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Abstract. The aim of this paper is to extend the results of Bhaskar and Lakshmikantham and some other
authors and to prove some new coupled fixed point theorems for mappings having a mixed monotone
property in a complete metric space endowed with a partial order. Our theorems can be used to investigate
a large class of nonlinear problems. As an application, we discuss the existence and uniqueness for a
solution of a nonlinear integral equation.

1. Introduction and Preliminaries

Let F be a function which maps an arbitrary nonempty set X into itself; i.e. F : X → X. A fixed point of
the mapping F is an element x belonging to X such that Fx = x. Fixed points are of interest in themselves
but they also provide a way to establish the existence of a solution to a set of equations. Fixed point theory
is a very useful tool in various fields of mathematics, game theory, mathematical economics, statistics,
biology, chemistry, engineering, computer science and economics in dealing with problems arising in
approximation theory, theory of differential equations, theory of matrix equations etc. (see, [1-7]). For
example, in theoretical economics, such as general equilibrium theory, there comes at point where one
needs to know whether the solution to a system of equations necessarily exists; or, more specifically, under
which conditions will a solution necessarily exist (see, [1]). The mathematical analysis of this question
usually relies on fixed point theorems.

The Banach contraction principle [8] is one of the pivotal results in fixed point theory. It guarantees the
existence and uniqueness of fixed points of certain self-maps of metric spaces, and provides a constructive
method to find those fixed points. Also its significance lies in its vast applicability in a number of branches of
mathematics. This principle has been generalized by many authors to mappings that satisfy much weaker
conditions (see [9-13]).

The existence of fixed points of nonlinear contraction mappings in metric spaces endowed with a
partial ordering has been considered recently by Ran and Reurings [14] in order to obtain a solution of
a matrix equation in 2004. Fixed point theorems in partially ordered metric spaces have been studied
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by some authors since 2004 (see [15-22]). Nieto and Lopez [15] extended the results in [14] by removing
the continuity condition of the mapping. They applied their result to get a solution of a boundary value
problem. The efficiency of these kind of extensions of fixed point theorems in such kind of problems, as it
is well known, is due to the fact that most real valued function spaces are partially ordered metric spaces.

The concept of coupled fixed point theorem was introduced by Guo and Lakshmikantham [23]. Sub-
sequently, Bhaskar and Lakshmikantham [24] introduced the notion of the mixed monotone property of
a given mapping in 2006. Furthermore, they proved some coupled fixed point theorems for mappings
which satisfy the mixed monotone property and discussed the existence and uniqueness of a solution for a
periodic boundary value problem.

Definition 1.1. Let (X,≤) be a partially ordered set and F : X × X → X. We say that F has the mixed monotone
property if F(x, y) is monotone nondecreasing in x and is monotone nonincreasing in y, that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 ≤ x2 ⇒ F(x1, y) ≤ F(x2, y)

and

y1, y2 ∈ X, y1 ≤ y2 ⇒ F(x, y1) ≥ F(x, y2).

Definition 1.2. An element (x, y) ∈ X × X is said to be a coupled fixed point of the mapping F : X × X→ X if

x = F(x, y) and y = F(y, x).

Throughout the rest of this paper, we denote by (X,≤, d) a complete partially ordered metric space, i.e.,
≤ is a partial order on the set X and d is a complete metric on X. Further, we consider in the product space
X × X the following partial order:

if (x, y), (u, v) ∈ X × X, (x, y) ≤ (u, v)⇔ x ≤ u and y ≥ v.

The main theoretical results of Bhaskar and Lakshmikantham in [24] are the following coupled fixed
point theorems.

Theorem 1.3. Let (X,≤, d) be a complete partially ordered metric space. Let F : X × X → X be a mapping having
the mixed monotone property on X and assume that there exists k ∈ [0, 1) with

d(F(x, y),F(u, v)) ≤
k
2

[d(x,u) + d(y, v)], for any x ≥ u and y ≤ v.

