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Abstract. For any A = A1 + A2 j ∈ Qn×n and η ∈ {i, j, k}, denote AηH = −ηAHη. If AηH = A, A is called an
η-Hermitian matrix. If AηH = −A, A is called an η-anti-Hermitian matrix. Denote η-Hermitian matrices and
η-anti -Hermitian matrices by ηHQn×n and ηAQn×n, respectively.

In this paper, we consider the least squares η-Hermitian problems of quaternion matrix equation AHXA+
BHYB = C by using the complex representation of quaternion matrices, the Moore–Penrose generalized
inverse and the Kronecker product of matrices. We derive the expressions of the least squares solution
with the least norm of quaternion matrix equation AHXA + BHYB = C over [X,Y] ∈ ηHQn×n

× ηHQk×k,
[X,Y] ∈ ηAQn×n

× ηAQk×k, and [X,Y] ∈ ηHQn×n
× ηAQk×k, respectively.

1. Introduction

For convenience, we list some notations as follows:

Rm×n,Cm×n : m × n real matrix set and m × n complex matrix set, respectively;
SRn×n : n × n real symmetric matrix set;
ASRn×n : n × n real anti-symmetric matrix set;
Q,Qm×n : the set of quaternions and m × n quaternion matrix set, respectively;
ReA : real part of the complex matrix A;
ImA : imaginary part of the complex matrix A;
A,AT : conjugate matrix and transpose matrix of A, respectively;
AH : the conjugate transpose matrix of A, respectively;
A+ : the Moore-Penrose generalized inverse of A;
0, In : zero matrix of suitable size and identity matrix of order n, respectively;
ei : the i-th column of In;
A ⊗ B : Kronecker product of A and B.
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A quaternion a can be uniquely expressed as a = a0 + a1i + a2 j + a3k with real coefficients a0, a1, a2, a3, and
i2 = j2 = k2 = −1, i j = − ji = k, and a can be uniquely expressed as a = c1 + c2 j, where c1 and c2 are complex
numbers. The following quaternion involutions of a quaternion a = a0 + a1i + a2 j + a3k, defined as [3]

ai = −iai = a0 + a1i − a2 j − a3k,
a j = − ja j = a0 − a1i + a2 j − a3k,

ak = −kak = a0 − a1i − a2 j + a3k.

For any A ∈ Qm×n, A can be uniquely expressed as A = A1 + A2 j, where A1,A2 ∈ Cm×n, and AH =
(ReA1)T

− (ImA1)Ti − (ReA2)T j − (ImA2)Tk. Thus AH = AH
1 − AT

2 j. The complex representation matrix of
A = A1 + A2 j ∈ Qm×n is denoted by

f (A) =

 A1 A2

−A2 A1

 ∈ C2m×2n. (1)

Notice that f (A) is uniquely determined by A. For A ∈ Qm×n,B ∈ Qn×s,we have f (AB) = f (A) f (B) (see [37]).
We define the inner product: 〈A,B〉=tr(BHA) for all A,B ∈ Qm×n. Then Qm×n is a right Hilbert inner product
space and the norm of a matrix generated by this inner product is the quaternion matrix Frobenius norm
‖ · ‖. For matrix A ∈ Qm×n, let ai = (a1i, a2i, . . . , ami)(i = 1, 2, . . . ,n), and denote by vec(A) the vector containing
all the entries of matrix A:

vec(A) = (a1, a2, . . . , an)T.

Definition 1.1. ([3, 5, 21, 35]) A matrix A ∈ Qn×n is η-Hermitian if AηH = A, and a matrix A ∈ Qn×n is η-anti-
Hermitian if AηH = −A, where AηH = −ηAHη, η ∈ {i, j, k}. η-Hermitian matrices and η-anti -Hermitian matrices are
denoted by ηHQn×n and ηAQn×n, respectively.

Denote the right linear space over the skew field of quaternions

ηHQn×n
× ηHQk×k = {[X,Y]|X ∈ ηHQn×n,Y ∈ ηHQk×k

}.

