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Abstract. In the present study, the second order of accuracy difference scheme for numerical solution of
the boundary value problem for the differential equation with an unknown parameter p

i du(t)
dt + Au(t) + iu(t) = f (t) + p, 0 < t < T,

u(0) = ϕ, u(T) = ψ

in a Hilbert space H with self-adjoint positive definite operator A is presented. Theorem on the stability of
this difference scheme is established. The stability estimates for the solution of difference schemes for two
determination of an unknown parameter problem for Schrödinger equations are given.

1. Introduction. Difference scheme

The differential equations with an unknown parameter play a very important role in many branches of
applied sciences and engineering (see, [1]-[3] and the references therein).

Theory and methods of solutions of differential equations with an unknown parameter have been
studied extensively (see, [4]-[20] and the references therein). Note that in general such problems were not
well-investigated.

In the paper [22] the boundary value problem for the Schrödinger equation with an unknown parameter
p 

i du(t)
dt + Au(t) + iu(t) = f (t) + p, 0 < t < T,

u(0) = ϕ, u(T) = ψ
(1)

in a Hilbert space H with self-adjoint positive definite operator A was investigated. The well-posedness of
this problem was established. The stability estimates for the solution of two determination of an unknown
parameter problems for Schrödinger equations were obtained.
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In the paper [23], the first order of accuracy difference scheme for numerical solution of the boundary
value problem (1) was presented. Theorem on the stability of this difference scheme was proved. The
stability estimates for the solution of difference schemes for two determination of an unknown parameter
problem for Schrödinger equations were given. It is well-known that (see [15]) modern computers allow the
implementation of highly accurate ones; hence, their construction and investigation for various boundary
value problems for Schrödinger equations is generating much current interest.

In the present paper the second order of accuracy Rothe difference scheme
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)
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)
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tk = kτ, 1 ≤ k ≤ N, Nτ = T,

u0 = ϕ,uN = ψ

(2)

for the approximate solution of the boundary value problem (1) for the differential equation with an
unknown parameter p is presented. It is clear that

uk = vk + (A + iI)−1 p, (3)

p = (A + iI)
(
ψ − vN

)
, (4)

where {vk}
N
k=0 is the solution of the following nonlocal boundary value difference problem
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v0 − vN = ϕ − ψ,

(5)

The well-posedness of difference problem (2) is established. In applications, the stability estimates
for the solution of difference schemes for the approximate solution of two determination of an unknown
parameter problems are obtained.

The paper is organized as follows. The section 1 is introduction. In section 2, the main theorem on
stability of difference problem (2) is proved. In section 3, theorems on the stability estimates for the solution
of difference schemes for the approximate solution of two determination of an unknown parameter problem
are obtained. In section 4, numerical results are given. Finally, section 5 is conclusion.

2. The Main Theorem on Stability

The aim of this section, is the study of the well-posedness of the second order of accuracy difference
scheme (2).

The following estimate holds:

‖D‖H→H ≤ 1,

Here

D =
[
I − iτ(A + iI)

[
(1 +

τ
2

)I − i
τA
2

]]−1

is the step operator of problem (2) for approximately solving problem (1). We state the following lemma
which is needed in the sequel.
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Lemma 2.1. Let A be self-adjoint positive definite operator A ≥ δI.Then the operator I − DN has an

inverse T′τ =
(
I −DN

)−1
and the following estimate is satisfied:

‖ T′τ ‖H→H≤M(δ). (6)

Proof. The proof of estimate (6) is based on the triangle inequality and the estimate

‖

(
I −DN

)−1
‖H→H≤ sup

δ≤µ

1

1 −
∣∣∣∣1 − iτ(µ + i)

(
1 + τ

2 − i τµ2
)∣∣∣∣−N ≤

1
1 − (1 + τδ)−N ≤M(δ).