If there exist x0, y0 ∈ X such that

x0 ≤ F(x0, y0) and y0 ≥ F(y0, x0)

and we suppose that either F is continuous or X satisfies the following property:

if (xn) is a nondecreasing sequence with xn → x then xn ≤ x for all n,
if (yn) is a nonincreasing sequence with yn → y then y ≤ yn for all n (1)

then F has a coupled fixed point.

Because of the important role of Theorem 1.3 in nonlinear differential equations, nonlinear integral
equations and differential inclusions, many authors have studied the existence of coupled fixed points of
the given mappings in several spaces and applications (see [25–37] ).

In this paper, we establish the existence of a coupled fixed point theorems for a mixed monotone mapping
in a partially ordered metric space which are generalizations of the results of Bhaskar and Lakshmikantham
[24]. Our results improve and extend some coupled fixed point theorems of [24] and others. As an
application, we give an existence and uniqueness for a solution of a nonlinear integral equation.
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2. Main Results

Let Φ denote all functions ϕ : [0,∞)→ [0,∞) which satisfy
(i) ϕ is continuous and non-decreasing,
(ii) ϕ(t) = 0 if and only if t = 0,
(iii) ϕ(t + s) ≤ ϕ(t) + ϕ(s),∀t, s ∈ [0,∞)
and Ψ denote the set of all functions ψ : [0,∞)→ [0,∞) which satisfy
(iv) ψ is a continuous function with the condition ϕ(t) > ψ(t) for all t > 0.
Note that, by (i), (ii) and (iv) we have that ψ(0) = 0.

Theorem 2.1. Let (X,≤, d) be a complete partially ordered metric space. Let F : X × X → X be a mixed monotone
mapping for which there exist ϕ ∈ Φ and ψ ∈ Ψ such that for all x, y,u, v ∈ X with x ≥ u, y ≤ v,

ϕ(d(F(x, y),F(u, v))) ≤
1
2
ψ(d(x,u) + d(y, v)) (2)

Suppose either
(a) F is continuous or
(b) X satisfies property (1).
If there exist x0, y0 ∈ X with x0 ≤ F(x0, y0) and y0 ≥ F(y0, x0), then F has a coupled fixed point.

Proof. Since x0 ≤ F(x0, y0) = x1 (say) and y0 ≥ F(y0, x0) = y1 (say), letting x2 = F(x1, y1) and y2 = F(y1, x1), we
denote

F2(x0, y0) = F(F(x0, y0),F(y0, x0)) = F(x1, y1) = x2

F2(y0, x0) = F(F(y0, x0),F(x0, y0)) = F(y1, x1) = y2.

With this notation, we now have, due to the mixed monotone property of F,

x2 = F(x1, y1) ≥ F(x0, y0) = x1 and y2 = F(y1, x1) ≤ F(y0, x0) = y1.

Further, for n = 1, 2, ..., we let,

xn+1 = Fn+1(x0, y0) = F(Fn(x0, y0),Fn(y0, x0)),
yn+1 = Fn+1(y0, x0) = F(Fn(y0, x0),Fn(x0, y0)).

We can easily verify that

x0 ≤ F(x0, y0) = x1 ≤ F2(x0, y0) = x2 ≤ · · · ≤ Fn+1(x0, y0) = xn+1,

y0 ≥ F(y0, x0) = y1 ≥ F2(y0, x0) = y2 ≥ · · · ≥ Fn+1(y0, x0) = yn+1.

