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Abstract. The present paper concerns with a certain sequence of nonlinear Bernstein operators NBn f of
the form

(NBn f )(x) =

n∑
k=0

Pk,n

(
x, f

(
k
n

))
, 0 ≤ x ≤ 1 , n ∈N,

acting on bounded functions on an interval [0, 1] , where Pk,n satisfy some suitable assumptions. We will
also investigate the pointwise convergence of this operators in some functional spaces. As a result, this
study can be considered as an extension of the results dealing with the linear Bernstein Polynomials. As
far as we know this kind of study is the first one on the nonlinear Bernstein approximation operators.

1. Introduction

Let f be a function defined on the interval [0, 1] and letN := {1, 2, ...} . The classical Bernstein operators
Bn f applied to f are defined as

(Bn f )(x) =

n∑
k=0

f
(

k
n

)
pk,n(x) , 0 ≤ x ≤ 1 , n ∈N, (1)

where pk,n(x) =

(
n
k

)
xk(1 − x)n−k is the Bernstein basis. These polynomials were introduced by Bernstein

[9] in 1912 to give the first constructive proof of the Weierstrass approximation theorem. Some remarkable
approximation properties of the polynomials (1) are presented in Lorentz [23].
The present paper concerns with pointwise convergence of certain families of nonlinear Bernstein operators
Bn f of the form

(NBn f )(x) =

n∑
k=0

Pk,n

(
x, f

(
k
n

))
, 0 ≤ x ≤ 1 , n ∈N, (2)

2010 Mathematics Subject Classification. Primary 41A35 (mandatory); Secondary 41A25, 47G10 (optionally)
Keywords. nonlinear Bernstein operators, bounded variation,

(
L − ψ

)
Lipschitz condition, pointwise convergence.

Received: 07 May 2013; Accepted: 15 January 2014
Communicated by Dragana Cvetkovic Ilic
Email addresses: akarsli_h@ibu.edu.tr (Harun Karsli), bismailutiryaki@gmail.com (Ismail U. Tiryaki),

cerhanaltin@ibu.edu.tr (H. Erhan Altin)



Harun Karsli, Ismail U. Tiryaki,H. Erhan Altin / Filomat 28:6 (2014), 1295–1305 1296

acting on bounded functions f on an interval [0, 1] , where Pk,n satisfy some suitable assumptions. In
particular, we obtain some pointwise convergence for the nonlinear sequence of Bernstein operators (2) to
some point x of f , as n→∞.

We note that the approximation theory with nonlinear integral operators of convolution type was intro-
duced by J. Musielak in [24] and widely developed in [4]. To the best of our knowledge, the approximation
problem were limited to linear operators because the notion of singularity of an integral operator is closely
connected with its linearity until the fundamental paper of Musielak [24]. In [24], the assumption of lin-
earity of the singular integral operators was replaced by an assumption of a Lipschitz condition for the
kernel function Kλ(t,u) with respect to the second variable. After this approach, several mathematicians
have undertaken the program of extending approximation by nonlinear operators in many ways, including
pointwise and uniform convergence, Korovkin type theorems in abstract function spaces, sampling series
and so on. Especially, nonlinear integral operators of type

(
Tλ f

)
(x) =

b∫
a

Kλ(t − x, f (t)) dt, x ∈ (a, b) ,

and its special cases were studied by Bardaro, Karsli and G. Vinti [6]-[7], Karsli [17]-[18] and Karsli-Ibikli
[20] in some Lebesgue spaces.

Such developments delineated a theory which is nowadays referred to as the theory of approximation
by nonlinear integral operators.

For further reading, we also refer the reader to [1]-[3], [5], [8] as well as the monographs [13] and
[4] where other kinds of convergence results of linear and nonlinear operators in the Lebesgue spaces,
Musielak-Orlicz spaces, BV-spaces and BVϕ-spaces have been considered.

