Filomat 28:5 (2015), 907–915 DOI 10.2298/FIL1405907S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Regularly Ideal Convergence and Regularly Ideal Cauchy Double Sequences in 2-Normed Spaces

Yurdal Sever^a, Erdinç Dündar^a

^a Afyon Kocatepe University, Faculty of Arts and Sciences, Department of Mathematics 03200 Afyonkarahisar, Turkey

Abstract. In this paper, we introduce the notions of (I_2, I) , (I_2^*, I^*) -convergence and (I_2, I) , (I_2^*, I^*) -Cauchy double sequence in regular sense in 2-normed spaces. Also, we study some properties of these concepts.

1. Introduction, Notations and Definitions

Throughout the paper \mathbb{N} and \mathbb{R} denote the set of all positive integers and the set of all real numbers, respectively. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [6] and Schoenberg [26]. This concept was extended to the double sequences by Mursaleen and Edely [17]. The idea of *I*-convergence was introduced by Kostyrko et al. [15] as a generalization of statistical convergence which is based on the structure of the ideal *I* of subset of the set of natural numbers [6, 7]. Nuray and Ruckle [21] independently introduced the same with another name generalized statistical convergence. Das et al. [2] introduced the concept of *I*₂-convergence of double sequences in a metric space and studied some properties. Dündar and Altay [4] studied the concepts of *I*₂-Cauchy for double sequences and they gave the relation between *I*₂ and *I*^{*}₂-convergence of double sequences of functions defined between linear metric spaces. A lot of development have been made in this area after the works of [3, 16, 18–20, 25, 27–29].

The concept of 2-normed spaces was initially introduced by Gähler [8, 9] in the 1960's. Since then, this concept has been studied by many authors, see for instance [10–12, 14]. Şahiner et al. [27] and Gürdal [14] studied *I*-convergence in 2-normed spaces. Gürdal and Açık [13] investigated *I*-Cauchy and *I**-Cauchy sequences in 2-normed spaces. Sarabadan et al. [23, 24] investigated *I*₂ and *I*₂*-convergence of double sequences in 2-normed spaces. They also examined the concepts *I*₂-limit points and *I*₂-cluster points in 2-normed spaces. Dündar and Sever [5] introduced the notions of *I*₂ and *I*^{*}₂-Cauchy double sequences, and studied their some properties with (*AP2*) in 2-normed spaces.

In this paper, we introduce the notions of (I_2, I) , (I_2^*, I^*) -convergence and (I_2, I) , (I_2^*, I^*) -Cauchy double sequence in regular sense in 2-normed spaces. Also, we study some properties of these concepts.

Now, we recall the concept of ideal, ideal convergence of sequences, double sequences, 2-normed space and some fundamental definitions and notations (See [1, 2, 8, 11, 13, 15, 22–24]).

²⁰¹⁰ Mathematics Subject Classification. Primary 40A35, 40B05; Secondary 46A70

Keywords. Ideal; Double Sequences; I2-Convergence; I2-Cauchy; 2-normed spaces

Received: 24 September 2013; Revised 21 January 2014; Accepted: 30 January 2014

Communicated by Eberhard Malkowsky

Email addresses: yurdalsever@hotmail.com (Yurdal Sever), erdincdundar79@gmail.com (Erdinc Dündar)

A double sequence $x = (x_{mn})_{m,n \in \mathbb{N}}$ of real numbers is said to be *convergent* to $L \in \mathbb{R}$ in Pringsheim's sense, if for any $\varepsilon > 0$ there exists $N_{\varepsilon} \in \mathbb{N}$ such that $|x_{mn} - L| < \varepsilon$ whenever $m, n > N_{\varepsilon}$. In this case we write $P - \lim_{m,n\to\infty} x_{mn} = L$ or $\lim_{m,n\to\infty} x_{mn} = L$.

Let $X \neq \emptyset$. A class I of subsets of X is said to be an *ideal* in X provided:

(i) $\emptyset \in I$,

(ii) $A, B \in I$ implies $A \cup B \in I$,

(iii) $A \in I$, $B \subset A$ implies $B \in I$.

I is called a *nontrivial ideal* if $X \notin I$.

Let $X \neq \emptyset$. A non empty class \mathcal{F} of subsets of X is said to be a *filter* in X provided:

(i) $\emptyset \notin \mathcal{F}$,

(ii) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$,

(iii) $A \in \mathcal{F}, A \subset B$ implies $B \in \mathcal{F}$.

If I is a nontrivial ideal in $X, X \neq \emptyset$, then the class

$$\mathcal{F}(I) = \{ M \subset X : (\exists A \in I) (M = X \setminus A) \}$$

is a filter on *X*, called the filter associated with *I*.

A nontrivial ideal I in X is called *admissible* if $\{x\} \in I$ for each $x \in X$.

Throughout the paper we take I as a nontrivial admissible ideal in \mathbb{N} .

Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a nontrivial ideal and (X, ρ) be a metric space. A sequence (x_n) of elements of X is said to be \mathcal{I} -convergent to $L \in X$, if for each $\varepsilon > 0$ we have $A(\varepsilon) = \{n \in \mathbb{N} : \rho(x_n, L) \ge \varepsilon\} \in \mathcal{I}$.

Throughout the paper we take I_2 as a nontrivial admissible ideal in $\mathbb{N} \times \mathbb{N}$.

A nontrivial ideal $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to I_2 for each $i \in \mathbb{N}$.

It is evident that a strongly admissible ideal is also admissible.

Let $I_2^0 = \{A \subset \mathbb{N} \times \mathbb{N} : (\exists m(A) \in \mathbb{N}) (i, j \ge m(A) \Rightarrow (i, j) \notin A)\}$. Then I_2^0 is a nontrivial strongly admissible ideal and clearly an ideal I_2 is strongly admissible if and only if $I_2^0 \subset I_2$.

Let (X, ρ) be a linear metric space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ in X is said to be I_2 -convergent to $L \in X$, if for any $\varepsilon > 0$ we have $A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, L) \ge \varepsilon\} \in I_2$ and is written $I_2 - \lim_{m \to \infty} x_{mn} = L$.

If $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ is a strongly admissible ideal, then usual convergence implies I_2 -convergence.

Let I_2 be an ideal of $\mathbb{N} \times \mathbb{N}$ and I be an ideal of \mathbb{N} , then a double sequence $x = (x_{mn})$ in \mathbb{C} , which is the set of complex numbers, is said to be regularly (I_2, I) -convergent $(r(I_2, I)$ -convergent), if it is I_2 -convergent in Pringsheim's sense and for every $\varepsilon > 0$, the following statements hold: $\{m \in \mathbb{N} : |x_{mn} - L_n| \ge \varepsilon\} \in I$ for some $L_n \in \mathbb{C}$, for each $n \in \mathbb{N}$ and $\{n \in \mathbb{N} : |x_{mn} - K_m| \ge \varepsilon\} \in I$ for some $K_m \in \mathbb{C}$, for each $m \in \mathbb{N}$.

We say that an admissible ideal $\mathcal{I} \subset 2^{\mathbb{N}}$ satisfies the property (*AP*), if for every countable family of mutually disjoint sets { A_1, A_2, \ldots } belonging to \mathcal{I} , there exists a countable family of sets { B_1, B_2, \ldots } such that $A_j \Delta B_j$ is a finite set for $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in \mathcal{I}$. (hence $B_j \in \mathcal{I}$ for each $j \in \mathbb{N}$).

We say that an admissible ideal $I_2 \subset 2^{\mathbb{N}\times\mathbb{N}}$ satisfies the property (*AP2*), if for every countable family of mutually disjoint sets { A_1, A_2, \ldots } belonging to I_2 , there exists a countable family of sets { B_1, B_2, \ldots } such that $A_j \Delta B_j \in I_2^0$, i.e., $A_j \Delta B_j$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $B = \bigcup_{i=1}^{\infty} B_j \in I_2$ (hence $B_j \in I_2$ for each $j \in \mathbb{N}$).

Let *X* be a real vector space of dimension *d*, where $2 \le d < \infty$. A 2-norm on *X* is a function $\|\cdot, \cdot\|$: $X \times X \to \mathbb{R}$ which satisfies (i) $\|x, y\| = 0$ if and only if *x* and *y* are linearly dependent; (ii) $\|x, y\| = \|y, x\|$; (iii) $\|\alpha x, y\| = |\alpha\| \|x, y\|, \alpha \in \mathbb{R}$; (iv) $\|x, y + z\| \le \|x, y\| + \|x, z\|$. The pair $(X, \|\cdot, \cdot\|)$ is then called a 2-normed space. As an example of a 2-normed space we may take $X = \mathbb{R}^2$ being equipped with the 2-norm $\|x, y\| :=$ the area of the parallelogram spanned by the vectors *x* and *y*, which may be given explicitly by the formula

$$||x, y|| = |x_1y_2 - x_2y_1|, x = (x_1, x_2), y = (y_1, y_2).$$

The sequence $(x_n)_{n \in \mathbb{N}}$ in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be convergent to $L \in X$, if for each $\varepsilon > 0$ and nonzero $z \in X$, $\|x_n - L, z\| < \varepsilon$. In this case we write $\lim_{n\to\infty} \|x_n - L, z\| = 0$ or $\lim_{n\to\infty} x_n = L$.

The double sequence $(x_{mn})_{m,n\in\mathbb{N}}$ in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be convergent to $L \in X$ in Pringsheim's sense, if for each $\varepsilon > 0$ and nonzero $z \in X$, $||x_{mn} - L, z|| < \varepsilon$. In this case we write $P - \lim_{m,n\to\infty} ||x_{mn} - L, z|| = 0$ or $P - \lim_{m,n\to\infty} x_{mn} = L$.

