
linear 2-normed space. A double sequence (xmn) in X is said to be regularly (I2,I)-convergent (r(I2,I)-convergent),
if it is I2-convergent in Pringsheim’s sense and for each ε > 0 and nonzero z ∈ X, the following statements hold:

{m ∈N : ‖xmn − Ln, z‖ ≥ ε} ∈ I (1)

for some Ln ∈ X, for each n ∈N and

{n ∈N : ‖xmn − Km, z‖ ≥ ε} ∈ I (2)

for some Km ∈ X, for each m ∈N.

If (xmn) is regularly (I2,I)-convergent (r(I2,I)-convergent) to L ∈ X, then the limits I− limn→∞ limm→∞ xmn
and I − limm→∞ limn→∞ xmn exist and are equal to L.

Theorem 2.5. Let I2 ⊂ 2N×N be a strongly admissible ideal, I ⊂ 2N be an admissible ideal and (X, ‖·, ·‖) be a linear
2-normed space. If a double sequence (xmn) in X is regularly convergent, then (xmn) is r(I2,I)-convergent.
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Proof. Let (xmn) be regularly convergent. Then (xmn) is convergent in Pringsheim’s sense and the limits
limm→∞ xmn (n ∈ N) and limn→∞ xmn (m ∈ N) exist. By Lemma 2.2, (xmn) is I2-convergent. Also, for each
ε > 0 and nonzero z ∈ X, there exist m = m0(ε) and n = n0(ε) such that

‖xmn − Ln, z‖ < ε

for some Ln and each fixed n ∈N for every m ≥ m0 and

‖xmn − Km, z‖ < ε

for some Km and each fixed m ∈ N for every n ≥ n0. Then, since I is an admissible ideal so for each ε > 0
and nonzero z ∈ X, we have

{m ∈N : ‖xmn − Ln, z‖ ≥ ε} ⊂ {1, 2, . . . ,m0 − 1} ∈ I,

{n ∈N : ‖xmn − Km, z‖ ≥ ε} ⊂ {1, 2, . . . ,n0 − 1} ∈ I.

Hence, (xmn) is r(I2,I)-convergent in X.

Definition 2.6. LetI2 be a strongly admissible ideal ofN×N, I be an admissible ideal ofN and (X, ‖·, ·‖) be a linear
2-normed space. A double sequence (xmn) in X is said to be r(I∗2,I

∗)-convergent, if there exist the sets M ∈ F (I2)
(i.e.,N ×N \M ∈ I2), M1 ∈ F (I) and M2 ∈ F (I) (i.e.,N \M1 ∈ I andN \M2 ∈ I) such that the limits

lim
m,n→∞
(m,n)∈M

xmn, lim
m→∞
m∈M1

xmn and lim
n→∞
n∈M2

xmn

exist for each fixed n ∈N and m ∈N, respectively.

Theorem 2.7. Let I2 be a strongly admissible ideal ofN×N, I be an admissible ideal ofN and (X, ‖·, ·‖) be a linear
2-normed space. If a double sequence (xmn) in X is r(I∗2,I

∗)-convergent, then it is r(I2,I)-convergent.

Proof. Let (xmn) in X be r(I∗2,I
∗)-convergent. Then, it is I∗2-convergent and so, by Lemma 2.1, it is I2-

convergent. Also, there exist the sets M1,M2 ∈ F (I) such that

(∀z ∈ X) (∀ε > 0) (∃m0 ∈N) (∀m ≥ m0) (m ∈M1) ‖xmn − Ln, z‖ < ε, (n ∈N)

for some Ln ∈ X and

(∀z ∈ X) (∀ε > 0) (∃n0 ∈N) (∀n ≥ n0) (n ∈M2) ‖xmn − Km, z‖ < ε, (m ∈N)

for some Km ∈ X. Hence, for each ε > 0 and nonzero z ∈ X, we have

A(ε) = {m ∈N : ‖xmn − Ln, z‖ ≥ ε} ⊂ H1 ∪ {1, 2, . . . ,m0 − 1}, (n ∈N),
B(ε) = {n ∈N : ‖xmn − Km, z‖ ≥ ε} ⊂ H2 ∪ {1, 2, . . . ,n0 − 1}, (m ∈N),

for H1,H2 ∈ I. Since I is an admissible ideal we get

H1 ∪ {1, 2, . . . , (m0 − 1)} ∈ I, H2 ∪ {1, 2, . . . ,n0 − 1} ∈ I

and therefore A(ε),B(ε) ∈ I. This shows that the double sequence (xmn) is r(I2,I)-convergent in X.