Since xn ≥ xn−1 and yn ≤ yn−1, from (2) we have

ϕ(d(xn+1, xn)) = ϕ(d(F(xn, yn),F(xn−1, yn−1)))

≤
1
2
ψ(d(xn, xn−1) + d(yn, yn−1)) (3)

Similarly, since yn−1 ≥ yn and xn−1 ≤ xn, from (2), we also have

ϕ(d(yn+1, yn)) = ϕ(d(F(yn, xn),F(yn−1, xn−1)))

≤
1
2
ψ(d(yn, yn−1) + d(xn, xn−1)) (4)

From (3) and (4), we get

ϕ(d(xn+1, xn)) + ϕ(d(yn+1, yn)) ≤ ψ(d(xn, xn−1) + d(yn, yn−1)). (5)
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By property (iii) of ϕ, we have

ϕ(d(xn+1, xn) + d(yn+1, yn)) ≤ ψ(d(xn, xn−1) + d(yn, yn−1)). (6)

Using the properties of ϕ and ψ, we get

d(xn+1, xn) + d(yn+1, yn) ≤ d(xn, xn−1) + d(yn, yn−1).

Set rn = d(xn+1, xn) + d(yn+1, yn) then sequence {rn} is decreasing. Therefore, there is some r ≥ 0 such that

lim
n→∞

rn = lim
n→∞

[
d(xn+1, xn) + d(yn+1, yn)

]
= r. (7)

Letting n→∞ in (6), we have

ϕ (r) ≤ ψ (r) .

By using the properties of ϕ and ψ, we have r = 0, and hence

lim
n→∞

rn = lim
n→∞

[
d(xn+1, xn) + d(yn+1, yn)

]
= 0. (8)

In what follows, we shall prove that {xn} and {yn} are Cauchy sequences. Suppose, to the contrary, that at
least of {xn} or {yn} is not Cauchy sequence. Then there exists an ε > 0 for which we can find subsequences
{xmk }, {xnk } of {xn} and {ymk }, {ynk } of {yn}with nk > mk > k such that

d(xnk , xmk ) + d(ynk , ymk ) ≥ ε. (9)

Further, corresponding to mk,we can choose nk in such a way that it is the smallest integer with nk > mk
and satisfying (9). Then

d(xnk−1 , xmk ) + d(ynk−1 , ymk ) < ε. (10)

Using (9), (10) and the triangle inequality, we have

ε ≤ δk := d(xnk , xmk ) + d(ynk , ymk )
≤ d(xnk , xnk−1 ) + d(xnk−1 , xmk ) + d(ynk , ynk−1 ) + d(ynk−1 , ymk )
≤ d(xnk , xnk−1 ) + d(ynk , ynk−1 ) + ε.

Taking k→∞ in the above inequality and using (8), we get

lim
k→∞

δk = lim
k→∞

[
d(xnk , xmk ) + d(ynk , ymk )

]
= ε. (11)

By the triangle inequality, we obtain

δk = d(xnk , xmk ) + d(ynk , ymk )
≤ d(xnk , xnk+1 ) + d(xnk+1 , xmk+1 ) + d(xmk+1 , xmk )

+d(ynk , ynk+1 ) + d(ynk+1 , ymk+1 ) + d(ymk+1 , ymk )
= rnk + rmk + d(xnk+1 , xmk+1 ) + d(ynk+1 , ymk+1 ).

Using the property of ϕ, we have

ϕ (δk) ≤ ϕ
(
rnk + rmk + d(xnk+1 , xmk+1 ) + d(ynk+1 , ymk+1 )

)
≤ ϕ

(
rnk + rmk

)
+ ϕ

(
d(xnk+1 , xmk+1 )

)
+ ϕ

(
d(ynk+1 , ymk+1 )

)
. (12)
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Since nk > mk, hence xnk ≥ xmk and ynk ≤ ymk , from (2)

ϕ
(
d(xnk+1 , xmk+1 )

)
= ϕ

(
d(F

(
xnk , ynk

)
,F

(
xmk , ymk

)
)
)

≤
1
2
ψ(d(xnk , xmk ) + d(ynk , ymk ))

=
1
2
ψ (δk) . (13)

Similarly, we also have

ϕ
(
d(ymk+1 , ynk+1 )

)
= ϕ

(
d(F

(
ymk , xmk

)
,F

(
ynk , xnk

)
)
)

≤
1
2
ψ(d(ymk , ynk ) + d(xmk , xnk ))

=
1
2
ψ (δk) . (14)

From (12)-(14), we get

ϕ (δk) ≤ ϕ
(
rnk + rmk

)
+ ψ (δk) .

