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Abstract. In this work, using the concepts of G-metric and b-metric we define a new type of metric which
we call Gb-metric. We study some basic properties of such metric. We also prove a common fixed point
theorem for six mappings satisfying weakly compatible condition in complete partially ordered Gb-metric
spaces. A nontrivial example is presented to verify the effectiveness and applicability of our main result.

1. Introduction

Mustafa and Sims [12] generalized the concept of a metric space. Based on the notion of generalized
metric spaces, Mustafa et al. [15] obtained some fixed point results for mappings satisfying different
contractive conditions. Abbas and Rhoades initiated the study of common fixed point theory in generalizes
metric spaces. Since then, many authors obtained fixed and common fixed point results in the setup of
G-metric spaces [1, 7, 11, 13, 14, 16, 18, 19]. Saadati et al. [18] proved some fixed point results for contractive
mappings in partially ordered G-metric spaces ( see also, [6]). On the other hand the concept of b-metric
space was introduced by Czerwik in [8]. After that, several interesting results for the existence of fixed
point for single-valued and multivalued operators in b-metric spaces have been obtained (see [4, 5, 20]).
Pacurar [17] proved some results on sequences of almost contractions and fixed points in b-metric spaces.
Recently, Hussain and Shah [9] obtained results on KKM mappings in cone b-metric spaces.

The aim of this paper is two fold: We introduce a concept of generalized b-metric spaces, study some
basic properties of generalized b-metric and obtain a common fixed point result for six mappings satisfying
weakly compatible condition in the framework of complete partially ordered generalized b-metric spaces.

Following is our definition of generalized b-metric spaces.

Definition 1.1. Let X be a nonempty set and s ≥ 1 be a given real number. Suppose that a mapping
G : X × X × X→ R+ satisfies :

(Gb1) G(x, y, z) = 0 if x = y = z,
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(Gb2) 0 < G(x, x, y) for all x, y ∈ X with x , y,

(Gb3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y , z,

(Gb4) G(x, y, z) = G(p{x, y, z}), where p is a permutation of x, y, z (symmetry),

(Gb5) G(x, y, z) ≤ s(G(x, a, a) + G(a, y, z)) for all x, y, z, a ∈ X (rectangle inequality).

Then G is called a generalized b-metric and pair (X,G) is called a generalized b-metric space or Gb-metric
space.

It should be noted that, the class of Gb-metric spaces is effectively larger than that of G-metric spaces given
in [12].
Following example shows that a Gb-metric on X need not be a G-metric on X.

Example 1.2. Let (X,G) be a G-metric space, and G∗(x, y, z) = G(x, y, z)p, where p > 1 is a real number.

Note that G∗ is a Gb-metric with s = 2p−1. Obviously, G∗ satisfies conditions (Gb1) − (Gb4) of the definition
1.1, so it suffices to show that (Gb5) is hold. If 1 < p < ∞, then the convexity of the function f (x) = xp (x > 0)
implies that (a + b)p

≤ 2p−1(ap + bp). Thus for each x, y, z, a ∈ X we obtain

G∗(x, y, z) = G(x, y, z)p
≤ (G(x, a, a) + G(a, y, z))p

≤ 2p−1(G(x, a, a)p + G(a, y, z)p)
= 2p−1(G∗(x, a, a) + G∗(a, y, z)).

So G∗ is a Gb-metric with s = 2p−1.
Also in the above example, (X,G∗) is not necessarily a G-metric space. For example, let X = R and G-metric
G be defined by

G(x, y, z) =
1
3

(
∣∣∣x − y

∣∣∣ + ∣∣∣y − z
∣∣∣ + |x − z|),

for all x, y, z ∈ R (see [12]). Then G∗(x, y, z) = G(x, y, z)2 =
1
9

(
∣∣∣x − y

∣∣∣+ ∣∣∣y − z
∣∣∣+ |x − z|)2 is a Gb-metric onRwith

s = 22−1 = 2, but it is not a G-metric on R. To see this, let x = 3 , y = 5, z = 7, a =
7
2

we get, G∗(3, 5, 7) =
64
9
,

G∗(3,
7
2
,

7
2

) =
1
9
, G∗(

7
2
, 5, 7) =

49
9
, so G∗(3, 5, 7) =

64
9
�

50
9

= G∗(3,
7
2
,

7
2

) + G∗(
7
2
, 5, 7).

Now we present some definitions and propositions in Gb-metric space.

Definition 1.3. A Gb-metric G is said to be symmetric if G(x, y, y) = G(y, x, x) for all x, y ∈ X.

Definition 1.4. Let (X,G) be a Gb-metric space then for x0 ∈ X, r > 0, the Gb-ball with center x0 and radius r
is

BG(x0, r) = {y ∈ X | G(x0, y, y) < r}.

For example, let X = R and consider the Gb-metric G defined by

G(x, y, z) =
1
9

(
∣∣∣x − y

∣∣∣ + ∣∣∣y − z
∣∣∣ + |x − z|)2

for all x, y, z ∈ R. Then
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BG(3, 4) = {y ∈ X | G(3, y, y) < 4}

= {y ∈ X |
1
9

(
∣∣∣y − 3

∣∣∣ + ∣∣∣y − 3
∣∣∣)2 < 4}

= {y ∈ X |
∣∣∣y − 3

∣∣∣2 < 9}
= (0, 6).

By some straight forward calculations, we can establish the following.

Proposition 1.5. Let X be a Gb-metric space, then for each x, y, z, a ∈ X it follows that:
(1) if G(x, y, z) = 0 then x = y = z,
(2) G(x, y, z) ≤ s(G(x, x, y) + G(x, x, z)),
(3) G(x, y, y) ≤ 2sG(y, x, x),
(4) G(x, y, z) ≤ s(G(x, a, z) + G(a, y, z)).

Definition 1.6. Let X be a Gb-metric space, we define dG(x, y) = G(x, y, y) + G(x, x, y), it is easy to see that dG
defines a b-metric on X, which we call it b-metric associated with G.