An outline of the paper is as follows: The next section contains basic definitions and notations.

In Section 3, the main approximation results of this study are given. They are dealing with the rate of
pointwise convergence of the nonlinear Bernstein operators NBn f to the limit ψo

∣∣∣ f ∣∣∣ and f of functions of
bounded variation on the interval [0, 1]. At the point x, which is a discontinuity of the first kind of f and of
its derivative, we shall prove that (NBn f )(x) converge to the limit f (x). Let us note that the counterpart of
such kind of results for positive linear operators of functions of bounded variation in the Jordan sense were
first obtained by Bojanic [10] and Cheng [14]. Some other important papers on this topic are [11], [12], [15],
[20], [22] and [25].

In Section 4, we give some certain results which are necessary to prove the main result.

The final section, that is Section 5, concerns with the proof of the main results presented in Section 3.

2. Preliminaries

In this section, we assemble the main definitions and notations which will be used throughout the paper.

Let X be the set of all bounded Lebesgue measurable functions f : [0, 1]→ R.

Let Ψ be the class of all functions ψ : R+
0 → R

+
0 such that the function ψ is continuous and concave with

ψ(0) = 0, ψ(u) > 0 for u > 0.

We now introduce a sequence of functions. Let
{
Pk,n

}
n∈N be a sequence functions Pk,n : [0, 1] xR→ R defined

by

Pk,n (t,u) = pk,n(t)Hn(u) (3)

for every t ∈ [0, 1],u ∈ R, where Hn : R→ R is such that Hn(0) = 0 and pk,n(t) is the Bernstein basis.
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Throughout the paper we assume that µ : N → R+ is an increasing and continuous function such that
lim
n→∞

µ(n) = ∞.

First of all we assume that the following conditions hold:

a ) Hn : R→ R is such that

|Hn(u) −Hn(v)| ≤ ψ (|u − v|) , ψ ∈ Ψ,

holds for every u, v ∈ R, for every n ∈N. That is, Hn satisfies a
(
L − ψ

)
Lipschitz condition.

b ) We now set

Kn(x,u) :=


∑

k≤nu
pn,k(x) , 0 < u ≤ 1

0 , u = 0
. (4)

and

Bn(x) :=

x+(1−x)/nγ/β∫
x−x/nγ/β

dt (Kn(x, t)) for any fixed x ∈ (0, 1).

where β > 0, γ ≥ 1.

We note that the use of the function Bn(x) concerns the behavior of the approximation near to the point x.
Similar approach and some particular examples can be found in [8], [21], [16], [19] and [25].

c) denoting by rn(u) := Hn(u) − u, u ∈ R and n ∈N, such that

lim
n→∞

rn(u) = 0

uniformly with respect to u.

In other words, for n sufficiently large

sup
u
|rn(u)| = sup

u
|Hn(u) − u| ≤

1
µ(n)

,

holds.

The symbol [a] will denote the greatest integer not greater than a.

3. Convergence Results

We will consider the following type nonlinear Bernstein operators,

(
NBn f

)
(x) =

n∑
k=0

Pk,n

(
x, f

(
k
n

))
defined for every f ∈ X for which NBn f is well-defined, where

Pk,n(x,u) = pk,n(x)Hn(u)

for every x ∈ [0, 1],u ∈ R.
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As before, we let

fx(t) =


f (t) − f (x+) , x < t ≤ 1

0 , t = x
f (t) − f (x−) , 0 ≤ t < x

, (5)

en(x) =

{
1 , x = k′

n for some k′ ∈ IN
0 , x , k′

n for all k′ ∈ IN
, e = 2.71...and

1∨
0
ψ(

∣∣∣ fx∣∣∣) is the total variation of ψ(
∣∣∣ fx∣∣∣) on [0, 1].