Letting k→∞ and using (8) and (11), we have

ϕ (ε) ≤ ϕ (0) + ψ (ε) = ψ (ε) .

From the properties of ϕ and ψ, we get ε = 0, which is a contradiction. This shows that {xn} and {yn} are
Cauchy sequences. Since X is a complete metric space, there exist x, y ∈ X such that

lim
n→∞

xn = x and lim
n→∞

yn = y.

Now, suppose that assumption (a) holds. Then

x = lim
n→∞

xn+1 = lim
n→∞

F
(
xn, yn

)
= F

(
lim
n→∞

xn, lim
n→∞

yn

)
= F

(
x, y

)
and

y = lim
n→∞

yn+1 = lim
n→∞

F
(
yn, xn

)
= F

(
lim
n→∞

yn, lim
n→∞

xn

)
= F

(
y, x

)
.

Therefore x = F(x, y) and y = F(y, x).
Suppose now assumption (b) holds. Since {xn} is a non-decreasing sequence that converges to x, we

have that xn ≤ x for all n. Similarly, yn ≥ y for all n. Then

ϕ
(
d
(
xn+1,F

(
x, y

)))
= ϕ

(
d
(
F
(
xn, yn

)
,F

(
x, y

)))
≤

1
2
ψ(d(xn, x) + d(yn, y)).

Letting n→∞ and using the property of ϕ, we have

ϕ
(
d
(
x,F

(
x, y

)))
≤

1
2
ψ(0) = 0

which implies ϕ
(
d
(
x,F

(
x, y

)))
= 0. Thus d

(
x,F

(
x, y

))
= 0 or equivalently, x = F

(
x, y

)
.

Similarly, one can show that y = F(y, x).

If we take ϕ (t) = t and ψ (t) = kt in Theorem 2.1, we have the following corollary.
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Corollary 2.2 (Bhaskar and Lakshmikantham [24]). Let (X,≤, d) be a complete partially ordered metric space.
Let F : X × X → X be a mixed monotone mapping for which there exist k ∈ [0, 1)such that for all x, y,u, v ∈ X with
x ≥ u, y ≤ v,

d(F(x, y),F(u, v)) ≤
k
2
[
d(x,u) + d(y, v)

]
Suppose either
(a) F is continuous or
(b) X satisfies property (1).
If there exist x0, y0 ∈ X with x0 ≤ F(x0, y0) and y0 ≥ F(y0, x0), then F has a coupled fixed point.

If we take ψ (t) = ϕ (t) − ψ1 (t) in Theorem 2.1, we have the following corollary.

Corollary 2.3 (Luong and Thuan [25]). Let (X,≤, d) be a complete partially ordered metric space. Let F : X×X→
X be a mixed monotone mapping for which there exist ϕ ∈ Φ and ψ1 ∈ Ψ such that for all x, y,u, v ∈ X with x ≥ u,
y ≤ v,

ϕ(d(F(x, y),F(u, v))) ≤
1
2
ϕ(d(x,u) + d(y, v)) − ψ1(

d(x,u) + d(y, v)
2

)

Suppose either
(a) F is continuous or
(b) X satisfies property (1).
If there exist x0, y0 ∈ X with x0 ≤ F(x0, y0) and y0 ≥ F(y0, x0), then F has a coupled fixed point.

If we take ϕ (t) = t in Corollary 2.3, we have the following corollary.