Theorem 2.8. Let I2 ⊂ 2N×N be a strongly admissible ideal with property (AP2), I ⊂ 2N be an admissible ideal
with property (AP) and (X, ‖·, ·‖) be a linear 2-normed space. If a double sequence (xmn) is r(I2,I)-convergent, then
(xmn) is r(I∗2,I

∗)-convergent in X.
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Proof. Let a double sequence (xmn) in X be r(I2,I)-convergent. Then (xmn) is I2-convergent and so (xmn) is
I
∗

2-convergent, by Lemma 1.1. Also, for each ε > 0 and nonzero z ∈ X we have

A(ε) = {m ∈N : ‖xmn − Ln, z‖ ≥ ε} ∈ I

for some Ln ∈ X, for each n ∈N and

C(ε) = {n ∈N : ‖xmn − Km, z‖ ≥ ε} ∈ I

for some Km ∈ X, for each m ∈N.
Now put for each nonzero z ∈ X

A1 = {m ∈N : ‖xmn − Ln, z‖ ≥ 1},

Ak =
{
m ∈N :

1
k
≤ ‖xmn − Ln, z‖ <

1
k − 1

}
for k ≥ 2, for some Ln ∈ X and for each n ∈N. It is clear that Ai ∩ A j = ∅ for i , j and Ai ∈ I for each i ∈N.
By the property (AP) there is a countable family of sets {B1,B2, . . .} in I such that A j 4 B j is a finite set for
each j ∈N and B =

⋃
∞

j=1 B j ∈ I.
We prove that

lim
m→∞
m∈M

‖xmn − Ln, z‖ = 0, for some Ln and for each n ∈N

for each nonzero z ∈ X and for M =N\B ∈ F (I). Let δ > 0 be given. Choose k ∈N such that 1/k < δ. Then,
for each nonzero z ∈ X we have

{m ∈N : ‖xmn − Ln, z‖ ≥ δ} ⊂
k⋃

j=1

A j for some Ln and for each n ∈N.

Since A j 4 B j is a finite set for j ∈ {1, 2, . . . , k}, there exists m0 ∈N such that

( k⋃
j=1

B j

)
∩ {m : m ≥ m0} =

( k⋃
j=1

A j

)
∩ {m : m ≥ m0}.

If m ≥ m0 and m < B then

m <
k⋃

j=1

B j and so m <
k⋃

j=1

A j.

Thus, for each nonzero z ∈ X we have ‖xmn − Ln, z‖ < 1
k < δ for some Ln and for each n ∈ N. This implies

that
lim

m→∞
m∈M

‖xmn − Ln, z‖ = 0.

Hence, for each nonzero z ∈ X we have

I
∗
− lim

m→∞
‖xmn − Ln, z‖ = 0

for some Ln and for each n ∈N.
Similarly, for the set C(ε) = {n ∈N : ‖xmn − Km, z‖ ≥ ε} ∈ I, for each nonzero z ∈ X we have

I
∗
− lim

n→∞
‖xmn − Km, z‖ = 0

for Km and for each m ∈N. Hence, a double sequence (xmn) is r(I∗2,I
∗)-convergent.

Now, we give the definitions of r(I2,I)-Cauchy sequence and r(I∗2,I
∗)-Cauchy sequence.
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Definition 2.9. Let I2 be a strongly admissible ideal of N ×N, I be an admissible ideal of N and (X, ‖·, ·‖) be a
linear 2-normed space. A double sequence (xmn) in X is said to be regularly (I2,I)-Cauchy (r(I2,I)-Cauchy), if
it is I2-Cauchy in Pringsheim’s sense and for each ε > 0 and nonzero z ∈ X there exist kn = kn(ε, z) ∈ N and
lm = lm(ε, z) ∈N such that the following statements hold:

A1(ε) = {m ∈N : ‖xmn − xknn, z‖ ≥ ε} ∈ I, (n ∈N),
A2(ε) = {n ∈N : ‖xmn − xmlm , z‖ ≥ ε} ∈ I, (m ∈N).

Definition 2.10. Let I2 be a strongly admissible ideal of N ×N, I be an admissible ideal of N and (X, ‖·, ·‖) be a
linear 2-normed space. A double sequence (xmn) is said to be regularly (I∗2,I

∗)-Cauchy (r(I∗2,I
∗)-Cauchy), if there

exist the sets M ∈ F (I2), M1 ∈ F (I) and M2 ∈ F (I) (i.e.,N×N \M ∈ I2,N \M1 ∈ I andN \M2 ∈ I), for each
ε > 0 and nonzero z ∈ X there exist N = N(ε), s = s(ε), t = t(ε), (s, t) ∈M, kn = kn(ε), lm = lm(ε) ∈N such that

‖xmn − xst, z‖ < ε, for (m,n), (s, t) ∈M,
‖xmn − xknn, z‖ < ε, for each m ∈M1 and for each n ∈N,
‖xmn − xmlm , z‖ < ε, for each n ∈M2 and for each m ∈N,

whenever m,n, s, t, kn, lm ≥ N.