We are now ready to establish the main results of this study:

Theorem 1. Let ψ ∈ Ψ and f ∈ X be such that ψo
∣∣∣ f ∣∣∣ ∈ BV ([0, 1]). Suppose that Pk,n(x,u) satisfies conditions

a) − c). Then for every x ∈ (0, 1) and for all n > 256
25x(1−x) , we have

(
NBn f

)
(x) −

[
ψ

(∣∣∣∣∣ f (x+) + f (x−)
2

∣∣∣∣∣) + ψ

(∣∣∣∣∣ f (x+) − f (x−)
2

∣∣∣∣∣)]

≤ B∗n(x)n−γ/β
 1∨

0

ψ
(∣∣∣ fx∣∣∣) +

[nγ]∑
k=1

x+(1−x)/k1/β∨
x−x/k1/β

ψ
(∣∣∣ fx∣∣∣)

 + Bn(x)
x+(1−x)/nγ/β∨

x−x/nγ/β
ψ

(∣∣∣ fx∣∣∣)
+ψ

∣∣∣∣∣ f (x) −
f (x+) + f (x−)

2

∣∣∣∣∣ en(x)√
2enx(1 − x)


where B∗n(x) = Bn(x) max{x−β, (1 − x)−β},

(
β > 0

)
.

The following result is a corollary of the Theorem 1.

Corollary 1. If we choose f ∈ C[0, 1] in Theorem 1, then we have(
NBn f

)
(x) − ψ

(∣∣∣ f (x)
∣∣∣)

≤ B∗n(x)n−γ/β
 1∨

0

ψ
(∣∣∣ fx∣∣∣) +

[nγ]∑
k=1

x+(1−x)/k1/β∨
x−x/k1/β

ψ
(∣∣∣ fx∣∣∣)

 + Bn(x)
x+(1−x)/nγ/β∨

x−x/nγ/β
ψ

(∣∣∣ fx∣∣∣)
where B∗n(x) = Bn(x) max{x−β, (1 − x)−β},

(
β > 0

)
.

Theorem 2. Let ψ ∈ Ψ and f ∈ X be such that ψo
∣∣∣ f ∣∣∣ ∈ BV ([0, 1]). Suppose that Pk,n(x,u) satisfies conditions

a) − c). Then for every x ∈ (0, 1) and for all n > 256
25y(1−y) , we have

∣∣∣∣∣(NBn f
)

(x) −
f (x+) + f (x−)

2

∣∣∣∣∣ ≤ B∗n(x)n−γ/β
 1∨

0

ψ
(∣∣∣ fx∣∣∣) +

[nγ]∑
k=1

x+(1−x)/k1/β∨
x−x/k1/β

ψ
(∣∣∣ fx∣∣∣)



+Bn(x)
x+(1−x)/nγ/β∨

x−x/nγ/β
ψ

(∣∣∣ fx∣∣∣) + ψ

∣∣∣∣∣ f (x) −
f (x+) + f (x−)

2

∣∣∣∣∣ en(x)√
2enx(1 − x)


+ψ


∣∣∣ f (x+) − f (x−)

∣∣∣
2

 +
1
µ(n)

where B∗n(x) = Bn(x) max{x−β, (1 − x)−β},
(
β > 0

)
.

The following results are corollaries of the Theorem 2.
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Corollary 2. If we choose f ∈ C[0, 1] in Theorem 2, then we have

∣∣∣(NBn f
)

(x) − f (x)
∣∣∣ ≤ B∗n(x)n−γ/β

 1∨
0

ψ
(∣∣∣ fx∣∣∣) +

[nγ]∑
k=1

x+(1−x)/k1/β∨
x−x/k1/β

ψ
(∣∣∣ fx∣∣∣)


+Bn(x)

x+(1−x)/nγ/β∨
x−x/nγ/β

ψ
(∣∣∣ fx∣∣∣)

where B∗n(x) = Bn(x) max{x−β, (1 − x)−β},
(
β > 0

)
.