Proposition 1.7. Let X be a Gb-metric space, then for any x0 ∈ X and r > 0, if y ∈ BG(x0, r) then there exists
a δ > 0 such that BG(y, δ) ⊆ BG(x0, r).
Proof. Let y ∈ BG(x0, r), if y = x0, then we choose δ = r. Suppose that 0 < G(x0, y, y) < r, we consider the set,

A = {n ∈ N |
r

4sn+2 < G(x0, y, y)}. By Archmedean property, A is a nonempty set, then by the well ordering

principle, A has a least element m. Since m − 1 < A, we have G(x0, y, y) ≤
r

4sm+1 . Now if G(x0, y, y) =
r

4sm+1 ,

then we choose δ =
r

4sm+1 , and if G(x0, y, y) <
r

4sm+1 we choose, δ =
r

4sm+1 − G(x0, y, y). �

So from the above proposition the family of all Gb-balls

{BG(x, r) | x ∈ X, r > 0} ,

is a base of a topology τ(G) on X, which we call it Gb-metric topology.
Now we generalize proposition 5 in [12] for Gb-metric space as follows:

Proposition 1.8. Let X be a Gb-metric space, then for any x0 ∈ X and r > 0, we have

BG(x0,
r

2s + 1
) ⊆ BdG (x0, r) ⊆ BG(x0, r).

Thus every Gb-metric space is topologically equivalent to a b-metric space. This allows us to readily trans-
port many concepts and results from b-metric spaces into Gb-metric space setting.

Definition 1.9. Let X be a Gb-metric space. A sequence {xn} in X is said to be:
(1) Gb-Cauchy sequence if, for each ε > 0, there exists a positive integer n0 such that, for all m,n, l ≥

n0,G(xn, xm, xl) < ε;
(2) Gb-convergent to a point x ∈ X if, for each ε > 0, there exists a positive integer n0 such that, for all

m,n ≥ n0,G(xn, xm, x) < ε.

Using above definitions, we can easily prove the following two propositions.

Proposition 1.10. Let X be a Gb-metric space, Then the following are equivalent:



A. Aghajani, M. Abbas, J.R. Roshan / Filomat 28:6 (2014), 1087–1101 1090

(1) the sequence {xn} is Gb-Cauchy.
(2) for any ε > 0, there exists n0 ∈N such that G(xn, xm, xm) < ε, for all m,n ≥ n0.

Proposition 1.11. Let X be a Gb-metric space, The following are equivalent:
(1) {xn} is Gb-convergent to x.
(2) G(xn, xn, x)→ 0 as n→ +∞.
(3) G(xn, x, x)→ 0 as n→ +∞.

Definition 1.12. A Gb-metric space X is called Gb-complete if every Gb-Cauchy sequence is Gb-convergent
in X.

Definition 1.13 ([10]). Two self mappings f and 1 of a set X are said to be weakly compatible if they
commute at their coincidence points; i.e., if f x = 1x for some x ∈ X, then f1x = 1 f x.

We also need the following definition:

Definition 1.14. Let X be a nonempty set. Then (X,G,�) is called partially ordered Gb-metric space if G is
a Gb-metric on a partially ordered set (X, �).

A subsetK of a partially ordered set X is said to be well ordered if every two elements ofK are comparable.

Definition 1.15 ([2, 3]). Let (X,�) be a partially ordered set. A mapping f is called dominating if x � f x for
each x in X.

Example 1.16 ([2]). Let X = [0, 1] be endowed with usual ordering and f : X → X be defined by f x = 3
√

x.
Since x ≤ x

1
3 = f x for all x ∈ X. Therefore f is a dominating map.

Definition 1.17 ([2]). Let (X,�) be a partially ordered set. A mapping f is called dominated if f x � x for
each x in X.

Example 1.18 ([2]). Let X = [0, 1] be endowed with usual ordering and f : X→ X be defined by f x = xn for
some n ∈N. Since f x = xn

≤ x for all x ∈ X. Therefore f is a dominated map.

2. Common Fixed Point Results

The following is the main result of this section.

Theorem 2.1. Let (X,�) be a partially ordered set. Suppose that there exists a symmetric Gb-metric G on
X such that (X,G) is a complete Gb-metric space. Also let self-mappings f , 1, h,S,T and R on X satisfy the
following condition

ψ(2s4G( f x, 1y, hz)) ≤ ψ(Ms(x, y, z)) − ϕ(Ms(x, y, z)) (1)

for all comparable elements x, y, z ∈ X, where ϕ,ψ : [0,∞) → [0,∞) are two mappings such that ψ is a
continuous nondecreasing, ϕ is a lower semi- continuous function with ψ(t) = ϕ(t) = 0 if and only if t = 0,
and

Ms(x, y, z) = max{G(Rx,Ty,Sz),G(Rx,Ty, 1y),G(Ty,Sz, hz),G(Sz,Rx, f x),
G( f x,Rx, 1y) + G( f x,Sz, hz) + G(1y,Ty, hz)

3s
}.
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If f , 1 and h are dominated, S,T and R are dominating with f X ⊆ TX, 1X ⊆ SX and hX ⊆ RX, and for a
nonincreasing sequence {xn}with yn � xn for all n and yn → u implies that u � xn and

(a) one of f X, 1X or hX is a closed subset of X,
(b) The pair ( f ,R), (1,T) and (h,S) are weakly compatible,

then f , 1, h,S,T and R have a common fixed point in X.Moreover, the set of common fixed points of f , 1, h,S,T
and R is well ordered if and only if f , 1, h,S,T and R have one and only one common fixed point.

Proof. Let x0 be an arbitrary point in X. Since f X ⊆ TX, 1X ⊆ SX and hX ⊆ RX,we can define the sequences
{xn} and {yn} in X by

y3n = f x3n = Tx3n+1,

y3n+1 = 1x3n+1 = Sx3n+2,

y3n+2 = hx3n+2 = Rx3n+3, n = 0, 1, 2, · · · .