Now, let us obtain the formula for the solution of problem (2). It is clear that the second order of accuracy
difference scheme
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)
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2
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(ϕk + p), 1 ≤ k ≤ N,

u0 = ϕ

(7)

has a solution and the following formula holds:

uk = Dkϕ +

k∑
j=1

(
(1 +

τ
2

)I − i
τA
2

)
Dk− j+1

(
p + ϕ j

)
τ, 1 ≤ k ≤ N. (8)

Using condition uN = ψ, we can write

ψ = DNϕ +

N∑
j=1

(
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τ
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τA
2

)
DN− j+1ϕ jτ
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(
(1 +

τ
2

)I − i
τA
2

)
DN− j+1τ = i(A + iI)−1(I −D)
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we have that
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2

)
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By Lemma 2.1, we get
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Using (8) and (10), we get
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+
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Hence, difference equation (2) is uniquely solvable and for the solution we have formulas (10) and (11).
Theorem 2.1. Suppose that assumptions of Lemma 2.1 hold. Then, for the solution ({uk}

N
k=1 , p) of

problem (2) in Cτ(H) ×H the estimates

‖ p ‖H≤M
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hold, where M is independent of τ, ϕ, ψ, and
{
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}N
k=1.

Here, C(1)
τ (H) is the grid space of abstract grid functions

{
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Proof. From formulas (8) and (10) it follows that

p = T′τ

[−i(A + iI)]ψ −DN[−i(A + iI)]ϕ − ϕN + DNϕ1 −

N∑
j=2

DN− j+1
(
ϕ j−1 − ϕ j

) .
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Using this formula, the triangle inequality and estimate (6), we obtain
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Estimate (12) is proved. Using formula (11), the triangle inequality and estimate (6), we obtain
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{
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}N
k=1 ‖Cτ(H)

]
for any k. From that it follows estimate (13). Theorem 2.1 is proved.

3. Applications

In this section, we consider the applications of main Theorem 2.1.
First, the nonlocal boundary value problem for the Schrödinger equation

iut − (a(x)ux)x + δu + iu = p(x) + f (t, x), 0 < t < T, 0 < x < 1,

u(0, x) = ϕ(x),u(T, x) = ψ(x), 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1), ux(t, 0) = ux(t, 1), 0 ≤ t ≤ T

(14)

is considered. Problem (14) has a unique smooth solution (u(t, x), p(x)) for the smooth functions a(x) ≥ a > 0,
x ∈ (0, 1), δ > 0, a(1) = a(0), ϕ(x), ψ(x) (x ∈ [0, 1]) and f (t, x) (t ∈ (0,T) , x ∈ (0, 1)). This allows us to reduce
the nonlocal boundary values problem (14) to the nonlocal boundary value problem (1) in a Hilbert space
H = L2[0, 1] with a self-adjoint positive definite operator Ax defined by formula

Axu(x) = −(a(x)ux)x + δu (15)

with domain

D(Ax) = {u(x) : u(x),ux(x), (a(x)ux)x ∈ L2[0, 1],u(1) = u(0),ux(1) = ux(0)} .

The discretization of problem (14) is carried out in two steps. In the first step, we define the grid space

[0, 1]h = {x = xn : xn = nh, 0 ≤ n ≤M, Mh = 1}.
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Let us introduce the Hilbert space L2h = L2([0, 1]h) of the grid functionsϕh(x) = {ϕn}
M−1
1 defined on [0, 1]h,

equipped with the norm

‖ϕh
‖L2h =

 ∑
x∈[0,1]h

|ϕ(x)|2h


1/2

.

To the differential operator Ax defined by formula (15), we assign the difference operator Ax
h by the

formula

Ax
hϕ

h(x) = {−(a(x)ϕx)x,n + δϕn}
M−1
1 (16)

acting in the space of grid functionsϕh(x) = {ϕn}
M−1
1 satisfying the conditionsϕ0 = ϕM, ϕ1−ϕ0 = ϕM−ϕM−1.

It is well-known that Ax
h is a self-adjoint positive definite operator in L2h. With the help of Ax

h, we reach the
boundary value problem

i duh(t,x)
dt + Ax

huh(t, x) + iuh(t, x) = ph(x) + f h(t, x), 0 < t < T, x ∈ [0, 1]h,

uh(0, x) = ϕh(x),uh(T, x) = ψh(x), x ∈ [0, 1]h.

(17)

In the second step, we replace (17) with the difference scheme (2)

i
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=
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2

) (
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k (x)
)
,

f h
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τ
2 , x), tk = kτ, 1 ≤ k ≤ N, x ∈ [0, 1]h,

uh(0, x) = ϕh(x), uh(1, x) = ψh(x), x ∈ [0, 1]h.