Corollary 3. If f ∈ C[0, 1] and ψ(t) = t (that is, strongly Lipschitz condition) in Theorem 2, then we have

∣∣∣(NBn f
)

(x) − f (x)
∣∣∣ ≤ B∗n(x)n−γ/β

 1∨
0

(∣∣∣ fx∣∣∣) +

[nγ]∑
k=1

x+(1−x)/k1/β∨
x−x/k1/β

(∣∣∣ fx∣∣∣)


+Bn(x)
x+(1−x)/nγ/β∨

x−x/nγ/β

(∣∣∣ fx∣∣∣)
where B∗n(x) = Bn(x) max{x−β, (1 − x)−β},

(
β > 0

)
.

4. Auxiliary Result

In this section we give certain results, which are necessary to prove our theorems.

Lemma 1. For (Bnts)(x), s = 0, 1, 2, one has

(Bn1)(x) = 1
(Bnt)(x) = x

(Bnt2)(x) = x2 +
x(1 − x)

n
.

For proof of this Lemma see [23].

By direct calculation, we find the following equalities:

(Bn (t − x)2)(x) =
x(1 − x)

n
, (Bn (t − x))(x) = 0 .

Lemma 2. For all x ∈ (0, 1) and for each n ∈N, let

NBn(|t − x|β; x) ≤
Bn(x)
nγ/β

,
(
β > 0

)
(6)

holds, where Bn(x) is as defined in Section 2. Then one has

λn(x, t) =:

t∫
0

du (Kn(x,u)) ≤
Bn(x)

(x − t)βnγ/β
, 0 ≤ t < x, (7)

and

1 − λn(x, t) =

1∫
t

du (Kn(x,u)) ≤
Bn(x)

(t − x)βnγ/β
, x < t < 1. (8)



Harun Karsli, Ismail U. Tiryaki,H. Erhan Altin / Filomat 28:6 (2014), 1295–1305 1300

Proof. We have

λn(x, t) = :

t∫
0

du (Kn(x,u)) ≤

t∫
0

(x − u
x − t

)β
du (Kn(x,u))

≤
1

(x − t)β

1∫
0

|u − x|β du (Kn(x,u)) .

According to (6), we have

λn(x, t) ≤
Bn(x)

(x − t)βnγ/β
.

Proof of (8) is analogous.

Lemma 3 ([26], Theorem 1). For all x ∈ (0, 1) and for all n > 256
25x(1−x) ,we have

pn,k (x) ≤
1√

2enx(1 − x)
,

where e = 2.71... is the Napierian constant.

5. Proof of the Theorems

Proof of Theorem 1. For any f ∈ X, it is easily verified from (5), that

f (t) =
f (x+) + f (x−)

2
+ fx(t) +

f (x+) − f (x−)
2

s1n(t − x)

+δx(t)
[

f (x) −
f (x+) + f (x−)

2

]
, (9)

where

δx(t) =

{
1 , x = t
0 , x , t.

Applying the operator (2) to (9), using (3) and from condition a), we have

(
NBn f

)
(x) =

n∑
k=0

Pk,n

(
x, f

(
k
n

))
=

n∑
k=0

pk,n(x)Hn

(
f
(

k
n

))

≤

n∑
k=0

pk,n(x)ψ
(∣∣∣∣∣∣ f

(
k
n

)∣∣∣∣∣∣
)

≤ ψ

(∣∣∣∣∣ f (x+) + f (x−)
2

∣∣∣∣∣) n∑
k=0

pk,n(x) +

n∑
k=0

pk,n(x)ψ
(∣∣∣∣∣∣ fx

(
k
n

)∣∣∣∣∣∣
)

+

n∑
k=0

pk,n(x)ψ
(∣∣∣∣∣ f (x+) − f (x−)

2

∣∣∣∣∣
∣∣∣∣∣∣s1n

(
k
n
− x

)∣∣∣∣∣∣
)