By the given assumptions x3n+1 � Tx3n+1 = f x3n � x3n and x3n+2 � Sx3n+2 = 1x3n+1 � x3n+1 and x3n+3 �

Rx3n+3 = hx3n+2 � x3n+2. Thus, for all n ≥ 1, we have xn+1 � xn. Let Gm = G(ym, ym+1, ym+2). We suppose that
y3n , y3n+1 or y3n+1 , y3n+2, for every n. If not then y3n = y3n+1 = y3n+2, for some n, so G3n = 0 and from (1),
we obtain

ψ(G3n+1) ≤ ψ(2s4G3n+1) = ψ(2s4G(y3n+1, y3n+2, y3n+3))
= ψ(2s4G(y3n+3, y3n+1, y3n+2, )) = ψ(2s4G( f x3n+3, 1x3n+1, hx3n+2))
≤ ψ(Ms(x3n+3, x3n+1, x3n+2)) − ϕ(Ms(x3n+3, x3n+1, x3n+2)),

where

Ms(x3n+3, x3n+1, x3n+2) = max{G(Rx3n+3,Tx3n+1,Sx3n+2),G(Rx3n+3,Tx3n+1, 1x3n+1),G(Tx3n+1,Sx3n+2, hx3n+2),
G(Sx3n+2,Rx3n+3, f x3n+3),
G( f x3n+3,Rx3n+3, 1x3n+1) + G( f x3n+3,Sx3n+2, hx3n+2) + G(1x3n+1,Tx3n+1, hx3n+2)

3s
}

= max{G(y3n+2, y3n, y3n+1),G(y3n+2, y3n, y3n+1),G(y3n, y3n+1, y3n+2),G(y3n+1, y3n+2, y3n+3)
G(y3n+3, y3n+2, y3n+1) + G(y3n+3, y3n+1, y3n+2) + G(y3n+1, y3n, y3n+2)

3s
}

= max{G3n,G3n,G3n,G3n+1,
G3n+1 + G3n+1 + G3n

3s
}

= max{G3n,G3n+1,
G3n + 2G3n+1

3s
}

= max{0,G3n+1,
0 + 2G3n+1

3s
}

= G3n+1.

Hence, ψ(G3n+1) ≤ ψ(G3n+1) − ϕ(G3n+1) implies that G3n+1 = 0, hence y3n+1 = y3n+2 = y3n+3. By a similar
argument, we obtain y3n+2 = y3n+3 = y3n+4 and so on. Thus {yn} becomes a constant sequence and by
assumption (b), {y3n} is the common fixed point of f , 1, h,S,T and R. Take Gn > 0 for every n. We prove that
limn→∞ Gn = 0, for this purpose we consider three cases:
If m = 3n, then we have

ψ(G3n) ≤ ψ(2s4G3n) = ψ(2s4G(y3n, y3n+1, y3n+2))
= ψ(2s4G( f x3n, 1x3n+1, hx3n+2))
≤ ψ(Ms(x3n, x3n+1, x3n+2)) − ϕ(Ms(x3n, x3n+1, x3n+2)), (2)
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where

Ms(x3n, x3n+1, x3n+2) = max{G(Rx3n,Tx3n+1,Sx3n+2),G(Rx3n,Tx3n+1, 1x3n+1),G(Tx3n+1,Sx3n+2, hx3n+2),
G(Sx3n+2,Rx3n, f x3n),
G( f x3n,Rx3n, 1x3n+1) + G( f x3n,Sx3n+2, hx3n+2) + G(1x3n+1,Tx3n+1, hx3n+2)

3s
}

= max{G(y3n−1, y3n, y3n+1),G(y3n−1, y3n, y3n+1),G(y3n, y3n+1, y3n+2),G(y3n+1, y3n−1, y3n),
G(y3n, y3n−1, y3n+1) + G(y3n, y3n+1, y3n+2) + G(y3n+1, y3n, y3n+2)

3s
}

= max{G3n−1,G3n−1,G3n,G3n−1,
G3n−1 + G3n + G3n

3s
}

= max{G3n−1,G3n,
G3n−1 + 2G3n

3s
}.

We prove that G3n ≤ G3n−1, for each n ∈N. If G3n > G3n−1 for some n ∈N, then for each s ≥ 1 we have

G3n > G3n−1 ≥
1

3s − 2
G3n−1 =⇒ G3n >

G3n−1 + 2G3n

3s
.

So Ms(x3n, x3n+1, x3n+2) = G3n and from (2) we have

ψ(G3n) ≤ ψ(G3n) − ϕ(G3n),

and so ϕ(G3n) ≤ 0 which implies that G3n = 0, a contradiction to G3n > 0. Now, if m = 3n + 1, then

ψ(G3n+1) ≤ ψ(2s4G3n+1) = ψ(2s4G(y3n+1, y3n+2, y3n+3))
= ψ(2s4G(y3n+3, y3n+1, y3n+2, )) = ψ(2s4G( f x3n+3, 1x3n+1, hx3n+2))
≤ ψ(Ms(x3n+3, x3n+1, x3n+2)) − ϕ(Ms(x3n+3, x3n+1, x3n+2)), (3)

where

Ms(x3n+3, x3n+1, x3n+2) = max{G(Rx3n+3,Tx3n+1,Sx3n+2),G(Rx3n+3,Tx3n+1, 1x3n+1),G(Tx3n+1,Sx3n+2, hx3n+2),
G(Sx3n+2,Rx3n+3, f x3n+3),
G( f x3n+3,Rx3n+3, 1x3n+1) + G( f x3n+3,Sx3n+2, hx3n+2) + G(1x3n+1,Tx3n+1, hx3n+2)

3s
}

= max{G(y3n+2, y3n, y3n+1),G(y3n+2, y3n, y3n+1),G(y3n, y3n+1, y3n+2),G(y3n+1, y3n+2, y3n+3),
G(y3n+3, y3n+2, y3n+1) + G(y3n+3, y3n+1, y3n+2) + G(y3n+1, y3n, y3n+2)

3s
}

= max{G3n,G3n,G3n,G3n+1,
G3n+1 + G3n+1 + G3n

3s
}

= max{G3n,G3n+1,
G3n + 2G3n+1

3s
}.

