A New Factor Theorem for Generalized Cesàro Summability

Hüseyin Bor ${ }^{\text {a }}$
${ }^{a}$ P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

Abstract

In [6], we proved a theorem dealing with an application of quasi-f-power increasing sequences. In this paper, we prove that theorem under less and weaker conditions. This theorem also includes several new results.

1. Introduction

A positive $X=\left(X_{n}\right)$ is said to be a quasi-f-power increasing sequence if there exists a constant $K=$ $K(X, f) \geq 1$ such that $K f_{n} X_{n} \geq f_{m} X_{m}$ for all $n \geq m \geq 1$, where $f=\left(f_{n}\right)=\left\{n^{\sigma}(\log n)^{\eta}, \eta \geq 0,0<\sigma<1\right\}$ (see [13]). If we take $\eta=0$, then we get a quasi- σ-power increasing sequence (see [12]). We write $\mathcal{B} \mathcal{V}_{O}=$ $\mathcal{B V} \cap C_{O}$, where $C_{O}=\left\{x=\left(x_{k}\right) \in \Omega: \lim _{k}\left|x_{k}\right|=0\right\}, \mathcal{B} \mathcal{V}=\left\{x=\left(x_{k}\right) \in \Omega: \sum_{k}\left|x_{k}-x_{k+1}\right|<\infty\right\}$ and Ω being the space of all real or complex-valued sequences. Let $\sum a_{n}$ be a given infinite series with partial sums (s_{n}). We denote by $u_{n}^{\alpha, \delta}$ and $t_{n}^{\alpha, \delta}$ the nth Cesàro means of order (α, δ), with $\alpha+\delta>-1$, of the sequence $\left(s_{n}\right)$ and ($n a_{n}$), respectively, that is (see [8])

$$
\begin{align*}
& u_{n}^{\alpha, \delta}=\frac{1}{A_{n}^{\alpha+\delta}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} A_{v}^{\delta} s_{v} \tag{1}\\
& t_{n}^{\alpha, \delta}=\frac{1}{A_{n}^{\alpha+\delta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\delta} v a_{v}, \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha+\delta}=O\left(n^{\alpha+\delta}\right), \quad \alpha+\delta>-1, \quad A_{0}^{\alpha+\delta}=1 \quad \text { and } \quad A_{-n}^{\alpha+\delta}=0 \quad \text { for } \quad n>0 \tag{3}
\end{equation*}
$$

Let $\left(\varphi_{n}\right)$ be a sequence of complex numbers. The series $\sum a_{n}$ is said to be summable $\varphi-|C, \alpha, \delta|_{k}, k \geq 1$ and $\alpha+\delta>-1$, if (see [4],[9])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\varphi_{n}\left(u_{n}^{\alpha, \delta}-u_{n-1}^{\alpha, \delta}\right)\right|^{k}=\sum_{n=1}^{\infty} n^{-k}\left|\varphi_{n} t_{n}^{\alpha, \delta}\right|^{k}<\infty \tag{4}
\end{equation*}
$$

[^0]In the special case when $\varphi_{n}=n^{1-\frac{1}{k}}, \varphi-|C, \alpha, \delta|_{k}$ summability is the same as $|C, \alpha, \delta|_{k}$ summability (see [9]). Also, if we set $\varphi_{n}=n^{\gamma+1-\frac{1}{k}}$, then $\varphi-|C, \alpha, \delta|_{k}$ summability reduces to $|C, \alpha, \delta ; \gamma|_{k}$ summability (see [4]). If we take $\delta=0$, then we have $\varphi-|C, \alpha|_{k}$ summability (see [1]). Furthermore, if we take $\varphi_{n}=n^{1-\frac{1}{k}}$ and $\beta=0$, then we get $|C, \alpha|_{k}$ summability (see [10]). Finally, if we take $\varphi_{n}=n^{\gamma+1-\frac{1}{k}}$ and $\delta=0$, then we obtain $|C, \alpha ; \gamma|_{k}$ summability (see [11]).
2. The known result. The following theorem is known.