+

n∑
k=0

pk,n(x)ψ
(∣∣∣∣∣ f (x) −

f (x+) + f (x−)
2

∣∣∣∣∣ δx

(
k
n

))
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Hence from (9) , we have

(
NBn f

)
(x) ≤

[
ψ

(∣∣∣∣∣ f (x+) + f (x−)
2

∣∣∣∣∣) + ψ

(∣∣∣∣∣ f (x+) − f (x−)
2

∣∣∣∣∣)] n∑
k=0

pk,n(x)

+

n∑
k=0

pk,n(x)ψ
(∣∣∣∣∣∣ fx

(
k
n

)∣∣∣∣∣∣
)

+ ψ

 n∑
k=0

pk,n(x)
∣∣∣∣∣ f (x) −

f (x+) + f (x−)
2

∣∣∣∣∣ δx

(
k
n

) .
Note that

n∑
k=0

pk,n(x)δx

(
k
n

)
= en(x)pk′,n(x)

where en(x) = 1 if there exists a k′ such that x = k′/n, en(x) = 0 if x , k′/n for all k ∈ {0, 1, ...,n} . Thus,

(
NBn f

)
(x) ≤

[
ψ

(∣∣∣∣∣ f (x+) + f (x−)
2

∣∣∣∣∣) + ψ

(∣∣∣∣∣ f (x+) − f (x−)
2

∣∣∣∣∣)] n∑
k=0

pk,n(x)

+

n∑
k=0

pk,n(x)ψ
(∣∣∣∣∣∣ fx

(
k
n

)∣∣∣∣∣∣
)

+ ψ

(∣∣∣∣∣ f (x) −
f (x+) + f (x−)

2

∣∣∣∣∣ en(x)pk′,n(x)
)
.

In view of Lemma 2, we get

(
NBn f

)
(x) −

[
ψ

(∣∣∣∣∣ f (x+) + f (x−)
2

∣∣∣∣∣) + ψ

(∣∣∣∣∣ f (x+) − f (x−)
2

∣∣∣∣∣)]

≤

n∑
k=0

pk,n(x)ψ
(∣∣∣∣∣∣ fx

(
k
n

)∣∣∣∣∣∣
)

+ ψ

∣∣∣∣∣ f (x) −
f (x+) + f (x−)

2

∣∣∣∣∣ en(x)√
2enx(1 − x)

 . (10)

In order to complete the proof of Theorem 1, we need an estimation for the term

n∑
k=0

pk,n(x)ψ
(∣∣∣∣∣∣ fx

(
k
n

)∣∣∣∣∣∣
)

in (10).

Let

Kn(x,u) =:


∑

k≤nu
pn,k(x) , 0 < u ≤ 1

0 , u = 0
.

Now, in view of (4) we split the last integral in three parts as follows;

n∑
k=0

pk,n(x)ψ
(∣∣∣∣∣∣ fx

(
k
n

)∣∣∣∣∣∣
)
≤


x−x/nγ/β∫

0

+

x+(1−x)/nγ/β∫
x−x/nγ/β

+

1∫
x+(1−x)/nγ/β

ψ (∣∣∣ fx(t)
∣∣∣) dt (Kn(x, t))

= : |I1(λ, x)| + |I2(λ, x)| + |I3(λ, x)| . (11)

First we estimate I2(n, x). Since fx(x) = 0 and ψ (0) = 0, for t ∈
[
x − x/nγ/β, x + (1 − x) /nγ/β

]
, we have

|I2(n, x)| =

x+(1−x)/nγ/β∫
x−x/nγ/β

[
ψ

(∣∣∣ fx(t)
∣∣∣) − ψ (∣∣∣ fx(x)

∣∣∣)] dt (Kn(x, t)) ,
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also by the condition b)

|I2(n, x)| ≤
x+(1−x)/nγ/β∨

x−x/nγ/β
ψ

(∣∣∣ fx∣∣∣) x+(1−x)/nγ/β∫
x−x/nγ/β

dt (Kn(x, t))