Corollary 2.4. Let (X,≤, d) be a complete partially ordered metric space. Let F : X × X → X be a mixed monotone
mapping for which there exist ψ1 ∈ Ψ such that for all x, y,u, v ∈ X with x ≥ u, y ≤ v,

d(F(x, y),F(u, v)) ≤
1
2

(d(x,u) + d(y, v)) − ψ1(
d(x,u) + d(y, v)

2
)

Suppose either
(a) F is continuous or
(b) X satisfies property (1).
If there exist x0, y0 ∈ X with x0 ≤ F(x0, y0) and y0 ≥ F(y0, x0), then F has a coupled fixed point.

Next theorem gives a sufficient condition for the uniqueness of the coupled fixed point.

Theorem 2.5. Let all the conditions of Theorem 2.1 be fulfilled and let the following condition be satisfied: for
arbitrary points

(
x, y

)
, (u, v) ∈ X×X there exists (z, t) ∈ X ×X which is comparable with both

(
x, y

)
and (u, v) . Then

F has a unique coupled fixed point.

Proof. From Theorem 2.1, the set of coupled fixed points of F is non-empty. Suppose (x, y) and (u, v) are
coupled fixed points of F, that is, x = F(x, y), y = F(y, x), u = F (u, v) and v = F(v,u).We shall show that x = u
and y = v.

By assumption, there exists (z, t) ∈ X × X that is comparable to (x, y) and (u, v).
We define sequences {zn} and {tn} as follows

z0 = z, t0 = t, zn+1 = F(zn, tn) and tn+1 = F(tn, zn) for all n.

Since (z, t) is comparable with (x, y),we may assume that (x, y) ≥ (z, t) = (z0, t0).By using the mathematical
induction, it is easy to prove that (x, y) ≥ (zn, tn), for all n. Then by (2), we have

ϕ (d(x, zn+1)) = ϕ
(
d(F

(
x, y

)
,F(zn, tn))

)
≤

1
2
ψ(d(x, zn) + d(y, tn)), (15)
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and

ϕ
(
d(tn+1, y)

)
= ϕ

(
d(F (tn, zn) ,F(y, x))

)
≤

1
2
ψ(d(tn, y) + d(zn, x)). (16)

From (15), (16) and the property of ϕ, we get

ϕ
(
d(x, zn+1) + d(y, tn+1)

)
≤ ϕ (d(x, zn+1)) + ϕ

(
d(y, tn+1)

)
≤ ψ(d(x, zn) + d(y, tn)). (17)

Hence, ϕ is a nondecreasing function and the condition of ϕ(t) > ψ(t) for t > 0. This gives us that
{d(x, zn) + d(y, tn)} is a nonnegative decreasing sequence, and consequently, there exists γ ≥ 0 such that

lim
n→∞

[
d(x, zn) + d(y, tn)

]
= γ. (18)

Suppose that γ > 0. Letting n→∞ in (17) and taking into account thatϕ andψ are continuous functions,
we obtain

ϕ
(
γ
)
≤ ψ

(
γ
)

which implies, by the properties of ϕ and ψ, that ψ
(
γ
)

= 0 and consequently, γ = 0. Therefore

lim
n→∞

[
d(x, zn) + d(y, tn)

]
= 0.

It follows that

lim
n→∞

d(x, zn) = lim
n→∞

d(y, tn) = 0.

Similarly, one can show that

lim
n→∞

d(u, zn) = lim
n→∞

d(v, tn) = 0.

From the triangle inequality, we have

d(x,u) ≤ d(x, zn) + d(zn,u),
d(y, v) ≤ d(y, tn) + d(tn, v).

Taking the limit as n→∞ in the above inequality, we get

d(x,u) = d(y, v) = 0

and hence x = u and y = v.

Corollary 2.6. Let all the conditions of Corollary 2.2 (resp. Corollary 2.3 and Corollary 2.4) be fulfilled and let
the following condition be satisfied: for arbitrary points

(
x, y

)
, (u, v) ∈ X × X there exists (z, t) ∈ X ×X which is

comparable with both
(
x, y

)
and (u, v) . Then F has a unique coupled fixed point.