Theorem A ([6]). Let $\left(\lambda_{n}\right) \in \mathcal{B} V_{O}$ and let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence for some $\sigma(0<\sigma<1)$. Suppose also that there exist sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{align*}
& \left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{5}\\
& \beta_{n} \rightarrow 0 \text { as } n \rightarrow \infty \tag{6}\\
& \sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{7}
\end{align*}
$$

$$
\begin{equation*}
\left|\lambda_{n}\right| X_{n}=O(1) \text { as } n \rightarrow \infty . \tag{8}
\end{equation*}
$$

If there exists an $\epsilon>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing and if the sequence $\left(\theta_{n}^{\alpha, \delta}\right)$ is defined by

$$
\theta_{n}^{\alpha, \delta}=\left\{\begin{array}{cc}
\left|t_{n}^{\alpha, \delta}\right|, & \alpha=1, \delta>-1 \tag{9}\\
\max _{1 \leq v \leq n}\left|t_{v}^{\alpha, \delta}\right|, & 0<\alpha<1, \delta>-1
\end{array}\right.
$$

satisfies the condition

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| \theta_{n}^{\alpha, \delta}\right)^{k}}{n^{k}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{10}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, \alpha, \delta|_{k}, k \geq 1,0<\alpha \leq 1, \delta>-1, \eta \geq 0$ and $(\alpha+\delta) k+\epsilon>1$.
Remark 2.2 It should ne noted that in the statement of Theorem 2.1, a different notation has been used for the quasi-f-power increasing sequences. If we take $\eta=0$, then we obtain a known theorem (see [5]).

3. The main result

The aim of this paper is to prove Theorem 2.1 under weaker conditions. Now, we shall prove the following theorem:
Theorem 3.1 Let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence and the sequences $\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$ such that conditions (5)-(8) are satisfied. If there exists an $\epsilon>0$ such that the sequence ($n^{\epsilon-k}\left|\varphi_{n}\right|^{k}$) is non-increasing and if the condition

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| \theta_{n}^{\alpha, \delta}\right)^{k}}{n^{k} X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{11}
\end{equation*}
$$

satisfies, then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, \alpha, \delta|_{k}, k \geq 1,0<\alpha \leq 1, \delta>-1, \eta \geq 0$ and $(\alpha+\delta-1) k+\epsilon>$ 0.

Remark 3.2 It should be noted that condition (11) is the same as condition (10) when $\mathrm{k}=1$. When $k>1$, condition (11) is weaker than condition (10), but the converse is not true. As in [14] we can show that if (10) is satisfied, then we get that

$$
\sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| \theta_{n}^{\alpha, \delta}\right)^{k}}{n^{k} X_{n}^{k-1}}=O\left(\frac{1}{X_{1}^{k-1}}\right) \sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| \theta_{n}^{\alpha, \delta}\right)^{k}}{n^{k}}=O\left(X_{m}\right) .
$$

If (11) is satisfied, then for $k>1$ we obtain that

$$
\sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| \theta_{n}^{\alpha, \delta}\right)^{k}}{n^{k}}=\sum_{n=1}^{m} X_{n}^{k-1} \frac{\left(\left|\varphi_{n}\right| \theta_{n}^{\alpha, \delta}\right)^{k}}{n^{k} X_{n}^{k-1}}=O\left(X_{m}^{k-1}\right) \sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| \theta_{n}^{\alpha, \delta}\right)^{k}}{n^{k} X_{n}^{k-1}}=O\left(X_{m}^{k}\right) \neq O\left(X_{m}\right) .
$$

Also it should be noted that the condition " $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}_{O}$ " has been removed.
We need the following lemmas for the proof of our theorem.
Lemma 3.3 ([3]) If $0<\alpha \leq 1, \delta>-1$ and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\delta} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\delta} a_{p}\right| \tag{12}
\end{equation*}
$$

Lemma 3.4 ([7]) Under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as expressed in the statement of the theorem, we have the following ;

$$
\begin{align*}
& n X_{n} \beta_{n}=O(1) \tag{13}\\
& \sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{14}
\end{align*}
$$

4. Proof of Theorem 3.1 Let $\left(T_{n}^{\alpha, \delta}\right)$ be the nth (C, α, δ) mean of the sequence $\left(n a_{n} \lambda_{n}\right)$. Then, by (2), we have that

$$
T_{n}^{\alpha, \delta}=\frac{1}{A_{n}^{\alpha+\delta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\delta} v a_{v} \lambda_{v}
$$