Thus we can define the inner product as follows:

〈[X1,Y1], [X2,Y2]〉 = tr[XH
2 X1] + tr[YH

2 Y1], [Xi,Yi] ∈ ηHQn×n
× ηHQk×k, (i = 1, 2).

Then ηHQn×n
× ηHQk×k is a right Hilbert inner space.

Similarly, ηAQn×n
× ηAQk×k and ηHQn×n

× ηAQk×k are also the right linear spaces and the right Hilbert
inner space over the skew field of quaternions. The associated Frobenius norms of matrix pairs [X,Y] ∈
ηHQn×n

× ηHQk×k, [X,Y] ∈ ηAQn×n
× ηAQk×k and [X,Y] ∈ ηHQn×n

× ηAQk×k can be described as follows:

||[X,Y]|| = 〈[X,Y], [X,Y]〉
1
2 = (tr[XHX] + tr[YHY])

1
2 = (||X||2 + ||Y||2)

1
2 .

Many authors have devoted to the study of the real, complex, and quaternion matrix equations such as
AXB = C, AX + XB = C, AXB + CXD = E, (AXB,CXD) = (E,F), AXB + CYD = E and X − AXB = C, and we
refer to [4, 6–12, 16–19, 24–36]. For the real matrix equation

AXAT + BYBT = C, (2)

there are many important results about their solutions. For example, Chang and Wang [2] studied the
necessary and sufficient conditions and derived and the expressions for the symmetric solutions of matrix
equation (2). Liao and Bai [13] studied the least squares symmetric problem of matrix equation (2) by
using the canonical correlation decomposition of matrix pairs. Furthermore, Liao and Bai [14] studied the
least squares symmetric solution of matrix equation (2) with the least norm by using the singular value
decomposition and generalized singular value decomposition. For the complex matrix equation

AHXA + BHYB = C, (3)
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Zhang [38] investigated the necessary and sufficient conditions and derived the expressions for the Her-
mitian nonnegative-definite and positive-definite solutions of matrix equation (3). Recently, different con-
strained solutions to multi-variables real and quaternion matrix equations are concerned by some authors.
See [30, 36] for details.

In this paper, we consider the least squares constrained problems of quaternion matrix equation (3).
Our motives are twofold: (i) ηHQn×n is an important class of matrices applied in widely linear modelling
and convergence analysis in statistical signal processing due to the quaternion involution properties (see
[20–23] for details). (ii) Motivated by the work mentioned above and the recent increasing interesting
in η−Hermitian matrices, this article can extend the results for the least-squares problems of real matrix
equation (3) to the least-squares problem of quaternion matrix equation (3).we describe the related problems
as follows.
Problem I. Given A ∈ Qn×s, B ∈ Qk×s, and C ∈ Qs×s, let

HL = {[X,Y]|X ∈ ηHQn×n,Y ∈ ηHQk×k,

||AHXA + BHYB − C|| = min
X0∈ηHQn×n,Y0∈ηHQk×k

||AHX0A + BHY0B − C||}.

Find [XH,YH] ∈ HL such that

||[XH,YH]||2 = ||XH ||
2 + ||YH ||

2 = min
[X,Y]∈HL

(||X||2 + ||Y||2). (4)

Problem II. Given A ∈ Qn×s, B ∈ Qk×s, and C ∈ Qs×s, let

AL = {[X,Y]|X ∈ ηAQn×n,Y ∈ ηAQk×k,

||AHXA + BHYB − C|| = min
X0∈ηAQn×n,Y0∈ηAQk×k

||AHX0A + BHY0B − C||}.

Find [XA,YA] ∈ AL such that

||[XA,YA]||2 = ||XA||
2 + ||YA||

2 = min
[X,Y]∈AL

(||X||2 + ||Y||2). (5)

Problem III. Given A ∈ Qn×s, B ∈ Qk×s, and C ∈ Qs×s, let

SL = {[X,Y]|X ∈ ηHQn×n,Y ∈ ηAQk×k,

||AHXA + BHYB − C|| = min
X0∈ηHQn×n,Y0∈ηAQk×k

||AHX0A + BHY0B − C||}.