An alternative uniqueness condition is given in the next theorem.

Theorem 2.7. In addition to hypotheses of Theorem 2.1, if x0 and y0 are comparable then x = F
(
x, y

)
= F

(
y, x

)
= y

where
(
x, y

)
is a coupled fixed point of F.
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Proof. Following the proof of Theorem 2.1, F has a coupled fixed point (x, y). We only have to show that
x = y. Since x0 and y0 are comparable, we may assume that x0 ≥ y0. By using the mathematical induction,
one can show that xn ≥ yn, where xn+1 = F(xn, yn) and yn+1 = F(yn, xn) for all n ≥ 0.

By the triangle inequality, we obtain

d(x, y) ≤ d(x, xn+1) + d(xn+1, yn+1) + d(yn+1, y)
= d(x, xn+1) + d(yn+1, y) + d

(
F(xn, yn),F(yn, xn)

)
.

Therefore, by (2) and the property of ϕ, we have

ϕ
(
d(x, y)

)
≤ ϕ

(
d(x, xn+1) + d(yn+1, y)

)
+ ϕ

(
d
(
F(xn, yn),F(yn, xn)

))
≤ ϕ

(
d(x, xn+1) + d(yn+1, y)

)
+

1
2
ψ

(
d(xn, yn) + d(yn, xn)

)
≤ ϕ

(
d(x, xn+1) + d(yn+1, y)

)
+ ψ

(
d(xn, yn)

)
(19)

Suppose x , y, that is, d(x, y) > 0, letting n→∞ in (19), we get

ϕ
(
d(x, y)

)
≤ ϕ (0) + ψ

(
d(x, y)

)
which shows, by the properties of ϕ and ψ, that d(x, y) = 0 and so x = y.

Corollary 2.8. In addition to hypotheses of Corollary 2.2 (resp. Corollary 2.3 and Corollary 2.4), if x0 and y0 are
comparable then x = F

(
x, y

)
= F

(
y, x

)
= y where

(
x, y

)
is a coupled fixed point of F.

3. Application to Integral Equations

In this section, we study the existence of a unique solution to a nonlinear integral equation, as an
application to the fixed point theorem proved in Section 2.

Consider the following integral equation:

x(t) =

∫ b

a
(K1(t, s) + K2(t, s))( f (s, x(s)) + 1(s, x(s)))ds + a(t), t ∈ I = [a, b]. (20)

We will analyze Eq. (20) under the following assumptions:
(i) K1,K2 ∈ C(I × I,R) and K1(t, s) ≥ 0 and K2(t, s) ≤ 0.
(ii) a ∈ C(I,R).
(iii) f , 1 ∈ C(I ×R,R).
(iv) There exist constants λ, µ > 0 such that for all x, y ∈ R and x ≥ y

0 ≤ f (t, x) − f (t, y) ≤ λ ln
(∣∣∣x − y

∣∣∣ + 1
)

and

−µ ln
(∣∣∣x − y

∣∣∣ + 1
)
≤ 1(t, x) − 1(t, y) ≤ 0.

(v) 4 ·max(λ, µ)‖K1 − K2‖∞ ≤ 1, where

‖K1 − K2‖∞ = sup{(K1(t, s) − K2(t, s)) : t, s ∈ I}.

(vi) There exist (α, β) ∈ C(I,R)×C(I,R) a coupled lower and upper solution of the integral equation (20)
if α(t) ≤ β(t) and

α(t) ≤
∫ b

a
K1(t, s)( f (s, α(s)) + 1(s, β(s)))ds +

∫ b

a
K2(t, s)( f (s, β(s)) + 1(s, α(s)))ds + a(t)
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and

β(t) ≥
∫ b

a
K1(t, s)( f (s, β(s)) + 1(s, α(s)))ds +

∫ b

a
K2(t, s)( f (s, α(s)) + 1(s, β(s)))ds + a(t)

for all t ∈ I.