Let $I \subset 2^{\mathbb{N}}$ be a nontrivial ideal. The sequence (x_n) in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be I-convergent to $L \in X$, if for each $\varepsilon > 0$ and nonzero $z \in X$, $A(\varepsilon) = \{n \in \mathbb{N} : ||x_n - L, z|| \ge \varepsilon\} \in I$. In this case we write $I - \lim_{n \to \infty} ||x_n - L, z|| = 0$ or $I - \lim_{n \to \infty} x_n = L$.

Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a nontrivial ideal. The sequence (x_n) in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be \mathcal{I}^* -convergent to $L \in X$, if there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}, M \in F(\mathcal{I})$ such that $\lim_{k\to\infty} ||x_{m_k} - L, z|| = 0$, for each nonzero $z \in X$.

Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. The sequence (x_n) is said to be \mathcal{I} -Cauchy sequence in X, if for each $\varepsilon > 0$ and nonzero $z \in X$ there exists a number $N = N(\varepsilon, z)$ such that $\{n \in \mathbb{N} : \|x_n - x_N, z\| \ge \varepsilon\} \in \mathcal{I}$.

Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $I \subset 2^{\mathbb{N}}$ be an admissible ideal. The sequence (x_n) is said to be I^* -Cauchy sequence in X, if there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}, M \in F(I)$ such that $\lim_{k,p\to\infty} ||x_{m_k} - x_{m_p}, z|| = 0$, for each nonzero $z \in X$.

Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})_{m,n \in \mathbb{N}}$ in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be I_2 -convergent to $L \in X$, if for each $\varepsilon > 0$ and nonzero $z \in X$, $A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \|x_{mn} - L, z\| \ge \varepsilon\} \in I_2$. In this case we write $I_2 - \lim_{m,n\to\infty} x_{mn} = L$.

Let $I_2 \subset 2^{\mathbb{N}\times\mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})_{m,n\in\mathbb{N}}$ in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be I_2^* -convergent to $L \in X$, if there exists a set $M \in F(I_2)$ (i.e. $H = \mathbb{N} \times \mathbb{N} \setminus M \in I_2$) such that $\lim_{m,n\to\infty} ||x_{mn} - L, z|| = 0$, for $(m, n) \in M$ and for each nonzero $z \in X$. In this case we write $I_2^* - \lim_{m,n\to\infty} x_{mn} = L$.

Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{nn})$ in X is said to be I_2 -Cauchy if for each $\varepsilon > 0$ and nonzero z in X there exist $s = s(\varepsilon, z)$, $t = t(\varepsilon, z) \in \mathbb{N}$ such that

$$A(\varepsilon) := \{ (m, n) \in \mathbb{N} \times \mathbb{N} : ||x_{mn} - x_{st}, z|| \ge \varepsilon \} \in I_2.$$

Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{nn})$ in X is said to be I_2^* -Cauchy sequence if there exists a set $M \in \mathcal{F}(I_2)$ (i.e., $H = \mathbb{N} \times \mathbb{N} \setminus M \in I_2$) such that for each $\varepsilon > 0$ and for all $(m, n), (s, t) \in M$,

 $||x_{mn} - x_{st}, z|| < \varepsilon$, for each nonzero z in X,

where $m, n, s, t > k_0 = k_0(\varepsilon) \in \mathbb{N}$. In this case we write

$$\lim_{m,n,s,t\to\infty}\|x_{mn}-x_{st},z\|=0.$$

Now, we begin with quoting the following lemmas due to Sarabadan et al. [24] and Dündar, Sever [5] which are needed throughout the paper.

Lemma 1.1. [24, Theorem 4.3] Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal with property (AP2) and $(X, \|\cdot, \cdot\|)$ be a finite dimensional 2-normed space, then for a double sequence $x = (x_{mn})$ of X, $I_2 - \lim_{m,n\to\infty} x_{mn} = L$ implies $I_2^* - \lim_{m,n\to\infty} x_{mn} = L$.

Lemma 1.2. [5, Theorem 3.2] Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. If $x = (x_{mn})$ in X is I_2 -convergent then $x = (x_{mn})$ is I_2 -Cauchy double sequence.

Lemma 1.3. [5, Theorem 3.4] Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. If $x = (x_{mn})$ in X is I_2^* -Cauchy double sequence then $x = (x_{mn})$ is I_2 -Cauchy double sequence.

2. Main Results

The proof of the following lemma is similar to the proof of [2, Theorem 1], so we omit it.

Lemma 2.1. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. Then for $x = (x_{mn})$ be a double sequence of $X, I_2^* - \lim_{m,n\to\infty} x_{mn} = L$ implies $I_2 - \lim_{m,n\to\infty} x_{mn} = L$.