Similarly, if G3n+1 > G3n for some n ∈N, then Ms(x3n+3, x3n+1, x3n+2) = G3n+1 and from (3) we have

ψ(G3n+1) ≤ ψ(G3n+1) − ϕ(G3n+1),

and so ϕ(G3n+1) ≤ 0 which implies that G3n+1 = 0, a contradiction to G3n+1 > 0. If m = 3n + 2, then
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ψ(G3n+2) ≤ ψ(2s4G3n+2) = ψ(2s4G(y3n+2, y3n+3, y3n+4))
= ψ(2s4G(y3n+3, y3n+4, y3n+2, )) = ψ(2s4G( f x3n+3, 1x3n+4, hx3n+2))
≤ ψ(Ms(x3n+3, x3n+4, x3n+2)) − ϕ(Ms(x3n+3, x3n+4, x3n+2)), (4)

where

Ms(x3n+3, x3n+4, x3n+2) = max{G(Rx3n+3,Tx3n+4,Sx3n+2),G(Rx3n+3,Tx3n+4, 1x3n+4),G(Tx3n+4,Sx3n+2, hx3n+2),
G(Sx3n+2,Rx3n+3, f x3n+3),
G( f x3n+3,Rx3n+3, 1x3n+4) + G( f x3n+3,Sx3n+2, hx3n+2) + G(1x3n+4,Tx3n+4, hx3n+2)

3s
}

= max{G(y3n+2, y3n+3, y3n+1),G(y3n+2, y3n+3, y3n+4),G(y3n+3, y3n+1, y3n+2),
G(y3n+1, y3n+2, y3n+3),
G(y3n+3, y3n+2, y3n+4) + G(y3n+3, y3n+1, y3n+2) + G(y3n+4, y3n+3, y3n+2)

3s
}

= max{G3n+1,G3n+2,G3n+1,G3n+1,
G3n+2 + G3n+1 + G3n+2

3s
}

= max{G3n+1,G3n+2,
G3n+1 + 2G3n+2

3s
}.

Similarly, if G3n+2 > G3n+1 for some n ∈N, then Ms(x3n+3, x3n+4, x3n+2) = G3n+2 and from (4) we have

ψ(G3n+2) ≤ ψ(G3n+2) − ϕ(G3n+2),

and so ϕ(G3n+2) ≤ 0 which implies that G3n+2 = 0, a contradiction to G3n+2 > 0. Hence for each n ∈ N we
have 0 < Gn ≤ Gn−1. Thus the sequence {Gn} is nonincreasing and so there exists limn→∞ Gn = r ≥ 0. Also
we have

Ms(p{xn, xn+1, xn+2}) = max{Gn−1,Gn,
Gn−1 + 2Gn

3s
}.

Taking the limit as n→∞we get

lim
n→∞

Ms(p{xn, xn+1, xn+2}) = max{r, r,
r + 2r

3s
} = r.

Suppose that r > 0. Then

ψ(Gn) ≤ ψ(2s4Gn) = ψ(2s4G(yn, yn+1, yn+2)) = ψ(2s4G( f xn, 1xn+1, hxn+2))
≤ ψ(Ms(xn, xn+1, xn+2)) − ϕ(Ms(xn, xn+1, xn+2)).

So taking the upper limit as n→∞ implies that

ψ(r) ≤ ψ(r) − lim inf
n→∞

ϕ(Ms(xn, x2n+1, xn+2))

= ψ(r) − ϕ(lim inf
n→∞

Ms(xn, x2n+1, xn+2))

= ψ(r) − ϕ(r),

a contradiction. Hence
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lim
n→∞

G(yn, yn+1, yn+2) = 0. (5)

Since yn , yn+1 or yn+1 , yn+2 for every n, so by property (Gb3) we obtain

G(yn, yn+1, yn+1) ≤ G(yn, yn+1, yn+2).

Hence

lim
n→∞

G(yn, yn+1, yn+1) = 0. (6)

Also, since G is symmetric we have

lim
n→∞

G(yn+1, yn, yn) = 0. (7)

Now we prove that {yn} is a Cauchy sequence. For this it is sufficient to show that a subsequence {y3n} is
Cauchy in X. Assume on contrary that {y3n} is not a Cauchy sequence. Then there exists ε > 0 for which we
can find subsequences {y3mk } and {y3nk } of {y3n} such that mk is the smallest index for which 3mk > 3nk > k,

G(y3nk , y3mk , y3mk ) ≥ ε (8)

and

G(y3nk , y3mk−α, y3mk−β) < ε , α, β ∈ {1, 2}, (9)
G(y3nk−1, y3mk−γ, y3mk−δ) < ε. γ, δ ∈ {0, 1, 2, 3}. (10)

Now, from (1), we have

ψ(G(y3nk , y3mk−2, y3mk−1)) ≤ ψ(2s4G(y3nk , y3mk−2, y3mk−1))
= ψ(2s4G( f x3nk , 1x3mk−2, hx3mk−1))
≤ ψ(Ms(x3nk , x3mk−2, x3mk−1)) − ϕ(Ms(x3nk , x3mk−2, x3mk−1)), (11)

where

Ms(x3nk , x3mk−2, x3mk−1) = max{G(Rx3nk ,Tx3mk−2,Sx3mk−1),G(Rx3nk ,Tx3mk−2, 1x3mk−2),
G(Tx3mk−2,Sx3mk−1, hx3mk−1),G(Sx3mk−1,Rx3nk , f x3nk ),