Find [XH,YA] ∈ SL such that

||[XH,YA]||2 = ||XH ||
2 + ||YA||

2 = min
[X,Y]∈SL

(||X||2 + ||Y||2). (6)

Our approach to solving the problem is to make use of the complex representation of quaternion matrices,
the Moore–Penrose generalized inverse, the Kronecker product of matrices, and the matrix structures of
ηHQn×n and ηAQn×n in [35, 36], and turns Problems I, II, III into the least squares unconstrained problems
of a real matrix equation, respectively.

This paper is organized as follows. In Section 2, we give some preliminary lemmas for the solutions of
Problems I, II, III. In Sections 3, 4, and 5, we derive the explicit expression of the solutions of Problems I, II,
and III, respectively.
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2. Preliminary lemmas

In order to study the solution of problems I, II, III, we first introduce the structures of ηHQn×n and
ηAQn×n and give some preliminary lemmas in this section.

Definition 2.1. For matrix A ∈ Qn×n, let a1 = (a11,
√

2a21, . . . ,
√

2an1), a2 = (a22,
√

2a32, . . . ,
√

2an2), . . . , an−1 =

(a(n−1)(n−1),
√

2an(n−1)), an = ann, and denote by vecS(A) the following vector:

vecS(A) = (a1, a2, . . . , an−1, an)T
∈ Q

n(n+1)
2 . (7)

Definition 2.2. For matrix B ∈ Qn×n, let b1 = (b21, b31, . . . , bn1), b2 = (b32, b42, . . . , bn2), . . . , bn−2 = (b(n−1)(n−2),
bn(n−2)), bn−1 = bn(n−1), and denote by vecA(B) the following vector:

vecA(B) =
√

2(b1, b2, . . . , bn−2, bn−1)T
∈ Q

n(n−1)
2 . (8)

Lemma 2.3. ([34]) Suppose X ∈ Rn×n, then

(i) X ∈ SRn×n
⇐⇒ vec(X) = KSvecS(X), (9)

where vecS(X) is represented as (7), and the matrix KS ∈ Rn2
×

n(n+1)
2 is of the following form

KS = 1
√

2

√
2e1 e2 · · · en−1 en 0 0 · · · 0 0 · · · 0 0 0

0 e1 · · · 0 0
√

2e2 e3 · · · en−1 en · · · 0 0 0

0 0 · · · 0 0 0 e2 · · · 0 0 · · · 0 0 0

...
...

...
...

...
...

...
...

...
...

...

0 0 · · · e1 0 0 0 · · · e2 0 · · ·
√

2en−1 en 0

0 0 · · · 0 e1 0 0 · · · 0 e2 · · · 0 en−1
√

2en


,

(ii) X ∈ ASRn×n
⇐⇒ vec(X) = KAvecA(X), (10)

where vecA(X) is represented as (8), and the matrix KA ∈ Rn2
×

n(n−1)
2 is of the following form

KA =
1
√

2



e2 e3 · · · en−1 en 0 · · · 0 0 · · · 0

−e1 0 · · · 0 0 e3 · · · en−1 en · · · 0

0 −e1 · · · 0 0 −e2 · · · 0 0 · · · 0

...
...

...
...

... 0 0 0

0 0 · · · −e1 0 0 · · · −e2 0 · · · en

0 0 · · · 0 −e1 0 · · · 0 −e2 · · · −en−1


.

Obviously, KT
S KS = I n(n+1)

2
, KT

AKA = I n(n−1)
2
.

We identify q ∈ Q with a complex vector ~q ∈ C2, and denote such an identification by the symbol �, that
is,

c1 + c2 j = q � ~q = (c1, c2).
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Similarly, for A = A1 + A2 j ∈ Qm×n, denote ΦA = (A1,A2), we have A � ΦA,

||A|| = ||ΦA|| =
√
||ReA1‖

2 + ||ImA1||
2 + ||ReA2||

2 + ||ImA2||
2,

and ΦA+B = ΦA + ΦB. Furthermore,

vec(A) = vec(A1 + A2 j) = vec(A1) + vec(A2) j,

thus we have

vec(A) � vec(ΦA) =

 vec(A1)

vec(A2)


and

‖vec(A)‖ = ‖vec(ΦA)‖ =

∥∥∥∥∥∥
 vec(A1)

vec(A2)

∥∥∥∥∥∥ .
We denote

−→
A = (ReA1, ImA1,ReA2, ImA2),

vec(
−→
A) =


vec(ReA1)

vec(ImA1)

vec(ReA2)

vec(ImA2)

 .