(18)

Theorem 3.1. The solution pairs
({

uh
k (x)

}N

0
, ph (x)

)
of problem (18) satisfy the stability estimates

‖ ph
‖L2h≤M1

[
||ϕh
||L2h + ||ψh

||L2h + ||Ax
hϕ

h
||L2h + ||Ax

hψ
h
||L2h + ||

{
f h
k
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1
||C(1)

τ (L2h)

]
,

‖

{
uh

k

}N

1
‖Cτ(L2h)≤M2

[
||ϕh
||L2h + ||ψh

||L2h + ||
{

f h
k

}N

1
||Cτ(L2h)

]
,

where M1 and M2 does not depend on τ, h, ϕh, ψh and f h
k , 1 ≤ k ≤ N. Here C(1)

τ (L2h) is the grid space of grid

functions
{

f h
k

}N

1
defined on [0, 1]τ × [0, 1]h with norm

||

{
f h
k

}N

1
||C(1)

τ (L2h) = ||
{

f h
k

}N

1
||Cτ(L2h) + sup

1≤k<k+r≤N

|| f h
k+r − f h

k ||L2h

rτ
,

||

{
f h
k

}N

1
||Cτ(L2h) = max

1≤k≤N
|| f h

k ||L2h .

The proof of Theorem 3.1 is based on the abstract Theorem 2.1 and the symmetry property of the
difference operator Ax

h.
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Second, let Ω = (x = (x1, · · · , xn) : 0 < xk < 1, k = 1, · · · ,n) be the unit open cube in the n-dimensional
Euclidean space Rn with boundary S, Ω = Ω ∪ S. In [0,T] × Ω, the boundary value problem for the
multi-dimensional Schrödinger equation

i ∂u(t,x)
∂t −

n∑
r=1

(ar(x)uxr )xr + iu = p(x) + f (t, x),

x = (x1, . . . , xn) ∈ Ω, 0 < t < T,

u(0, x) = ϕ(x),u(T, x) = ψ(x), x ∈ Ω,

u(t, x) = 0, x ∈ S, 0 ≤ t ≤ T

(19)

is considered. Here ar(x) ≥ a > 0, (x ∈ Ω), ϕ(x), ψ(x) (x ∈ Ω), and f (t, x) (t ∈ (0,T), x ∈ Ω) are given smooth
functions.

We consider the Hilbert space L2(Ω) of the all square integrable functions defined on Ω, equipped with
the norm

‖ f ‖L2(Ω)=

(∫
· · ·

∫
x∈Ω
| f (x)|2dx1 · · · dxn

) 1
2

.

Problem (19) has a unique smooth solution (u(t, x), p(x)) for the smooth functions ϕ(x), ψ(x), ar(x) and f (t, x).
This allows us to reduce the problem (19) to the nonlocal boundary value problem (1) in the Hilbert space
H = L2(Ω) with a self-adjoint positive definite operator Ax defined by formula

Axu(x) = −

n∑
r=1

(ar(x)uxr )xr (20)

with domain

D(Ax) =
{
u(x) : u(x),uxr (x), (ar(x)uxr )xr ∈ L2(Ω), 1 ≤ r ≤ n,u(x) = 0, x ∈ S

}
.

The discretization of problem (19) is carried out in two steps. In the first step, we define the grid space

Ωh =
{
x = xr =

(
h1 j1, · · · , hn jn

)
, j =

(
j1, · · · , jn

)
, 0 ≤ jr ≤ Nr,

Nrhr = 1, r = 1, · · · ,n} ,Ωh = Ωh ∩Ω,Sh = Ωh ∩ S

and introduce the Hilbert space L2h = L2(Ωh) of the grid functions

ϕh (x) =
{
ϕ

(
h1 j1, · · · , hn jn

)}
defined on Ωh equipped with the norm

∥∥∥ϕh
∥∥∥

L2h
=

∑
x∈Ωh

∣∣∣ϕh (x)
∣∣∣2 h1 · · · hn


1
2

.