G( f x3nk ,Rx3nk , 1x3mk−2) + G( f x3nk ,Sx3mk−1, hx3mk−1)
+G(1x3mk−2,Tx3mk−2, hx3mk−1)

3s
}

= max{G(y3nk−1, y3mk−3, y3mk−2),G(y3nk−1, y3mk−3, y3mk−2),G(y3mk−3, y3mk−2, y3mk−1),
G(y3mk−2, y3nk−1, y3nk ),
G(y3nk , y3nk−1, y3mk−2) + G(y3nk , y3mk−2, y3mk−1) + G(y3mk−2, y3mk−3, y3mk−1)

3s
}

= max{G(y3nk−1, y3mk−3, y3mk−2),G3mk−1,G(y3mk−2, y3nk−1, y3nk ),
G(y3mk−2, y3nk−1, y3nk ) + G(y3nk , y3mk−2, y3mk−1) + G3mk−3

3s
}. (12)
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Using (8) and (Gb4)-(Gb5), we obtain that

ε ≤ G(y3nk , y3mk , y3mk )
≤ sG(y3nk , y3mk−1, y3mk−1) + sG(y3mk−1, y3mk , y3mk )

≤ s2G(y3mk−1, y3mk−2, y3mk−2) + s2G(y3mk−2, y3mk−1, y3nk ) + sG(y3mk−1, y3mk , y3mk ).

Taking the upper limit as k→∞ and using (6), (7) and (9) we obtain

ε

s2 ≤ lim sup
k→∞

G(y3nk , y3mk−2, y3mk−1) ≤ ε. (13)

Also

ε ≤ G(y3nk , y3mk , y3mk ) ≤ sG(y3nk , y3nk−1, y3nk−1) + sG(y3nk−1, y3mk , y3mk )
≤ sG(y3nk , y3nk−1, y3nk−1) + s2G(y3nk−1, y3mk−1, y3mk−1) + s2G(y3mk−1, y3mk , y3mk )
≤ sG(y3nk , y3nk−1, y3nk−1) + s3G(y3nk−1, y3mk−2, y3mk−2) + s3G(y3mk−2, y3mk−1, y3mk−1) + s2G(y3mk−1, y3mk , y3mk )
≤ sG(y3nk , y3nk−1, y3nk−1) + s4G(y3mk−2, y3mk−3, y3mk−3) + s4G(y3mk−3, y3mk−2, y3nk−1)

+s3G(y3mk−2, y3mk−1, y3mk−1) + s2G(y3mk−1, y3mk , y3mk ).

So from (6), (7) and (10) we get

ε

s4 ≤ lim sup
k→∞

G(y3nk−1, y3mk−3, y3mk−2) < ε. (14)

Moreover, by the symmetrically of G we have

ε ≤ G(y3mk , y3mk , y3nk ) = G(y3nk , y3nk , y3mk )
≤ sG(y3nk , y3nk−1, y3nk−1) + sG(y3nk−1, y3nk , y3mk )
≤ sG(y3nk , y3nk−1, y3nk−1) + s2G(y3mk , y3mk−2, y3mk−2) + s2G(y3nk−1, y3nk , y3mk−2)
≤ sG(y3nk , y3nk−1, y3nk−1) + s3G(y3mk , y3mk−1, y3mk−1) + s3G(y3mk−1, y3mk−2, y3mk−2)

+s2G(y3nk−1, y3nk , y3mk−2).

Taking the upper limit as k→∞ and using (7) we obtain

ε

s2 ≤ lim
k→∞

sup G(y3nk−1, y3nk , y3mk−2).

On the other hand

G(y3nk−1, y3nk , y3mk−2) ≤ sG(y3mk−2, y3mk−1, y3mk−1) + sG(y3mk−1, y3nk−1, y3nk )
≤ sG(y3mk−2, y3mk−1, y3mk−1) + s2G(y3nk , y3mk−1, y3mk−1)

+s2G(y3nk−1, y3mk−1, y3mk−1).

Taking the upper limit as k→∞ and using (6), (9) and (10) we get

lim
k→∞

sup G(y3nk−1, y3nk , y3mk−2) ≤ 2εs2.

Consequently,

ε

s2 ≤ lim
k→∞

sup G(y3nk−1, y3nk , y3mk−2) ≤ 2εs2. (15)

Now from (12) and using (13), (14) and (15) we get
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min{
ε

s4 ,
ε

s2 ,

ε

s2 +
ε

s2

3s
} ≤ lim

k→∞
sup Ms(x3nk , x3mk−2, x3mk−1)

= max{ lim
k→∞

sup G(y3nk−1, y3mk−3, y3mk−2), lim
k→∞

sup G3mk−1,

lim
k→∞

sup G(y3mk−2, y3nk−1, y3nk ),

limk→∞ sup G(y3mk−2, y3nk−1, y3nk ) + limk→∞ sup G(y3nk , y3mk−2, y3mk−1)
+ limk→∞ sup G3mk−3

3s
}

= max{ lim
k→∞

sup G(y3nk−1, y3mk−3, y3mk−2), 0, lim
k→∞

sup G(y3mk−2, y3nk−1, y3nk ),

limk→∞ sup G(y3mk−2, y3nk−1, y3nk ) + limk→∞ sup G(y3nk , y3mk−2, y3mk−1) + 0
3s

}

≤ max{ε, 2εs2,
2εs2 + ε

3s
} = 2εs2.