Notice that ‖vec(ΦA)‖ = ‖vec(
−→
A)‖. In particular, for A = A1 + A2i ∈ Cm×n with A1,A2 ∈ Rm×n, we have

A �
−→
A = (A1,A2), and

vec(A1) + vec(A2)i = vec(A) � vec(
−→
A) =

 vec(A1)

vec(A2)

 .
Addition of two quaternion matrices A = A1 + A2 j and B = B1 + B2 j satisfies

(A1 + B1) + (A2 + B2) j = (A + B) � ΦA + ΦB = (A1 + B1,A2 + B2),

whereas multiplication satisfies

AB = (A1 + A2 j)(B1 + B2 j) = (A1B1 − A2B2) + (A1B2 + A2B1) j.

So AB � ΦAB, moreover, ΦAB can be expressed as

ΦAB = (A1B1 − A2B2,A1B2 + A2B1)

= (A1,A2)

 B1 B2

−B2 B1


= ΦA f (B).

Lemma 2.4. ([36]) If X = X1 + X2 j ∈ Qn×n, then

X ∈ ηHQn×n
⇐⇒ vec(

−→
X) = K(n)

ηHvec(n)
ηH(
−→
X), (11)

where

K(n)
iH =


KS 0 0 0

0 KA 0 0

0 0 KS 0

0 0 0 KS


, vec(n)

iH (
−→
X) =


vecS(ReX1)

vecA(ImX1)

vecS(ReX2)

vecS(ImX2)

 ,
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K(n)
jH =


KS 0 0 0

0 KS 0 0

0 0 KA 0

0 0 0 KS


, vec(n)

jH(
−→
X) =


vecS(ReX1)

vecS(ImX1)

vecA(ReX2)

vecS(ImX2)

 ,

K(n)
kH =


KS 0 0 0

0 KS 0 0

0 0 KS 0

0 0 0 KA


, vec(n)

kH(
−→
X) =


vecS(ReX1)

vecS(ImX1)

vecS(ReX2)

vecA(ImX2)

 .
Lemma 2.5. ([36]) If Y = Y1 + Y2 j ∈ Qk×k, then

Y ∈ ηAQk×k
⇐⇒ vec(

−→
Y ) = K(k)

ηAvec(k)
ηA(
−→
Y ), (12)

where

K(k)
iA =


KA 0 0 0

0 KS 0 0

0 0 KA 0

0 0 0 KA


, vec(k)

iA (
−→
Y ) =


vecA(ReY1)

vecS(ImY1)

vecA(ReY2)

vecA(ImY2)

 ,

K(k)
jA =


KA 0 0 0

0 KA 0 0

0 0 KS 0

0 0 0 KA


, vec(k)

jA(
−→
Y ) =


vecA(ReY1)

vecA(ImY1)

vecS(ReY2)

vecA(ImY2)

 ,

K(k)
kA =


KA 0 0 0

0 KA 0 0

0 0 KA 0

0 0 0 KS


, vec(k)

kA(
−→
Y ) =


vecA(ReY1)

vecA(ImY1)

vecA(ReY2)

vecS(ImY2)

 .
Lemma 2.6. ([34]) Let A = A1 + A2 j ∈ Qm×n, B = B1 + B2 j ∈ Qn×s, and C = C1 + C2 j ∈ Qs×t be given. Then

vec(ΦABC) = ( f (C)T
⊗ A1, f (Cj)H

⊗ A2)

 vec(ΦB)

vec(−Φ jBj)

 . (13)

Let

Wn =


In2 iIn2 0 0

0 0 In2 iIn2

In2 −iIn2 0 0

0 0 In2 −iIn2


. (14)

We now get the structures of vec(ΦAHXA) over X ∈ ηHQn×n and vec(ΦBHYB) over Y ∈ ηAQk×k.