Lemma 2.2. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. Then for $x = (x_{mn})$ be a double sequence of $X, L \in X$ and for each nonzero $z \in X$,

$$P - \lim_{m,n \to \infty} ||x_{mn} - L, z|| = 0 \quad implies \quad \mathcal{I}_2 - \lim_{m,n \to \infty} ||x_{mn} - L, z|| = 0$$

Proof. Let

$$P-\lim_{m,n\to\infty}||x_{mn}-L,z||=0.$$

For each $\varepsilon > 0$ and nonzero $z \in X$ there exists $k_0 = k_0(\varepsilon) \in \mathbb{N}$ such that $||x_{mn} - L, z|| < \varepsilon$ for all $m, n \ge k_0$. Then,

$$A(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||x_{mn} - L, z|| \ge \varepsilon\}$$

$$\subset (\mathbb{N} \times \{1, 2, \dots, (k_0 - 1)\} \cup \{1, 2, \dots, (k_0 - 1)\} \times \mathbb{N}).$$

Since I_2 is a strongly admissible ideal we have $(\mathbb{N} \times \{1, 2, \dots, (k_0 - 1)\} \cup \{1, 2, \dots, (k_0 - 1)\} \times \mathbb{N}) \in I_2$ and so $A(\varepsilon) \in I_2$. Hence, this completes the proof. \Box

Now, we study certain properties of regularly convergence, regularly (I_2 , I)-convergence and regularly (I_2 , I)-Cauchy double sequences in 2-normed spaces.

Definition 2.3. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. A double sequence (x_{mn}) in X is said to be regularly convergent, if it is convergent in Pringsheim's sense and the limits

$$\lim_{m\to\infty} x_{mn}, (n \in \mathbb{N}) \text{ and } \lim_{m\to\infty} x_{mn}, (m \in \mathbb{N}),$$

exist for each fixed $n \in \mathbb{N}$ *and* $m \in \mathbb{N}$ *, respectively. Note that if* (x_{mn}) *is regularly convergent to* L *in* X*, then the limits*

 $\lim_{n\to\infty}\lim_{m\to\infty}x_{mn} \text{ and } \lim_{m\to\infty}\lim_{n\to\infty}x_{mn}$

exist and are equal to L. In this case we write

$$r - \lim_{m,n\to\infty} x_{mn} = L \quad or \quad x_{mn} \stackrel{r}{\to} L.$$

Definition 2.4. Let $I_2 \subset 2^{\mathbb{N}\times\mathbb{N}}$ be a strongly admissible ideal, $I \subset 2^{\mathbb{N}}$ be an admissible ideal and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. A double sequence (x_{mn}) in X is said to be regularly (I_2, I) -convergent $(r(I_2, I)$ -convergent), if it is I_2 -convergent in Pringsheim's sense and for each $\varepsilon > 0$ and nonzero $z \in X$, the following statements hold:

$$\{m \in \mathbb{N} : ||x_{mn} - L_n, z|| \ge \varepsilon\} \in \mathcal{I}$$
(1)

for some $L_n \in X$, for each $n \in \mathbb{N}$ and

$$\{n \in \mathbb{N} : ||x_{mn} - K_m, z|| \ge \varepsilon\} \in I$$

for some $K_m \in X$, for each $m \in \mathbb{N}$.

If (x_{mn}) is regularly (I_2, I) -convergent $(r(I_2, I)$ -convergent) to $L \in X$, then the limits $I - \lim_{n \to \infty} \lim_{m \to \infty} x_{mn}$ and $I - \lim_{m \to \infty} \lim_{m \to \infty} x_{mn}$ exist and are equal to L.

Theorem 2.5. Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, $I \subset 2^{\mathbb{N}}$ be an admissible ideal and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. If a double sequence (x_{mn}) in X is regularly convergent, then (x_{mn}) is $r(I_2, I)$ -convergent.

(2)

Proof. Let (x_{mn}) be regularly convergent. Then (x_{mn}) is convergent in Pringsheim's sense and the limits $\lim_{m\to\infty} x_{mn}$ $(n \in \mathbb{N})$ and $\lim_{n\to\infty} x_{mn}$ $(m \in \mathbb{N})$ exist. By Lemma 2.2, (x_{mn}) is I_2 -convergent. Also, for each $\varepsilon > 0$ and nonzero $z \in X$, there exist $m = m_0(\varepsilon)$ and $n = n_0(\varepsilon)$ such that

$$\|x_{mn} - L_n, z\| < \varepsilon$$

for some L_n and each fixed $n \in \mathbb{N}$ for every $m \ge m_0$ and

$$\|x_{mn} - K_m, z\| < \varepsilon$$

for some K_m and each fixed $m \in \mathbb{N}$ for every $n \ge n_0$. Then, since I is an admissible ideal so for each $\varepsilon > 0$ and nonzero $z \in X$, we have

 $\{m \in \mathbb{N} : ||x_{mn} - L_n, z|| \ge \varepsilon\} \subset \{1, 2, \dots, m_0 - 1\} \in \mathcal{I},$

 $\{n \in \mathbb{N} : ||x_{mn} - K_m, z|| \ge \varepsilon\} \subset \{1, 2, \dots, n_0 - 1\} \in \mathcal{I}.$

Hence, (x_{mn}) is $r(I_2, I)$ -convergent in X.