To the differential operator Ax defined by formula (20), we assign the difference operator Ax
h by the

formula

Ax
huh = −

n∑
r=1

(
αr(x)uh

xr

)
xr, jr

,
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where Ax
h is known as self-adjoint positive definite operator in L2h, acting in the space of grid functions

uh (x) satisfying the conditions uh (x) = 0 for all x ∈ Sh.With the help of the difference operator Ax
h, we arrive

the following boundary value problem
iuh

t (t, x) + Ax
huh (t, x) + iuh (t, x) = ph (x) + f h (t, x) ,

0 < t < T, x ∈ Ωh,

uh (0, x) = ϕh (x) , uh (T, x) = ψh (x) , x ∈ Ωh

(21)

for an infinite system of ordinary differential equations. In the second step, we replace (21) with the
difference scheme (2)

i
uh

k (x)−uh
k−1(x)

τ + Ax
h

(
(1 + τ

2 )I − i
τAx

h
2

)
uh

k(x) + i
(
(1 + τ

2 )I − i τA
2

)
uh

k(x)

=
(
(1 + τ

2 )I − i τA
2

) (
ph(x) + f h

k (x)
)
,

f h
k (x) = f h(tk −

τ
2 , x), tk = kτ, 1 ≤ k ≤ N, x ∈ Ωh,

uh(0, x) = ϕh(x), uh(1, x) = ψh(x), x ∈ Ωh.

(22)

Theorem 3.2. The solution pairs
({

uh
k (x)

}N

0
, ph (x)

)
of problem (22) satisfy the stability estimates

‖ ph
‖L2h≤M1

[
||ϕh
||L2h + ||ψh

||L2h + ||Ax
hψ

h
||L2h + ||

{
f h
k

}N

1
||C(1)

τ (L2h)

]
,

‖

{
uh

k

}N

1
‖Cτ(L2h)≤M2

[
||ϕh
||L2h + ||ψh

||L2h + ||
{

f h
k

}N

1
||Cτ(L2h)

]
,

where M1 and M2 is independent of τ, h, ϕh, ψh and f h
k , 1 ≤ k ≤ N. Here C(1)

τ (L2h) is the grid space of grid

functions
{

f h
k

}N

1
defined on [0, 1]τ ×Ωh with norm

||

{
f h
k

}N

1
||C(1)

τ (L2h) = ||
{

f h
k

}N

1
||Cτ(L2h) + sup

1≤k<k+r≤N

|| f h
k+r − f h

k ||L2h

rτ
,

||

{
f h
k

}N

1
||Cτ(L2h) = max

1≤k≤N
|| f h

k ||L2h .

The proof of Theorem 3.2 is based on Theorem 2.1 and the symmetry property of the difference operator
Ax

h defined by formula (19) and the following theorem on the coercivity inequality for the solution of the
elliptic difference problem in L2h.

Theorem 3.3. For the solutions of the elliptic difference problem [21]
Ax

huh(x) = ωh(x), x ∈ Ωh,

uh(x) = 0, x ∈ Sh,

(23)

the following coercivity inequality holds:
n∑

r=1

∥∥∥uh
xr xr

∥∥∥
L2h
≤M||ωh

||L2h ,
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where M does not depend on h and ωh.

4. A Numerical Result

In present section, the numerical analysis of approximate solution of the boundary value problem
i ∂u(t,x)

∂t −
∂2u(t,x)
∂x2 + iu(t, x) = p (x) + f (t, x), x ∈ (0, π) , t ∈ (0, 1),

u(0, x) = sin x, u(1, x) = e−1 sin x, x ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, 1]

(24)

is given. It is clear that the exact solution of problem (24) is u (t, x) = e−t sin x and p (x) = sin x. Using (2) for
the approximate solution of (24), we get the following second order of accuracy difference scheme

i
uk

n − uk−1
n

τ
− (1 + τ

2 )
uk

n+1 − 2uk
n + uk

n−1

h2

−i
τ
2

uk
n+2 − 4uk

n+1 + 6uk
n − 4uk

n−1 + uk
n−2

h4


+i(1 + τ

2 )uk
n −

τ
2

uk
n+1 − 2uk

n + uk
n−1

h2

= θk
n, θ

k
n = (1 + τ

2 ) f (tk −
τ
2 , xn)

+i
τ
2

(
f (tk −

τ
2 , xn+1) − 2 f (tk −

τ
2 , xn) + f (tk −

τ
2 , xn−1)

h2

)

+(1 + τ
2 )p (xn) + i

τ
2

(
p (xn+1) − 2p (xn) + p (xn−1)

h2

)
,

tk = kτ, 1 ≤ k ≤ N,

Nτ = T, xn = nh, 2 ≤ n ≤M − 2 ,Mh = π,

u0
n = sin (xn) ,uN

n = e−1 sin (xn) , xn = nh, 0 ≤ n ≤M,

uk
0 = uk

M = 0, 0 ≤ k ≤ N,

2uk
0 − 5uk

1 + 4uk
2 − uk

3 = uk
M−3 − 4uk

M−2 + 5uk
M−1 − 2uk

M = 0, 0 ≤ k ≤ N.