Lemma 2.7. Given A ∈ Qn×s, let K(n)
ηH and vec(n)

ηH(
−→
X) are in the form of (11), and Wn is in the form of (14). Then

vec(ΦAHXA) = ( f (A)T
⊗ AH

1 ,− f (Aj)H
⊗ AT

2 )WnK(n)
ηHvec(n)

ηH(
−→
X). (15)
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Proof. For A = A1 + A2 j, AH = AH
1 − AT

2 j. By (11), (13), and Lemma 2.6, we have

vec(ΦAHXA) = ( f (A)T
⊗ AH

1 ,− f (Aj)H
⊗ AT

2 )

 vec(ΦX)

vec(−Φ jXj)


= ( f (A)T

⊗ AH
1 ,− f (Aj)H

⊗ AT
2 )Wnvec(

−→
X)

= ( f (A)T
⊗ AH

1 ,− f (Aj)H
⊗ AT

2 )WnK(n)
ηHvec(n)

ηH(
−→
X).

Lemma 2.8. If B = B1 + B2 j ∈ Qk×s, K(k)
ηA and vec(k)

ηA(
−→
Y ) are in the form of (12), and Wk is in the form of (14). Then

vec(ΦBHYB) = ( f (B)T
⊗ BH

1 ,− f (Bj)H
⊗ BT

2 )WkK(k)
ηAvec(k)

ηA(
−→
Y ). (16)

Lemma 2.9. ([1]) The matrix equation Ax = b, with A ∈ Rm×n and b ∈ Rn, has a solution x ∈ Rn if and only if

AA+b = b, (17)

in this case it has the general solution

x = A+b + (I − A+A)y, (18)

where y ∈ Rn is an arbitrary vector.

Lemma 2.10. ([1]) The least squares solutions of the matrix equation Ax = b, with A ∈ Rm×n and b ∈ Rn, can be
represented as

x = A+b + (I − A+A)y, (19)

where y ∈ Rn is an arbitrary vector, and the least squares solution of the matrix equation Ax = b with the least norm
is x = A+b.

3. The solution of problem I

Based on our earlier discussions, we now turn our attention to Problem I. The following notations are
necessary for deriving the solutions of Problem I. For A = A1 + A2 j ∈ Qn×s,B = B1 + B2 j ∈ Qk×s, C ∈ Qs×s, set

P = [ f (A)T
⊗ AH

1 ,− f (Aj)H
⊗ AT

2 ]WnK(n)
ηH,

Q = [ f (B)T
⊗ BH

1 ,− f (Bj)H
⊗ BT

2 ]WkK(k)
ηH.

Let

T1 = [ReP,ReQ], T2 = [ImP, ImQ], e =

 vec(ReΦC)

vec(ImΦC)

 , (20)

and

R = (I2n2+n+2k2+k − T+
1 T1)TT

2 ,

Z = (I2s2 + (I2s2 − R+R)T2T+
1 T+T

1 TT
2 (I2s2 − R+R))−1,

H = R+ + (I2s2 − R+R)ZT2T+
1 T+T

1 (I2n2+n+2k2+k − TT
2 R+),

S11 = I2s2 − T1T+
1 + T+T

1 TT
2 Z(I2s2 − R+R)T2T+

1 ,

S12 = −T+T
1 TT

2 (I2s2 − R+R)Z,
S22 = (I2s2 − R+R)Z.



S.-F.Yuan et al. / Filomat 28:6 (2014), 1153–1165 1160

From the results in [15], we have T1

T2

+

= (T+
1 −HTT2T+

1 ,H
T),

 T1

T2

+  T1

T2

 = T+
1 T1 + RR+,

I2n2+n+2k2+k −

 T1

T2

  T1

T2

+

=

 S11 S12

ST
12 S22

 .
Theorem 3.1. Let A ∈ Qn×s,B ∈ Qk×s, C ∈ Qs×s. Let M = diag(K(n)

ηH, K(k)
ηH), and T1,T2, e be as in (20). Then

HL =

[X,Y]

∣∣∣∣∣∣∣
 vec(

−→
X)

vec(
−→
Y )

 = M[T+
1 −HTT2T+

1 ,H
T]e + M[I2n2+n+2k2+k − T+

1 T1 − RR+]z

 , (21)

where z ∈ R2n2+n+2k2+k is an arbitrary vector.