Definition 2.6. Let I_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$, I be an admissible ideal of \mathbb{N} and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. A double sequence (x_{mn}) in X is said to be $r(I_2^*, I^*)$ -convergent, if there exist the sets $M \in \mathcal{F}(I_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M \in I_2$), $M_1 \in \mathcal{F}(I)$ and $M_2 \in \mathcal{F}(I)$ (i.e., $\mathbb{N} \setminus M_1 \in I$ and $\mathbb{N} \setminus M_2 \in I$) such that the limits

 $\lim_{\substack{m,n\to\infty\\(m,n)\in M}} x_{mn}, \quad \lim_{\substack{m\to\infty\\m\in M_1}} x_{mn} \quad and \quad \lim_{\substack{n\to\infty\\n\in M_2}} x_{mn}$

exist for each fixed $n \in \mathbb{N}$ *and* $m \in \mathbb{N}$ *, respectively.*

Theorem 2.7. Let I_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$, I be an admissible ideal of \mathbb{N} and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. If a double sequence (x_{mn}) in X is $r(I_2^*, I^*)$ -convergent, then it is $r(I_2, I)$ -convergent.

Proof. Let (x_{mn}) in X be $r(I_2^*, I^*)$ -convergent. Then, it is I_2^* -convergent and so, by Lemma 2.1, it is I_2 -convergent. Also, there exist the sets $M_1, M_2 \in \mathcal{F}(I)$ such that

 $(\forall z \in X) \ (\forall \varepsilon > 0) \ (\exists m_0 \in \mathbb{N}) \ (\forall m \ge m_0) \ (m \in M_1) \ ||x_{mn} - L_n, z|| < \varepsilon, \ (n \in \mathbb{N})$

for some $L_n \in X$ and

 $(\forall z \in X) \ (\forall \varepsilon > 0) \ (\exists n_0 \in \mathbb{N}) \ (\forall n \ge n_0) \ (n \in M_2) \ \|x_{mn} - K_m, z\| < \varepsilon, \ (m \in \mathbb{N})$

for some $K_m \in X$. Hence, for each $\varepsilon > 0$ and nonzero $z \in X$, we have

 $A(\varepsilon) = \{m \in \mathbb{N} : ||x_{mn} - L_n, z|| \ge \varepsilon\} \subset H_1 \cup \{1, 2, \dots, m_0 - 1\}, \ (n \in \mathbb{N}),\$

 $B(\varepsilon) = \{n \in \mathbb{N} : ||x_{mn} - K_m, z|| \ge \varepsilon\} \subset H_2 \cup \{1, 2, \dots, n_0 - 1\}, \ (m \in \mathbb{N}),\$

for $H_1, H_2 \in I$. Since I is an admissible ideal we get

$$H_1 \cup \{1, 2, \dots, (m_0 - 1)\} \in I, H_2 \cup \{1, 2, \dots, n_0 - 1\} \in I$$

and therefore $A(\varepsilon), B(\varepsilon) \in I$. This shows that the double sequence (x_{mn}) is $r(I_2, I)$ -convergent in X.

Theorem 2.8. Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal with property (AP2), $I \subset 2^{\mathbb{N}}$ be an admissible ideal with property (AP) and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. If a double sequence (x_{mn}) is $r(I_2, I)$ -convergent, then (x_{mn}) is $r(I_2^*, I^*)$ -convergent in X.

Proof. Let a double sequence (x_{mn}) in X be $r(I_2, I)$ -convergent. Then (x_{mn}) is I_2 -convergent and so (x_{mn}) is I_2^* -convergent, by Lemma 1.1. Also, for each $\varepsilon > 0$ and nonzero $z \in X$ we have

$$A(\varepsilon) = \{m \in \mathbb{N} : ||x_{mn} - L_n, z|| \ge \varepsilon\} \in I$$

for some $L_n \in X$, for each $n \in \mathbb{N}$ and

$$C(\varepsilon) = \{n \in \mathbb{N} : ||x_{mn} - K_m, z|| \ge \varepsilon\} \in I$$

for some $K_m \in X$, for each $m \in \mathbb{N}$.

.

Now put for each nonzero $z \in X$

$$A_{1} = \{m \in \mathbb{N} : ||x_{mn} - L_{n}, z|| \ge 1\},\$$

$$A_{k} = \left\{m \in \mathbb{N} : \frac{1}{k} \le ||x_{mn} - L_{n}, z|| < \frac{1}{k-1}\right\}$$

for $k \ge 2$, for some $L_n \in X$ and for each $n \in \mathbb{N}$. It is clear that $A_i \cap A_j = \emptyset$ for $i \ne j$ and $A_i \in I$ for each $i \in \mathbb{N}$. By the property (*AP*) there is a countable family of sets $\{B_1, B_2, \ldots\}$ in \mathcal{I} such that $A_i \triangle B_j$ is a finite set for each $j \in \mathbb{N}$ and $B = \bigcup_{i=1}^{\infty} B_i \in I$.