Theorem 3.1. Under assumptions (i) − (vi), Eq. (20) has a unique solution in C(I,R).

Proof. Let X := C(I,R). X is a partially ordered set if we define the following order relation in X :

x, y ∈ C(I,R), x ≤ y⇔ x(t) ≤ y(t), ∀t ∈ I.

And (X, d) is a complete metric space with metric

d(x, y) = sup
t∈I
|x(t) − y(t)|, x, y ∈ C(I,R).

Now define on X × X the following partial order: for (x, y), (u, v) ∈ X × X,

(x, y) ≤ (u, v)⇔ x(t) ≤ u(t) and y(t) ≥ v(t), ∀t ∈ I.

Obviously, for any (x, y) ∈ X × X, the functions max{x, y}, min{x, y} are the upper and lower bounds of
x, y, respectively.

Therefore, for every (x, y), (u, v) ∈ X × X, there exists the element (max{x,u},min{y, v}) which is compa-
rable to (x, y) and (u, v).

Define now the mapping F : X × X→ X by

F(x, y)(t) =

∫ b

a
K1(t, s)

(
f (s, x(s)) + 1(s, y(s))

)
ds

+

∫ b

a
K2(t, s)( f (s, y(s)) + 1(s, x(s)))ds + a(t), ∀t ∈ I.

Now we shall show that F has the mixed monotone property. Indeed, for x1 ≤ x2 and t ∈ I, we have

F(x1, y)(t) − F(x2, y)(t) =

∫ b

a
K1(t, s)( f (s, x1(s)) + 1(s, y(s)))ds

+

∫ b

a
K2(t, s)( f (s, y(s)) + 1(s, x1(s)))ds + a(t)

−

∫ b

a
K1(t, s)( f (s, x2(s)) + 1(s, y(s)))ds

−

∫ b

a
K2(t, s)( f (s, y(s)) + 1(s, x2(s)))ds − a(t)

=

∫ b

a
K1(t, s)( f (s, x1(s)) − f (s, x2(s)))ds

+

∫ b

a
K2(t, s)(1(s, x1(s)) − 1(s, x2(s)))ds ≤ 0,

by our assumptions. Hence F(x1, y)(t) ≤ F(x2, y)(t), ∀t ∈ I, that is, F(x1, y) ≤ F(x2, y).
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Similarly, if y1 ≥ y2 and t ∈ I, we have

F(x, y1)(t) − F(x, y2)(t) =

∫ b

a
K1(t, s)( f (s, x(s)) + 1(s, y1(s)))ds

+

∫ b

a
K2(t, s)( f (s, y1(s)) + 1(s, x(s)))ds + a(t)

−

∫ b

a
K1(t, s)( f (s, x(s)) + 1(s, y2(s)))ds

−

∫ b

a
K2(t, s)( f (s, y2(s)) + 1(s, x(s)))ds − a(t)

=

∫ b

a
K1(t, s)(1(s, y1(s)) − 1(s, y2(s)))ds

+

∫ b

a
K2(t, s)( f (s, y1(s)) − f (s, y2(s)))ds ≤ 0,

by our assumptions. Hence F(x, y1)(t) ≤ F(x, y2)(t), ∀t ∈ I, that is, F(x, y1) ≤ F(x, y2).
Thus, F(x, y) is monotone nondecreasing in x and monotone nonincreasing in y.
In what follows, we estimate d(F(x, y),F(u, v)) for x ≥ u and y ≤ v.
Indeed, as F has the mixed monotone property, F(x, y) ≥ F(u, v) and we have

d(F(x, y),F(u, v)) = sup
t∈I
|F(x, y)(t) − F(u, v)(t)|

= sup
t∈I

(
F(x, y)(t) − F(u, v)(t)