Theorem 2.11. Let I2 be a strongly admissible ideal ofN ×N and I be an admissible ideal ofN and (X, ‖·, ·‖) be a
linear 2-normed space. If a double sequence (xmn) in X is r(I∗2,I

∗)-Cauchy, then it is r(I2,I)-Cauchy.

Proof. Since a double sequence (xmn) in X is r(I∗2,I
∗)-Cauchy, it is I∗2-Cauchy. We know that I∗2-Cauchy

implies I2-Cauchy by Lemma 1.3. Also, since the double sequence (xmn) is r(I∗2,I
∗)-Cauchy so there exist

the sets M1,M2 ∈ F (I) and for each ε > 0 and nonzero z ∈ X there exist kn = kn(ε) ∈ N and lm = lm(ε) ∈ N
such that

‖xmn − xknn, z‖ < ε, for each m ∈M1 and for each n ∈N,
‖xmn − xmlm , z‖ < ε, for each n ∈M2 and for each m ∈N,

for N = N(ε) ∈N and m,n, kn, lm ≥ N. Therefore, for H1 =N\M1 ∈ I,H2 =N\M2 ∈ Iwe have

A1(ε) = {m ∈N : ‖xmn − xknn, z‖ ≥ ε} ⊂ H1 ∪ {1, 2, . . . ,N − 1}, (n ∈N)

for m ∈M1 and

A2(ε) = {n ∈N : ‖xmn − xmlm , z‖ ≥ ε} ⊂ H2 ∪ {1, 2, . . . ,N − 1}, (m ∈N)

for n ∈M2. Since I is an admissible ideal,

H1 ∪ {1, 2, . . . ,N − 1} ∈ I and H2 ∪ {1, 2, . . . ,N − 1} ∈ I.

Hence, we have A1(ε),A2(ε) ∈ I and (xmn) is r(I2,I)-Cauchy double sequence.

Theorem 2.12. Let I2 be a strongly admissible ideal ofN ×N and I be an admissible ideal ofN and (X, ‖·, ·‖) be a
linear 2-normed space. If a double sequence (xmn) in X is r(I2,I)-convergent, then (xmn) is r(I2,I)-Cauchy double
sequence.

Proof. Let (xmn) be a r(I2,I)-convergent double sequence in X. Then (xmn) is I2-convergent and by Lemma
1.2, it is I2-Cauchy double sequence. Also for each ε > 0 and nonzero z ∈ X, we have

A1

(ε
2

)
=

{
m ∈N : ‖xmn − Ln, z‖ ≥

ε
2

}
∈ I

for some Ln, for each n ∈N and

A2

(ε
2

)
=

{
n ∈N : ‖xmn − Km, z‖ ≥

ε
2

}
∈ I
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for some Km, for each m ∈N. Since I is an admissible ideal, the sets

Ac
1

(ε
2

)
=

{
m ∈N : ‖xmn − Ln, z‖ <

ε
2

}
, (n ∈N)

for some Ln and
Ac

2

(ε
2

)
=

{
n ∈N : ‖xmn − Km, z‖ <

ε
2

}
, (m ∈N)

for some Km, are nonempty and belong to F (I). For kn ∈ Ac
1( ε2 ), (n ∈N and kn > 0) we have

‖xknn − Ln, z‖ <
ε
2

for some Ln. Now, for each ε > 0 and nonzero z ∈ X we define the set

B1(ε) = {m ∈N : ‖xmn − xknn, z‖ ≥ ε}, (n ∈N),

where kn = kn(ε) ∈N. Let m ∈ B1(ε). Then for kn ∈ Ac
1( ε2 ), (n ∈N and kn > 0) we have

ε ≤ ‖xmn − xknn, z‖ ≤ ‖xmn − Ln, z‖ + ‖xknn − Ln, z‖

< ‖xmn − Ln, z‖ +
ε
2

for some Ln. This shows that
ε
2
< ‖xmn − Ln, z‖ and so m ∈ A1(

ε
2

).

Hence, we have B1(ε) ⊂ A1( ε2 ).
Similarly, for each ε > 0, nonzero z ∈ X and for lm ∈ Ac

2( ε2 ) (m ∈N and lm > 0) we have

‖xmlm − Km, z‖ <
ε
2
, (m ∈N)

for some Km. Therefore, it can be seen that

B2(ε) = {m ∈N : ‖xmlm − Km, z‖ ≥ ε} ⊂ A2(
ε
2

).

Hence, we have B1(ε),B2(ε) ∈ I. This shows that (xmn) is r(I2,I)-Cauchy double sequence.
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