We prove that

$$\lim_{\substack{m \to \infty \\ m \in M}} ||x_{mn} - L_n, z|| = 0, \text{ for some } L_n \text{ and for each } n \in \mathbb{N}$$

for each nonzero $z \in X$ and for $M = \mathbb{N} \setminus B \in \mathcal{F}(I)$. Let $\delta > 0$ be given. Choose $k \in \mathbb{N}$ such that $1/k < \delta$. Then, for each nonzero $z \in X$ we have

$$\{m \in \mathbb{N} : ||x_{mn} - L_n, z|| \ge \delta\} \subset \bigcup_{j=1}^k A_j \text{ for some } L_n \text{ and for each } n \in \mathbb{N}.$$

Since $A_j \triangle B_j$ is a finite set for $j \in \{1, 2, ..., k\}$, there exists $m_0 \in \mathbb{N}$ such that

$$\left(\bigcup_{j=1}^{k} B_{j}\right) \cap \{m: m \geq m_{0}\} = \left(\bigcup_{j=1}^{k} A_{j}\right) \cap \{m: m \geq m_{0}\}.$$

If $m \ge m_0$ and $m \notin B$ then

$$m \notin \bigcup_{j=1}^{k} B_j$$
 and so $m \notin \bigcup_{j=1}^{k} A_j$.

Thus, for each nonzero $z \in X$ we have $||x_{mn} - L_n, z|| < \frac{1}{k} < \delta$ for some L_n and for each $n \in \mathbb{N}$. This implies that

$$\lim_{\substack{m\to\infty\\m\in M}} \|x_{mn} - L_n, z\| = 0.$$

Hence, for each nonzero $z \in X$ we have

$$\mathcal{I}^* - \lim_{m \to \infty} \|x_{mn} - L_n, z\| = 0$$

for some L_n and for each $n \in \mathbb{N}$.

Similarly, for the set $C(\varepsilon) = \{n \in \mathbb{N} : ||x_{mn} - K_m, z|| \ge \varepsilon\} \in I$, for each nonzero $z \in X$ we have

$$\mathcal{I}^* - \lim_{n \to \infty} \|x_{mn} - K_m, z\| = 0$$

for K_m and for each $m \in \mathbb{N}$. Hence, a double sequence (x_{mn}) is $r(\mathcal{I}_2^*, \mathcal{I}^*)$ -convergent. \Box

Now, we give the definitions of $r(I_2, I)$ -Cauchy sequence and $r(I_2^*, I^*)$ -Cauchy sequence.

Definition 2.9. Let I_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$, I be an admissible ideal of \mathbb{N} and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. A double sequence (x_{mn}) in X is said to be regularly (I_2, I) -Cauchy $(r(I_2, I)$ -Cauchy), if it is I_2 -Cauchy in Pringsheim's sense and for each $\varepsilon > 0$ and nonzero $z \in X$ there exist $k_n = k_n(\varepsilon, z) \in \mathbb{N}$ and $l_m = l_m(\varepsilon, z) \in \mathbb{N}$ such that the following statements hold:

- $A_1(\varepsilon) = \{m \in \mathbb{N} : ||x_{mn} x_{k_n n}, z|| \ge \varepsilon\} \in I, \ (n \in \mathbb{N}),$
- $A_2(\varepsilon) = \{n \in \mathbb{N} : ||x_{mn} x_{ml_m}, z|| \ge \varepsilon\} \in \mathcal{I}, \ (m \in \mathbb{N}).$

Definition 2.10. Let I_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$, I be an admissible ideal of \mathbb{N} and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. A double sequence (x_{mn}) is said to be regularly (I_2^*, I^*) -Cauchy $(r(I_2^*, I^*)$ -Cauchy), if there exist the sets $M \in \mathcal{F}(I_2)$, $M_1 \in \mathcal{F}(I)$ and $M_2 \in \mathcal{F}(I)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M \in I_2$, $\mathbb{N} \setminus M_1 \in I$ and $\mathbb{N} \setminus M_2 \in I$), for each $\varepsilon > 0$ and nonzero $z \in X$ there exist $N = N(\varepsilon)$, $s = s(\varepsilon)$, $t = t(\varepsilon)$, $(s, t) \in M$, $k_n = k_n(\varepsilon)$, $l_m = l_m(\varepsilon) \in \mathbb{N}$ such that

 $\begin{aligned} ||x_{mn} - x_{st}, z|| < \varepsilon, & for (m, n), (s, t) \in M, \\ ||x_{mn} - x_{k_n n}, z|| < \varepsilon, & for each \ m \in M_1 \ and for each \ n \in \mathbb{N}, \\ ||x_{mn} - x_{ml_m}, z|| < \varepsilon, & for each \ n \in M_2 \ and for each \ m \in \mathbb{N}, \end{aligned}$

whenever $m, n, s, t, k_n, l_m \ge N$.