)
= sup

t∈I
[
∫ b

a
K1(t, s)( f (s, x(s)) + 1(s, y(s)))ds +

∫ b

a
K2(t, s)( f (s, y(s)) + 1(s, x(s)))ds + a(t)

−

∫ b

a
K1(t, s)( f (s,u(s)) + 1(s, v(s)))ds −

∫ b

a
K2(t, s)( f (s, v(s)) + 1(s,u(s)))ds − a(t)]

= sup
t∈I

[
∫ b

a
K1(t, s)[( f (s, x(s)) − f (s,u(s))) − (1(s, v(s)) − 1(s, y(s)))]ds

−

∫ b

a
K2(t, s)[( f (s, v(s)) − f (s, y(s))) − (1(s, x(s)) − 1(s,u(s)))]ds]

≤ sup
t∈I

[
∫ b

a
K1(t, s)[λ ln (|x(s) − u(s)| + 1)) + µ ln

(∣∣∣y(s) − v(s)
∣∣∣ + 1

)
)]ds

+

∫ b

a
(−K2(t, s)) [λ ln

(∣∣∣v(s) − y(s)
∣∣∣ + 1

)
) + µ ln (|x(s) − u(s)| + 1))]ds]

≤ max(λ, µ)sup
t∈I

[
∫ b

a
(K1(t, s) − K2(t, s)) ln (|x(s) − u(s)| + 1) ds

+

∫ b

a
(K1(t, s) − K2(t, s)) ln

(∣∣∣y(s) − v(s)
∣∣∣ + 1

)
ds]. (21)

Defining

(I) =

∫ b

a
(K1(t, s) − K2(t, s)) ln (|x(s) − u(s)| + 1) ds

(II) =

∫ b

a
(K1(t, s) − K2(t, s)) ln

(∣∣∣y(s) − v(s)
∣∣∣ + 1

)
ds
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and using the Cauchy–Schwartz inequality in (I) we obtain

(I) ≤ (
∫ b

a
(K1(t, s) − K2(t, s))2ds)

1
2 · (

∫ b

a
(ln (|x(s) − u(s)| + 1))2ds)

1
2

≤ ‖K1 − K2‖∞ · (ln (|x − u| + 1)) = ‖K1 − K2‖∞ · (ln (d (x,u) + 1)) . (22)

Similarly, we can obtain the following estimate for (II) :

(II) ≤ ‖K1 − K2‖∞ ·
(
ln

(
d
(
y, v

)
+ 1

))
. (23)

By (21)−(23) and assumption (v) , we get

d(F(x, y),F(u, v)) ≤ max(λ, µ) ‖K1 − K2‖∞
[
ln (d (x,u) + 1) + ln

(
d
(
y, v

)
+ 1

)]
≤ max(λ, µ) ‖K1 − K2‖∞

[
ln

(
d (x,u) + d

(
y, v

)
+ 1

)
+ ln

(
d
(
y, v

)
+ d (x,u) + 1

)]
= 2 max(λ, µ) ‖K1 − K2‖∞

[
ln

(
d (x,u) + d

(
y, v

)
+ 1

)]
≤

1
2

ln
(
d (x,u) + d

(
y, v

)
+ 1

)
. (24)

Put ϕ (x) = x and ψ (x) = ln (x + 1) . Obviously, ϕ ∈ Φ and ψ ∈ Ψ, and by (24) we have

ϕ(d(F(x, y),F(u, v))) ≤
1
2
ψ(d(x,u) + d(y, v)).

This proves that the operator F satisfies the contractive condition appearing in Theorem 2.1.
Finally, let (α, β) be a coupled lower and upper solution of the integral equation (20) then, by assumption

(vi), we have α ≤ F(α, β) ≤ F(β, α) ≤ β. Theorem 2.5 gives us that F has a unique coupled fixed point
(x, y) ∈ X × X. Since α ≤ β, Theorem 2.7 says us that x = y and this implies x = F(x, x) and x is the unique
solution of Eq. (20).
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