≤ Bn(x)
x+(1−x)/nγ/β∨

x−x/nγ/β
ψ

(∣∣∣ fx∣∣∣) . (12)

Next, we estimate I1(n, x). Using partial Lebesgue-Stieltjes integration, we obtain

|I1(n, x)| =

x−x/nγ/β∫
0

ψ
(∣∣∣ fx(t)

∣∣∣) dt (Kn(x, t))

= ψ
(∣∣∣ fx(x − x/nγ/β)

∣∣∣) Kn(x, x − x/nγ/β) −

x−x/nγ/β∫
0

Kn(x, t)dt

(
ψ

(∣∣∣ fx(t)
∣∣∣)) .

Let y = x − x/nγ/β. By (7), it is clear that

Kn(x, y) ≤ Bn(x)(x − y)−βnγ(β−1)/β. (13)

Here we note that

ψ
(∣∣∣ fx(x − x/nγ/β)

∣∣∣) = ψ
(∣∣∣ fx(x − x/nγ/β)

∣∣∣) − ψ (∣∣∣ fx(x)
∣∣∣) ≤ x∨

x−x/nγ/β
ψ

(∣∣∣ fx∣∣∣) .
Using partial integration and applying (13), we obtain

|I1(n, x)| ≤
x∨

x−x/nγ/β
ψ

(∣∣∣ fx∣∣∣) ∣∣∣Kn(x, x − x/nγ/β)
∣∣∣ +

x−x/nγ/β∫
0

Kn(x, t)dt

− x∨
t

ψ
(∣∣∣ fx∣∣∣)

≤

x∨
x−x/nγ/β

ψ
(∣∣∣ fx∣∣∣) Bn(x)x−βnγ(β−1)/β + Bn(x)n−γ/β

x−x/nγ/β∫
0

(x − t)−βdt

− x∨
t

ψ
(∣∣∣ fx∣∣∣)

=

x∨
x−x/nγ/β

ψ
(∣∣∣ fx∣∣∣) Bn(x)x−βnγ(β−1)/β + Bn(x)n−γ/β

−x−β/n−γ
x∨

x−x/nγ/β
ψ

(∣∣∣ fx∣∣∣)

+x−β
x∨
0

ψ
(∣∣∣ fx∣∣∣) +

x−x/nγ/β∫
0

x∨
t

ψ
(∣∣∣ fx∣∣∣) β

(x − t)β+1 dt


= Bn(x)n−γ/β

x−β
x∨
0

ψ
(∣∣∣ fx∣∣∣) +

x−x/nγ/β∫
0

x∨
t

ψ
(∣∣∣ fx∣∣∣) β

(x − t)β+1 dt

 .
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Changing the variable t by x − x/u1/β in the last integral, we have

x−x/nγ/β∫
0

x∨
t

ψ
(∣∣∣ fx∣∣∣) β

(x − t)β+1 dt =
1
xβ

nγ∫
1

x∨
x−x/u1/β

ψ
(∣∣∣ fx∣∣∣) du

≤
1
xβ

[nγ]∑
k=1

x∨
x−x/k1/β

ψ
(∣∣∣ fx∣∣∣) .

Consequently, we obtain

|I1(n, x)| ≤ Bn(x)n−γ/βx−β
 x∨

0

ψ
(∣∣∣ fx∣∣∣) +

[nγ]∑
k=1

x∨
x−x/k1/β

ψ
(∣∣∣ fx∣∣∣)

 . (14)

Using the similar method, we can find

|I3(n, x)| ≤ Bn(x)n−γ/β(1 − x)−β
 1∨

x

ψ
(∣∣∣ fx∣∣∣) +

[nγ]∑
k=1

x+(1−x)/k1/β∨
x

ψ
(∣∣∣ fx∣∣∣)

 . (15)