So

0 < min{
ε

s4 ,
ε

s2 ,
2ε
3s3 } ≤ lim

k→∞
sup Ms(x3nk , x3mk−2, x3mk−1) ≤ 2εs2. (16)

Similarly we can obtain

0 < min{
ε

s4 ,
ε

s2 ,
2ε
3s3 } ≤ lim

k→∞
inf Ms(x3nk , x3mk−2, x3mk−1) ≤ 2εs2. (17)

Taking the upper limit as k→∞, in (11) and using (13) and (16) we obtain

ψ(2εs2) ≤ ψ(2s4 lim
k→∞

sup G(y3nk , y3mk−2, y3mk−1))

= ψ(2s4 lim
k→∞

sup G( f x3nk , 1x3mk−2, hx3mk−1))

≤ ψ( lim
k→∞

sup Ms(x3nk , x3mk−2, x3mk−1)) − lim
k→∞

infϕ(Ms(x3nk , x3mk−2, x3mk−1))

≤ ψ(2εs2) − ϕ( lim
k→∞

inf Ms(x3nk , x3mk−2, x3mk−1)),

which implies that

ϕ( lim
k→∞

inf Ms(x3nk , x3mk−2, x3mk−1)) = 0,

so lim inf Ms(x3nk , x3mk−2, x3mk−1) = 0, a contradiction to (17). It follows that {yn} is a Cauchy sequence in X.
Since X is complete, there exists y ∈ X such that

lim
n→∞

yn = lim
n→∞

f x3n = lim
n→∞
1x3n+1 = lim

n→∞
hx3n+2

= lim
n→∞

Tx3n+1 = lim
n→∞

Rx3n+3 = lim
n→∞

Sx3n+2 = y.

Now, we show that y is a common fixed point of f , 1, h,S,T and R.
Let hX be a closed subset X , since hX ⊆ RX, so there exist u ∈ X such that Ru = y.
We prove that f u = y. since hx3n+2 � x3n+2 and hx3n+2 → y as n→∞, y � x3n+2 and
u � Ru = y � x3n+2 � x3n+1, so from (1) we obtain

ψ(G( f u, 1x3n+1, hx3n+2)) ≤ ψ(2s4G( f u, 1x3n+1, hx3n+2))
≤ ψ(Ms(u, x3n+1, x3n+2)) − ϕ(Ms(u, x3n+1, x3n+2)), (18)
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where

Ms(u, x3n+1, x3n+2) = max{G(Ru,Tx3n+1,Sx3n+2),G(Ru,Tx3n+1, 1x3n+1),G(Tx3n+1,Sx3n+2, hx3n+2),
G(Sx3n+2,Ru, f u),
G( f u,Ru, 1x3n+1) + G( f u,Sx3n+2, hx3n+2) + G(1x3n+1,Tx3n+1, hx3n+2)

3s
}.

But

lim
n→∞

Ms(u, x3n+1, x3n+2) = max{G(Ru, y, y),G(Ru, y, y),G(y, y, y),G(y,Ru, f u),

G( f u,Ru, y) + G( f u, y, y) + G(y, y, y)
3s

}

= max{G( f u, y, y),
2G( f u, y, y)

3s
}

= G( f u, y, y).

Now by taking the upper limit as n→∞ in (18) we get

ψ(G( f u, y, y)) ≤ ψ(G( f u, y, y)) − ϕ(G( f u, y, y)),

and ϕ(G( f u, y, y)) ≤ 0 or equivalently G( f u, y, y) = 0 and by (1) of proposition 1.5 f u = y. Since the pair
(R, f ) is weakly compatible we have f Ru = R f u. Hence f y = Ry. We prove that f y = y, if f y , y, then from
(1) we have

ψ(G( f y, 1x3n+1, hx3n+2)) ≤ ψ(2s4G( f y, 1x3n+1, hx3n+2))
≤ ψ(Ms(y, x3n+1, x3n+2)) − ϕ(Ms(y, x3n+1, x3n+2)), (19)

where

Ms(y, x3n+1, x3n+2) = max{G(Ry,Tx3n+1,Sx3n+2),G(Ry,Tx3n+1, 1x3n+1),G(Tx3n+1,Sx3n+2, hx3n+2),
G(Sx3n+2,Ry, f y),
G( f y,Ry, 1x3n+1) + G( f y,Sx3n+2, hx3n+2) + G(1x3n+1,Tx3n+1, hx3n+2)

3s
}.

Consequently

lim
n→∞

Ms(y, x3n+1, x3n+2) = max{G(Ry, y, y),G(Ry, y, y),G(y, y, y),G(y,Ry, f y),

G( f y,Ry, y) + G( f y, y, y) + G(y, y, y)
3s

},

= max{G( f y, y, y), G(y, f y, f y),
G( f y, f y, y) + G( f y, y, y)

3s
}

= max{G( f y, y, y),
2G( f y, y, y)

3s
}

= G( f y, y, y).

As n→∞ in (19) we obtain
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ψ(G( f y, y, y)) ≤ ψ(G( f y, y, y)) − ϕ(G( f y, y, y)),

a contradiction. Therefore Ry = f y = y, that is, y is a common fixed point of R, f . Since y = f y ∈ f X ⊆ TX,
hence there exists v ∈ X such that Tv = y. Now we show that 1v = y. Since v � Tv = y � x3n+2, hence from
(1) we have

ψ(G(y, 1v, hx3n+2)) = ψ(G( f y, 1v, hx3n+2)) ≤ ψ(2s4G( f y, 1v, hx3n+2))
≤ ψ(Ms(y, v, x3n+2)) − ϕ(Ms(y, v, x3n+2)), (20)

where

Ms(y, v, x3n+2) = max{G(Ry,Tv,Sx3n+2),G(Ry,Tv, 1v),G(Tv,Sx3n+2, hx3n+2),
G(Sx3n+2,Ry, f y),
G( f y,Ry, 1v) + G( f y,Sx3n+2, hx3n+2) + G(1v,Tv, hx3n+2)

3s
}

= max{G(y, y,Sx3n+2),G(y, y, 1v),G(y,Sx3n+2, hx3n+2),G(Sx3n+2, y, y),
G(y, y, 1v) + G(y,Sx3n+2, hx3n+2) + G(1v, y, hx3n+2)

3s
},

and

lim
n→∞

Ms(y, v, x3n+2) = G(y, y, 1v).