(25)

For obtaining the values of p (xn) at the grid points we will use formula

p (xn) = −e−1 sin (xn+1) − 2 sin (xn) + sin (xn−1)
h2 + ie−1 sin (xn)

+
vN

n+1 − 2vN
n + vN

n−1

h2 − ivN
n , xn = nh, 1 ≤ n ≤M − 1, (26)
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where vk
s , s = n ± 1,n is the solution of the second order of accuracy difference scheme

i
vk

n − vk−1
n

τ
− (1 + τ

2 )
vk

n+1 − 2vk
n + vk

n−1

h2

−i
τ
2

vk
n+2 − 4vk

n+1 + 6vk
n − 4vk

n−1 + vk
n−2

h4

 + i(1 + τ
2 )vk

n

−
τ
2

vk
n+1 − 2vk

n + vk
n−1

h2 = φk
n, φ

k
h = (1 + τ

2 ) f (tk −
τ
2 , xn)

+i
τ
2

(
f (tk −

τ
2 , xn+1) − 2 f (tk −

τ
2 , xn) + f (tk −

τ
2 , xn−1)

h2

)
,

tk = kτ, 1 ≤ k ≤ N, Nτ = T, xn = nh, 2 ≤ n ≤M − 2 ,Mh = π,

vN
n − v0

n =
(
e−1
− 1

)
sin (xn) , xn = nh, 0 ≤ n ≤M,

vk
0 = vk

M = 0, 0 ≤ k ≤ N,

2vk
0 − 5vk

1 + 4vk
2 − vk

3 = vk
M−3 − 4vk

M−2 + 5vk
M−1 − 2vk

M = 0, 0 ≤ k ≤ N

(27)

is generated by difference scheme (5).
Applying the difference scheme (27), we obtain (N + 1)× (M + 1) system of linear equations and we can

write them in the matrix form as

Avn+2 + Bvn+1 + Cvn + Dvn−1 + Evn−2 = Iφn, 2 ≤ n ≤M − 2, (28)

v0 = vM = 0̃, v1 =
4
5

v2 −
1
5

v3, vM−1 =
4
5

vM−2 −
1
5

vM−3,

where

E = A =



0 0 0 . 0 0 0 0
0 α 0 . 0 0 0 0
0 0 α . 0 0 0 0
. . . . . . . .
0 0 0 . 0 0 α 0
0 0 0 . 0 0 0 α


(N+1)×(N+1)

,

D = B =



0 0 0 . 0 0 0 0
0 β 0 . 0 0 0 0
0 0 β . 0 0 0 0
. . . . . . . .
0 0 0 . 0 0 β 0
0 0 0 . 0 0 0 β


(N+1)×(N+1)

,

and

C =



−1 0 0 . 0 0 1
σ γ 0 . 0 0 0
0 σ γ . 0 0 0
. . . . . . .
0 0 0 . σ γ 0
0 0 0 . 0 σ γ


(N+1)×(N+1)

, I =


1 0 . 0
0 1 . 0
. . . .
0 0 . 1


(N+1)×(N+1)

.
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Here,

α = −i
τ

2h4 , β = −
1
h2 −

τ

h2 + i
2τ
h4 , γ = i

1
τ

+
2
h2 − i

3τ
h4 +

2τ
h2 + i + i

τ
2
, σ = −

i
τ
.