Theorem 2.11. Let I_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$ and I be an admissible ideal of \mathbb{N} and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. If a double sequence (x_{mn}) in X is $r(I_2^*, I^*)$ -Cauchy, then it is $r(I_2, I)$ -Cauchy.

Proof. Since a double sequence (x_{mn}) in X is $r(I_2^*, I^*)$ -Cauchy, it is I_2^* -Cauchy. We know that I_2^* -Cauchy implies I_2 -Cauchy by Lemma 1.3. Also, since the double sequence (x_{mn}) is $r(I_2^*, I^*)$ -Cauchy so there exist the sets $M_1, M_2 \in \mathcal{F}(I)$ and for each $\varepsilon > 0$ and nonzero $z \in X$ there exist $k_n = k_n(\varepsilon) \in \mathbb{N}$ and $l_m = l_m(\varepsilon) \in \mathbb{N}$ such that

 $||x_{mn} - x_{k_n n}, z|| < \varepsilon$, for each $m \in M_1$ and for each $n \in \mathbb{N}$, $||x_{mn} - x_{ml_m}, z|| < \varepsilon$, for each $n \in M_2$ and for each $m \in \mathbb{N}$,

for $N = N(\varepsilon) \in \mathbb{N}$ and $m, n, k_n, l_m \ge N$. Therefore, for $H_1 = \mathbb{N} \setminus M_1 \in \mathcal{I}, H_2 = \mathbb{N} \setminus M_2 \in \mathcal{I}$ we have

$$A_1(\varepsilon) = \{ m \in \mathbb{N} : ||x_{mn} - x_{k_n n}, z|| \ge \varepsilon \} \subset H_1 \cup \{ 1, 2, \dots, N-1 \}, \ (n \in \mathbb{N})$$

for $m \in M_1$ and

 $A_{2}(\varepsilon) = \{n \in \mathbb{N} : ||x_{mn} - x_{ml_{m}}, z|| \ge \varepsilon\} \subset H_{2} \cup \{1, 2, \dots, N-1\}, \ (m \in \mathbb{N})$

for $n \in M_2$. Since \mathcal{I} is an admissible ideal,

$$H_1 \cup \{1, 2, \dots, N-1\} \in I$$
 and $H_2 \cup \{1, 2, \dots, N-1\} \in I$.

Hence, we have $A_1(\varepsilon), A_2(\varepsilon) \in I$ and (x_{mn}) is $r(I_2, I)$ -Cauchy double sequence. \Box

Theorem 2.12. Let I_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$ and I be an admissible ideal of \mathbb{N} and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. If a double sequence (x_{mn}) in X is $r(I_2, I)$ -convergent, then (x_{mn}) is $r(I_2, I)$ -Cauchy double sequence.

Proof. Let (x_{mn}) be a $r(I_2, I)$ -convergent double sequence in X. Then (x_{mn}) is I_2 -convergent and by Lemma 1.2, it is I_2 -Cauchy double sequence. Also for each $\varepsilon > 0$ and nonzero $z \in X$, we have

$$A_1\left(\frac{\varepsilon}{2}\right) = \left\{m \in \mathbb{N} : ||x_{mn} - L_n, z|| \ge \frac{\varepsilon}{2}\right\} \in \mathcal{I}$$

for some L_n , for each $n \in \mathbb{N}$ and

$$A_2\left(\frac{\varepsilon}{2}\right) = \left\{n \in \mathbb{N} : ||x_{mn} - K_m, z|| \ge \frac{\varepsilon}{2}\right\} \in \mathcal{I}$$

for some K_m , for each $m \in \mathbb{N}$. Since I is an admissible ideal, the sets

$$A_1^c\left(\frac{\varepsilon}{2}\right) = \left\{m \in \mathbb{N} : ||x_{mn} - L_n, z|| < \frac{\varepsilon}{2}\right\}, \ (n \in \mathbb{N})$$

for some L_n and

$$A_2^c\left(\frac{\varepsilon}{2}\right) = \left\{n \in \mathbb{N} : ||x_{mn} - K_m, z|| < \frac{\varepsilon}{2}\right\}, \ (m \in \mathbb{N})$$

for some K_m , are nonempty and belong to $\mathcal{F}(I)$. For $k_n \in A_1^c(\frac{\varepsilon}{2})$, $(n \in \mathbb{N} \text{ and } k_n > 0)$ we have

$$\|x_{k_nn}-L_n,z\|<\frac{\varepsilon}{2}$$

for some L_n . Now, for each $\varepsilon > 0$ and nonzero $z \in X$ we define the set