Taking the upper limit as n→∞ in (20) we obtain

ψ(G(y, y, 1v)) ≤ ψ(G(y, y, 1v)) − ϕ(G(y, y, 1v)).

Thus 1v = y. By the weakly compatibility of the pair (1,T) we have T1v = 1Tv.
Hence Ty = 1y. We prove that 1y = y, if 1y , y, then from (1) we have

ψ(G( f y, 1y, hx3n+2)) ≤ ψ(2s4G( f y, 1y, hx3n+2))
≤ ψ(Ms(y, y, x3n+2)) − ϕ(Ms(y, y, x3n+2)), (21)

where

Ms(y, y, x3n+2) = max{G(Ry,Ty,Sx3n+2),G(Ry,Ty, 1y),G(Ty,Sx3n+2, hx3n+2),
G(Sx3n+2,Ry, f y),
G( f y,Ry, 1y) + G( f y,Sx3n+2, hx3n+2) + G(1y,Ty, hx3n+2)

3s
}

= max{G(y, 1y,Sx3n+2),G(y, 1y, 1y),G(1y,Sx3n+2, hx3n+2),G(Sx3n+2, y, y),
G(y, y, 1y) + G(y,Sx3n+2, hx3n+2) + G(1y, 1y, hx3n+2)

3s
}.

Taking the limit as n→∞we obtain
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lim
n→∞

Ms(y, y, x3n+2) = max{G(y, 1y, y),G(y, 1y, 1y),G(1y, y, y),G(y, y, y),

G(y, y, 1y) + G(y, y, y) + G(1y, 1y, y)
3s

}

= max{G(y, y, 1y),
2G(y, y, 1y)

3s
}

= G(y, y, 1y).

Taking the upper limit as n→∞ in (21) we obtain

ψ(G(y, 1y, y)) ≤ ψ(G(y, y, 1y)) − ϕ(G(y, y, 1y)),

a contradiction. Therefore, 1y = Ty = y, that is, y is a common fixed point of 1,T.
Similarly, since y = 1y ∈ 1X ⊆ SX, hence there exists w ∈ X such that Sw = y. We prove that hw = y. Since
w � Sw = y , so from (1) we get

ψ(G(y, y, hw)) = ψ(G( f y, 1y, hw)) ≤ ψ(2s4G( f y, 1y, hw))
≤ ψ(Ms(y, y,w)) − ϕ(Ms(y, y,w))
= ψ(G(y, y, hw)) − ϕ(G(y, y, hw)).

Thus hw = y. Since the pair (h,S) is weakly compatible we have hSw = Shw, hence hy = Sy. We prove that
hy = y, if hy , y, then

ψ(G(y, y, hy)) = ψ(G( f y, 1y, hy)) ≤ ψ(2s4G( f y, 1y, hy))
≤ ψ(Ms(y, y, y)) − ϕ(Ms(y, y, y))
= ψ(G(y, y, hy)) − ϕ(G(y, y, hy)).

A contradiction to hy , y. therefore, hy = Sy = y, that is, y is a common fixed point of h,S. Thus
f y = 1y = hy = Sy = Ty = Ry = y. Similarly, if f X or 1X is closed then result follows.
Now suppose that the set of common fixed points of f , 1, h,S,T and R is well ordered. We show that
common fixed point of f , 1, h,S,T and R is unique. Assume on contrary that z is another fixed point of f ,
1, h,S,T and R i.e., f z = 1z = hz = Sz = Tz = Rz = z such that y , z. Then by our assumption, we apply (1)
to obtain

ψ(G(y, y, z)) = ψ(G( f y, 1y, hz))
≤ ψ(2s4G( f y, 1y, hz)) ≤ ψ(Ms(y, y, z)) − ϕ(Ms(y, y, z)),

where

Ms(y, y, z) = max{G(Ry,Ty,Sz),G(Ry,Ty, 1y),G(Ty,Sz, hz),G(Sz,Ry, f y),
G( f y,Ry, 1y) + G( f y,Sz, hz) + G(1y,Ty, hz)

3s
}

= max{G(y, y, z),G(y, z, z),
G(y, z, z) + G(y, y, z)

3s
}

= max{G(y, y, z),
2G(y, z, z)

3s
}

= G(y, y, z).
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Hence

ψ(G(y, y, z)) ≤ ψ(G(y, y, z)) − ϕ(G(y, y, z)),

which implies that G(y, y, z) = 0, a contradiction to G(y, y, z) > 0. Therefore y = z. Converse is obvious.
Now we give an example to support our result.

Example 2.2. Let X = [0,∞) be endowed with the usual ordering on R and Gb-metric on X be given by

G(x, y, z) =
1
9

(
∣∣∣x − y

∣∣∣ + ∣∣∣y − z
∣∣∣ + |x − z|)2, where s = 2. Since G(x, y, y) = G(y, x, x) =

4
9

∣∣∣x − y
∣∣∣2 , for all x, y ∈ X,

so G is symmetric. Define self-maps f , 1, h,S,T and R on X by

f (x) = ln(x + 1), S(x) = e2x
− 1,

1(x) = ln(
x
2

+ 1), T(x) = e3x
− 1,

h(x) = ln(
x
3

+ 1), R(x) = e6x
− 1.

For each x ∈ X, we have 1 + x ≤ ex, and 1 +
x
2
≤ ex and 1 +

x
3
≤ ex, hence f (x) = ln(x + 1) ≤ x and

1(x) = ln(
x
2

+ 1) ≤ x and h(x) = ln(
x
3

+ 1) ≤ x . So f , 1, h are dominated maps.

Also for each x ∈ X, we have x ≤ e2x
− 1 = S(x) and x ≤ e3x

− 1 = T(x) and x ≤ e6x
− 1 = R(x), so S,T and R

are dominating maps. Furthermore f X = TX = 1X = SX = hX = RX = [0,∞) and the pair ( f ,R), (1,T) and
(h,S) are weakly compatible.