By using modified Gauss elimination method, we can reach the solution of vk
n, 0 ≤ k ≤ N, 0 ≤ n ≤ M. For

the solution of the matrix equations, we seek formula for the solution of the form
vn = αn+1vn+1 + βn+1vn+2 + γn+1, n = M − 2, · · · , 2, 1,
vM = 0̃,
vM−1 =

[(
βM−2 + 5I

)
− (4I − αM−2)αM−1

]−1 [
(4I − αM−2)γM−1 − γM−2

]
,

where α j, β j and γ j, j = 1, · · ·M − 1 are calculated as

αn+1 = −
(
C + Dαn + Eβn−1 + Eαn−1αn

)−1 (
B + Dϕn + Eαn−1βn

)
,

βn+1 = −
(
C + Dαn + Eβn−1 + Eαn−1αn

)−1 (A) ,

γn+1 =
(
C + Dαn + Eβn−1 + Eαn−1αn

)−1 (
Iϕn −Dγn − Eαn−1γn − Eγn−1

)
with α1 and β1 are (N + 1) × (N + 1) and γ1 and γ2 are (N + 1) × 1 zero matrices and

α2 =


4
5 0 . 0
0 4

5 . 0
. . . .
0 0 . 4

5


(N+1)×(N+1)

, β2 =


−

1
5 0 . 0

0 −
1
5 . 0

. . . .
0 0 . − 1

5


(N+1)×(N+1)

.

Then, applying the second order of accuracy difference scheme (25), we have again (N + 1)× (N + 1) system
of linear equations and we write them in the matrix form as

A2un+2 + B2un+1 + C2un + D2un−1 + E2un−2 = Iθn, 2 ≤ n ≤M − 2,

u0 = uM = 0̃,u1 =
4
5

u2 −
1
5

u3,uM−1 =
4
5

uM−2 −
1
5

uM−3, (29)

A2 = A, B2 = B,D2 = D,E2 = E,

and

C2 =



1 0 0 . 0 0 0
σ γ 0 . 0 0 0
0 σ γ . 0 0 0
. . . . . . .
0 0 0 . σ γ 0
0 0 0 . 0 σ γ


(N+1)×(N+1)

,

where

γ = i
1
τ

+
2
h2 − i

3τ
h4 +

2τ
h2 + i + i

τ
2
, σ = −

i
τ
.

Applying modified Gauss elimination method, we can reach the solution of uk
n, 0 ≤ k ≤ N, 0 ≤ n ≤ M. We

will give the results of the numerical analysis. The numerical solutions are recorded for different values
of N and M and uk

n represents the numerical solutions of these difference scheme at (tk, xn). Table 1 is
constructed for N = M = 20, 40 and 80 respectively and the error is computed by the following formula.

E = max
1≤k≤N

 M∑
n=1

∣∣∣u(tk, xn) − uk
n

∣∣∣2 h


1
2
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Table 1. Error analysis for the exact solution u (t, x) .

Method N=M=20 N=M=40 N=M=80

1st order of accuracy d.s. 0.0024 0.0012 6.0463 × 10−4

2nd order of accuracy d.s. 3.0543×10−4 7.4075×10−4 1.8351×10−5

For their comparison, Table 2 is constructed when errors are computed by

E = max
1≤k≤N
1≤n≤M

∣∣∣u(tk, xn) − uk
n

∣∣∣ .
Table 2. Error analysis for the exact solution u (t, x) .

Method N=M=20 N=M=40 N=M=80

1st order of accuracy d.s. 0.0019 9.5692 × 10−4 4.8241 × 10−4

2nd order of accuracy d.s. 2.7818×10−4 6.1783×10−4 1.4793×10−5

Table 3. Error analysis for p (x) .

N=20 N=40 N=80

1st order of accuracy d.s. 0.0145 0.0072 0.0036
2nd order of accuracy d.s. 0.0017 4.3813×10−4 1.0884×10−4

Thus, by using the second order of accuracy difference scheme the solution accuracy increases faster than
the first order of accuracy difference scheme. Therefore, the theoretical result for the solution of difference
scheme, the second order of accuracy is supported by the result of this numerical example.

5. Conclusion

In the present paper, the well-posedness of the second order of accuracy difference scheme for the
approximate solution of determination of an unknown parameter problem for the Schrödinger equation is
established. In applications, the stability estimates for the solution of difference schemes of the approximate
solution of two determination of an unknown parameter problem are obtained. Moreover, applying the
result of the monograph [15] the high order of accuracy single-step difference schemes for the numerical
solution of the boundary value problem (1) can be presented. Of course, the stability estimates for the
solution of these difference schemes have been established without any assumptions about the grid steps τ
in t and h in space variables.
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