First applying Abel's transformation and then use of Lemma 3.3, we have that

$$
\begin{aligned}
T_{n}^{\alpha, \delta} & =\frac{1}{A_{n}^{\alpha+\delta}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\delta} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha+\delta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\delta} v a_{v}, \\
\left|T_{n}^{\alpha, \delta}\right| & \leq \frac{1}{A_{n}^{\alpha+\delta}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\delta} p a_{p}\right|+\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha+\delta}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\delta} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha+\delta}} \sum_{v=1}^{n-1} A_{v}^{\alpha} A_{v}^{\delta} \theta_{v}^{\alpha, \delta}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| \theta_{n}^{\alpha, \delta} \\
& =T_{n, 1}^{\alpha, \delta}+T_{n, 2}^{\alpha, \delta}
\end{aligned}
$$

To complete the proof of the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{-k}\left|\varphi_{n} T_{n, r}^{\alpha, \delta}\right|^{k}<\infty \quad \text { for } \quad r=1,2
$$

Now, when $k>1$, applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get that

$$
\begin{aligned}
\sum_{n=2}^{m+2} n^{-k}\left|\varphi_{n} T_{n, 1}^{\alpha, \delta}\right|^{k} & \leq \sum_{n=2}^{m+1} n^{-k}\left(A_{n}^{\alpha+\delta}\right)^{-k}\left|\varphi_{n}\right|^{k}\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha+\delta} \theta_{v}^{\alpha, \delta}\left|\Delta \lambda_{v}\right|^{k}\right. \\
& \leq \sum_{n=2}^{m+1} n^{-k} n^{-(\alpha+\delta) k}\left|\varphi_{n}\right|^{k} \sum_{v=1}^{n-1} v^{\alpha k}\left(\theta_{v}^{\alpha, \delta}\right)^{k}\left|\Delta \lambda_{v}\right|^{k} \times\left\{\sum_{v=1}^{n-1} 1\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\delta)^{k}}\left(\theta_{v}^{\alpha, \delta}\right)^{k}\left(\beta_{v}\right)^{k} \sum_{n=v+1}^{m+1} \frac{n^{-k}\left|\varphi_{n}\right|^{k}}{n^{(\alpha+\delta) k+1-k}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\delta) k}\left(\theta_{v}^{\alpha, \delta}\right)^{k} \beta_{v}{ }^{k} \sum_{n=v+1}^{m+1} \frac{n^{\epsilon-k}\left|\varphi_{n}\right|^{k}}{n^{1+(\alpha+\delta-1) k+\epsilon}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\delta) k}\left(\theta_{v}^{\alpha, \delta}\right)^{k}\left(\beta_{v}\right)^{k} v^{\epsilon-k}\left|\varphi_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{1+(\alpha+\delta-1) k+\epsilon}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\delta) k}\left(\theta_{v}^{\alpha, \delta}\right)^{k}\left(\beta_{v}\right)^{k} v^{\epsilon-k}\left|\varphi_{v}\right|^{k} \int_{v}^{\infty} \frac{d x}{x^{1+(\alpha+\delta-1) k+\epsilon}} \\
& =O(1) \sum_{v=1}^{m} \beta_{v}\left(\beta_{v}\right)^{k-1}\left(\theta_{v}^{\alpha, \delta}\left|\varphi_{v}\right|\right)^{k} \\
& =O(1) \sum_{v=1}^{m} \beta_{v}\left(\frac{1}{v X_{v}}\right)^{k-1}\left(\theta_{v}^{\alpha, \delta}\left|\varphi_{v}\right|\right)^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \frac{\left(\left|\varphi_{r}\right| \theta_{r}^{\alpha, \delta}\right)^{k}}{r^{k} X_{r}^{k-1}}+O(1) m \beta_{m} \sum_{v=1}^{m} \frac{\left(\left|\varphi_{v}\right| \theta_{v}^{\alpha, \delta}\right)^{k}}{v^{k} X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1}\left|(v+1) \Delta \beta_{v}-\beta_{v}\right| X_{v}+O(1) m \beta_{v} \mid X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1) m \beta_{m} X_{m} \\
& =\infty,
\end{aligned}
$$