Define control functions as ψ,ϕ : [0,∞)→ [0,∞), ψ(t) = bt and ϕ(t) = (b − 1)t, 1 < b ≤
9
8

for all t ∈ [0,∞).

Now we show that f , 1, h,S,T and R satisfy (1). Using the mean value theorem we have

ψ(2s4G( f x, 1y, hz)) =
32b
9

(
∣∣∣ f (x) − 1(y)

∣∣∣ + ∣∣∣ f (x) − h(z)
∣∣∣ + ∣∣∣1(y) − h(z)

∣∣∣)2

=
32b
9

(
∣∣∣∣ln(x + 1) − ln(

y
2

+ 1)
∣∣∣∣ + ∣∣∣∣ln(x + 1) − ln(

z
3

+ 1)
∣∣∣∣ + ∣∣∣∣ln(

y
2

+ 1) − ln(
z
3

+ 1)
∣∣∣∣)2

≤
32b
9

(
1
2

∣∣∣2x − y
∣∣∣ + 1

3
|3x − z| +

1
6

∣∣∣3y − 2z
∣∣∣)2

=
32b
9

(
∣∣∣6x − 3y

∣∣∣ + |6x − 2z| +
∣∣∣3y − 2z

∣∣∣)2

36

≤
8b
81

(
∣∣∣e6x
− e3y

∣∣∣ + ∣∣∣e6x
− e2z
∣∣∣ + ∣∣∣e3y

− e2z
∣∣∣)2

≤
1
9

(
∣∣∣R(x) − T(y)

∣∣∣ + |R(x) − S(z)| +
∣∣∣T(y) − S(z)

∣∣∣)2

= G(Rx,Ty,Sz) ≤Ms(x, y, z)
= ψ(Ms(x, y, z)) − ϕ(Ms(x, y, z)).

Thus (1) is satisfied for all x, y, z ∈ X. Therefore all condition of Theorem 2.1 are satisfied. Moreover, 0 is a
unique common fixed point of f , 1, h,S,T and R. �

Corollary 2.3. Let (X,�) be a partially ordered set. Suppose that there exists a symmetric Gb-metric G on
X such that (X,G) is a complete Gb-metric space. Also S,T and R be surjective self-maps on X satisfy the
following condition

ψ(2s4G(x, y, z)) ≤ ψ(Ms(x, y, z)) − ϕ(Ms(x, y, z)),
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for all comparable elements x, y, z ∈ X, where ϕ,ψ : [0,∞) → [0,∞) are two mappings such that ψ is a
continuous nondecreasing, ϕ is a lower semi- continuous function with ψ(t) = ϕ(t) = 0 if and only if t = 0,
and

Ms(x, y, z) = max{G(Rx,Ty,Sz),G(Rx,Ty, y),G(Ty,Sz, z),G(Sz,Rx, x),
G(x,Rx, y) + G(x,Sz, z) + G(y,Ty, z)

3s
}.

If S,T and R are dominating and for a nonincreasing sequence {xn}with yn � xn for all n and yn → u implies
that u � x, then S,T and R have a common fixed point in X. Moreover, the set of common fixed points of
S,T and R is well ordered if and only if S,T and R have one and only one common fixed point.
Proof. Taking f , 1 and h as identity maps on X, the result follows from Theorem 2.1. �
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[2] M. Abbas, T. Nazir and S. Radenović, Common fixed points of four maps in partially ordered metric spaces, Applied Math. Lett.,
24 (2011) 1520–1526.

[3] A. Aghajani, S. Radenovic and J.R. Roshan, Common fixed point results for four mappings satisfying almost generalized (S,
T)-contractive condition in partially ordered metric spaces, Appl. Math. Comput., 218 (2012) 5665-5670.

[4] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Studia Univ. “Babes–
Bolyai”, Mathematica, Volume LIV, Number 3, (2009).

[5] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-Metric Spaces, Int. J. of Modern Math., 4(3) (2009)
285–301.

[6] B.S. Choudhury, P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Modelling 54 (1–2) (2011)
73–79.

[7] R. Chugh, T. Kadian, A. Rani, B.E. Rhoades, Property P in G-metric spaces, Fixed Point Theory Appl. 2010 (2010) 12 pages. Article
ID 401684.

[8] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (2) (1998)
263–276.

[9] N. Hussain and M.H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl., 62 (2011) 1677-1684.
[10] G. Jungck, B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998) 227–238.
[11] Z. Mustafa, A new structure for generalized metric spaces with applications to fixed point theory, Ph.D. Thesis, The University

of Newcastle, Callaghan, Australia, 2005.
[12] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear and Convex Analsis 7 (2006) 289–297.
[13] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl. 2009

(2009) 10 pages. Article ID 917175.
[14] Z. Mustafa, B. Sims, Some remarks concerning D-metric spaces, in: Proceedings of the International Conference on Fixed Point

Theory and Applications, Yokohama, Japan, 2004, pp. 189–198.
[15] Z. Mustafa, H. Obiedat, F. Awawdeh, Some common fixed point theorems for mapping on complete G-metric spaces, Fixed Point

Theory Appl. (2008) 12. Article ID 189870.
[16] Z. Mustafa, W. Shatanawi, M. Bataineh, Existence of fixed point results in G-metric spaces, Int. J. Math. Math. Sci. 2009 (2009) 10

pages. Article ID 283028.
[17] M. Pacurar, Sequences of almost contractions and fixed points in b-metric spaces, Analele Universitatii de Vest, Timisoara Seria

Matematica Informatica XLVIII, 3 (2010) 125–137.
[18] R. Saadati, S.M. Vaezpour, P. Vetro, B.E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Math.

Comput. Modelling. 52 (2010) 797–801.
[19] W. Shatanawi, Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces, Fixed Point Theory Appl. 2010

(2010) 9 pages. Article ID 181650.
[20] S. L. Singh and B. Prasad, Some coincidence theorems and stability of iterative proceders, Comput. Math. Appl., 55 (2008)

2512–2520.