$$B_1(\varepsilon) = \{ m \in \mathbb{N} : ||x_{mn} - x_{k_n n}, z|| \ge \varepsilon \}, \ (n \in \mathbb{N}),$$

where $k_n = k_n(\varepsilon) \in \mathbb{N}$. Let $m \in B_1(\varepsilon)$. Then for $k_n \in A_1^c(\frac{\varepsilon}{2})$, $(n \in \mathbb{N} \text{ and } k_n > 0)$ we have

$$\varepsilon \le ||x_{mn} - x_{k_n n}, z|| \le ||x_{mn} - L_n, z|| + ||x_{k_n n} - L_n, z|| < ||x_{mn} - L_n, z|| + \frac{\varepsilon}{2}$$

for some L_n . This shows that

$$\frac{\varepsilon}{2} < ||x_{mn} - L_n, z|| \text{ and so } m \in A_1(\frac{\varepsilon}{2}).$$

Hence, we have $B_1(\varepsilon) \subset A_1(\frac{\varepsilon}{2})$.

Similarly, for each $\varepsilon > 0$, nonzero $z \in X$ and for $l_m \in A_2^c(\frac{\varepsilon}{2})$ ($m \in \mathbb{N}$ and $l_m > 0$) we have

 $||x_{ml_m}-K_m,z|| < \frac{\varepsilon}{2}, \ (m \in \mathbb{N})$

for some K_m . Therefore, it can be seen that

$$B_2(\varepsilon) = \{m \in \mathbb{N} : ||x_{ml_m} - K_m, z|| \ge \varepsilon\} \subset A_2(\frac{\varepsilon}{2}).$$

Hence, we have $B_1(\varepsilon), B_2(\varepsilon) \in I$. This shows that (x_{mn}) is $r(I_2, I)$ -Cauchy double sequence. \Box

References

- [1] B. Altay, F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl. 309 (1) (2005), 70–90.
- [2] P. Das, P. Kostyrko, W. Wilczyński, P. Malik, I and I*-convergence of double sequences, Math. Slovaca, 58(5) (2008), 605–620.
- [3] P. Das, P. Malik, On extremal *I*-limit points of double sequences, Tatra Mt. Math. Publ. 40 (2008), 91–102.
- [4] E. Dündar, B. Altay, On Some Properties of I₂-Convergence and I₂-Cauchy of Double Sequences Gen. Math. Notes, 7(1) (2011), 1–12.
- [5] E. Dündar, Y. Sever, *I*₂-Cauchy Double Sequences In 2-Normed Spaces, (Submitted to journal)
- [6] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
- [7] J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
- [8] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115–148.
- [9] S. Gähler, 2-normed spaces, Math. Nachr, 28 (1964), 1–43.
- [10] H. Gunawan, M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (10) (2001), 631-639.
- [11] H. Gunawan, M. Mashadi, On Finite Dimensional 2 -normed spaces, Soochow J. Math. 27 (3) (2001), 321–329.
- [12] M. Gürdal, S. Pehlivan, The Statistical Convergence in 2-Banach Spaces, Thai J. Math., 2(1) (2004), 107–113.
- [13] M. Gürdal, I. Açık, On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 11 (2) (2008), 349–354.
- [14] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math. 4 (1) (2006), 85–91.
- [15] P. Kostyrko, T. Šalát, W. Wilczyński, I-convergence, Real Anal. Exchange, 26 (2) (2000), 669-686.
- [16] V. Kumar, On *I* and *I**-convergence of double sequences, Math. Commun. **12** (2007), 171–181.
- [17] M. Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223–231.
- [18] M. Mursaleen, S.A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12 (62)(4) (2010), 359–371.
- [19] M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62 (2012), 49-62.
- [20] M. Mursaleen, A. Alotaibi, On *I*-convergence in random 2-normed spaces, Math. Slovaca, 61 (6) (2011), 933–940.

- [21] F. Nuray, W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), 513–527.
- [22] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289–321.
- [23] S. Sarabadan, S. Talebi, On *I*-convergence of double sequences in 2-normed spaces, Int. J. Comtemp. Math. Sciences, 7 (14) (2012), 673–684.
- [24] S. Sarabadan, F.A. Arani, S. Khalehoghli, A condition for the equivalence of *I* and *I**-convergence in 2-normed spaces, Int. J. Comtemp. Math. Sciences, 6 (43) (2011), 2147–2159.
- [25] S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, International Journal of Mathematics and Mathematical Sciences, vol(2011) (2011), 10 pages.
- [26] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
- [27] A. Şahiner, M. Gürdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11 (2007), 1477–1484.
- [28] B. Tripathy, B.C. Tripathy, On I-convergent double sequences, Soochow J. Math. 31 (2005), 549–560.
- [29] B.C. Tripathy, M. Sen, S. Nath, I-convergence in probabilistic n-normed space, Soft Comput. 16 (2012), 1021–1027.