virtue of the hypotheses of the theorem and Lemma 3.4. Finally, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} n^{-k}\left|\varphi_{n} T_{n, 2}^{\alpha, \delta}\right|^{k} & =\sum_{n=1}^{m}\left|\lambda_{n}\right|\left|\lambda_{n}\right|^{k-1} n^{-k}\left(\theta_{n}^{\alpha, \delta}\left|\varphi_{n}\right|\right)^{k} \\
& =O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right|\left(\frac{1}{X_{n}}\right)^{k-1} n^{-k}\left(\theta_{n}^{\alpha, \delta}\left|\varphi_{n}\right|\right)^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{r=1}^{n} \frac{\left(\left|\varphi_{r}\right| \theta_{r}^{\alpha, \delta}\right)^{k}}{r^{k} X_{r}^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| \theta_{n}^{\alpha, \delta}\right)^{k}}{n^{k} X_{n}^{k-1}} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the theorem and Lemma 3.4. This completes the proof of Theorem 3.1. If we set $\epsilon=1$ and $\varphi_{n}=n^{1-\frac{1}{k}}$, then we obtain a new result concerning the $|C, \alpha, \delta|_{k}$ summability. Also, if we take $\varphi_{n}=n^{\gamma+1-\frac{1}{k}}$, then we obtain another new result dealing with the $|C, \alpha, \delta ; \gamma|_{k}$ summability factors. If we take $\eta=0$, then we obtain Theorem A under weaker conditions. If we set $\eta=0$ and $\delta=0$, then we obtain the result of Bor and Özarslan under weaker conditions (see [2]). Furthermore, if we take $\epsilon=1, \delta=0$ and $\varphi_{n}=n^{\gamma+1-\frac{1}{k}}$, then we get the result of Bor under weaker conditions (see [7]).

References

[1] M. Balcı, Absolute φ-summability factors, Comm. Fac. Sci. Univ. Ankara, Ser. $A_{1} 29$ (1980) 63-80.
[2] H. Bor and H. S. Özarslan, A study on quasi power increasing sequences, Rocky Mountain J. Math. 38 (2008) 801-807.
[3] H. Bor, On a new application of quasi power increasing sequences, Proc. Est. Acad. Sci. 57 (2008) 205-209.
[4] H. Bor, A newer application of almost increasing sequences, Pac. J. Appl. Math. 2(3) (2010) 211-216.
[5] H. Bor, A new application of quasi power increasing sequences, Rev. Un. Mat. Argentina 52 (2011) 27-32.
[6] H. Bor, A study on generalized quasi-power increasing sequences, Russian Math. (Iz. VUZ) 55 (6) (2011) 15-19.
[7] H. Bor, A new application of quasi power increasing sequences, Filomat 26 (2012) 631-635.
[8] D. Borwein, Theorems on some methods of summability, Quart. J. Math. Oxford Ser. (2) 9 (1958) 310-316.
[9] G. Das, A Tauberian theorem for absolute summability, Proc. Camb. Phil. Soc. 67 (1970) 321-326.
[10] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957) 113-141.
[11] T. M. Flett, Some more theorems concerning the absolute summability of Fourier series, Proc. London Math. Soc. 8 (1958) 357-387.
[12] L. Leindler, A new application of quasi power increasing sequences, Publ. Math. Debrecen 58 (2001) 791-796.
[13] W. T. Sulaiman, Extension on absolute summability factors of infinite series, J. Math. Anal. Appl. 322 (2006) 1224-1230.
[14] W. T. Sulaiman, A note on $|A|_{k}$ summability factors of infinite series, Appl. Math. Comput. 216 (2010) 2645-2648.

[^0]: 2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G05, 46A45
 Keywords. Cesàro mean; absolute summability; increasing sequences; sequence spaces; infinite series; Hölder inequality; Minkowski inequality.

 Received: 18 May 2013; Accepted: 22 November 2013
 Communicated by Dragan S. Djordjevic
 Email address: hbor33@gmail.com (Hüseyin Bor)