Combining (12), (14) and (15) in (11), we obtain

n∑
k=0

pk,n(x)ψ
(∣∣∣∣∣∣ fx

(
k
n

)∣∣∣∣∣∣
)
≤ Bn(x)n−γ/βx−β

 x∨
0

ψ
(∣∣∣ fx∣∣∣) +

[nγ]∑
k=1

x∨
x−x/k1/β

ψ
(∣∣∣ fx∣∣∣)



+Bn(x)n−γ/β(1 − x)−β
 1∨

x

ψ
(∣∣∣ fx∣∣∣) +

[nγ]∑
k=1

x+(1−x)/k1/β∨
x

ψ
(∣∣∣ fx∣∣∣)

 + Bn(x)
x+(1−x)/nγ/β∨

x−x/nγ/β
ψ

(∣∣∣ fx∣∣∣)

≤ B∗n(x)n−γ/β
 1∨

0

ψ
(∣∣∣ fx∣∣∣) +

[nγ]∑
k=1

x+(1−x)/k1/β∨
x−x/k1/β

ψ
(∣∣∣ fx∣∣∣)

 + Bn(x)
x+(1−x)/nγ/β∨

x−x/nγ/β
ψ

(∣∣∣ fx∣∣∣) . (16)

Collecting (10) and (16), we get the desired result. This completes the proof of the theorem.

Proof of Theorem 2. For any f ∈ X we have∣∣∣∣∣(NBn f
)

(x) −
f (x+) + f (x−)

2

∣∣∣∣∣ =

∣∣∣∣∣∣∣
n∑

k=0

pk,n(x)Hn

(
f
(

k
n

))
−

f (x+) + f (x−)
2

∣∣∣∣∣∣∣
≤

n∑
k=0

pk,n(x)ψ
(∣∣∣∣∣∣ f

(
k
n

)
−

f (x+) + f (x−)
2

∣∣∣∣∣∣
)

+

n∑
k=0

pk,n(x)

∣∣∣∣∣∣Hn

(
f (x+) + f (x−)

2

)
−

f (x+) + f (x−)
2

∣∣∣∣∣∣
≤

n∑
k=0

pk,n(x)ψ
(∣∣∣∣∣∣ fx

(
k
n

)∣∣∣∣∣∣
)

+

n∑
k=0

pk,n(x)ψ
(∣∣∣∣∣ f (x) −

f (x+) + f (x−)
2

∣∣∣∣∣ δx

(
k
n

))

+ψ

(∣∣∣∣∣ f (x+) − f (x−)
2

∣∣∣∣∣) +

n∑
k=0

pk,n(x)

∣∣∣∣∣∣Hn

(
f (x+) + f (x−)

2

)
−

f (x+) + f (x−)
2

∣∣∣∣∣∣
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As in the proof of the Theorem 1, one has∣∣∣∣∣(NBn f
)

(x) −
f (x+) + f (x−)

2

∣∣∣∣∣ ≤ B∗n(x)n−γ/β
 1∨

0

ψ
(∣∣∣ fx∣∣∣) +

[nγ]∑
k=1

x+(1−x)/k1/β∨
x−x/k1/β

ψ
(∣∣∣ fx∣∣∣)


+Bn(x)

x+(1−x)/nγ/β∨
x−x/nγ/β

ψ
(∣∣∣ fx∣∣∣) + ψ

∣∣∣∣∣ f (x) −
f (x+) + f (x−)

2

∣∣∣∣∣ en(x)√
2enx(1 − x)


+ψ


∣∣∣ f (x+) − f (x−)

∣∣∣
2

 +

n∑
k=0

pk,n(x)

∣∣∣∣∣∣Hn

(
f (x+) + f (x−)

2

)
−

f (x+) + f (x−)
2

∣∣∣∣∣∣ .
In view of c), we have sup

u
|Hn(u) − u| ≤ 1

µ(n) . This completes the proof of the theorem.
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