Proof. By Lemmas 2.7, 2.8, we have

‖AHXA + BHYB − C‖2

= ‖ΦAHXA + ΦBHYB −ΦC‖
2

= ‖vec(ΦAHXA) + vec(ΦBHYB) − vec(ΦC)‖2

= ‖Pvec(n)
ηH(
−→
X) + Qvec(k)

ηH(
−→
Y ) − vec(ΦC)‖2

= ‖[ReP + iImP]vec(n)
ηH(
−→
X) + [ReQ + iImQ]vec(k)

ηH(
−→
Y ) − [vec(ReΦC) + ivec(ImΦC)]‖2

=

∥∥∥∥∥∥∥
 ReP ReQ

ImP ImQ


 vecηH

(n)(
−→
X)

vecηH
(k)(
−→
Y )

 −
 vec(ReΦC)

vec(ImΦC)


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥
 T1

T2


 vecηH

(n)(
−→
X)

vecηH
(k)(
−→
Y )

 − e

∥∥∥∥∥∥∥
2

.

By Lemma 2.10, it follows that vecηH
(n)(
−→
X)

vecηH
(k)(
−→
Y )

 =

 T1

T2

+

e +

I −  T1

T2

+  T1

T2

 z.

Thus  vec(
−→
X)

vec(
−→
Y )

 = M(T+
1 −HTT2T+

1 ,H
T)e + M(I − T+

1 T1 − RR+)z.

By Lemma 2.9 and Theorem 3.1, we get the following conclusion.

Corollary 3.2. The quaternion matrix equation (3) has a solution X ∈ ηHQn×n, Y ∈ ηHQk×k if and only if S11 S12

ST
12 S22

 e = 0. (22)

In this case, denote by HE the solution set of (3). Then

HE =

[X,Y]

∣∣∣∣∣∣∣
 vec(

−→
X)

vec(
−→
Y )

 = M[(T+
1 −HTT2T+

1 ,H
T)e + (I2n2+n+2k2+k − T+

1 T1 − RR+)z]

 , (23)
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where z ∈ R2n2+n+2k2+k is an arbitrary vector.
Furthermore, if (22) holds, then the quaternion matrix equation (3) has a unique solution [X,Y] ∈ HE if and only

if

rank

 T1

T2

 = 2n2 + n + 2k2 + k. (24)

In this case,

HE =

[X,Y]

∣∣∣∣∣∣∣
 vec(

−→
X)

vec(
−→
Y )

 = M(T+
1 −HTT2T+

1 ,H
T)e

 . (25)

Theorem 3.3. Problem I has a unique solution [XH,YH] ∈ HL. This solution satisfies vec(
−→
XH)

vec(
−→
YH)

 = M(T+
1 −HTT2T+

1 ,H
T)e. (26)

Proof. From (21), it is easy to verify that the solution set HL is nonempty and is a closed convex set.
Hence, Problem I has a unique solution [XH,YH] ∈ HL.

We now prove that the solution [XH,YH] can be expressed as (26). Since

min
[X,Y]∈HL

(||[X,Y]||2) = min
[X,Y]∈HL

(||X||2 + ||Y||2)

= min
[X,Y]∈HL

(‖vec(
−→
X)‖2 + ‖vec(

−→
Y )‖2)

= min
[X,Y]∈HL

∥∥∥∥∥∥∥
 vec(

−→
X)

vec(
−→
Y )


∥∥∥∥∥∥∥

2

,

by Lemma 2.10 and (21), we obtain vec(
−→
XH)

vec(
−→
YH)

 = M

 T1

T2

+

e.

Thus, vec(
−→
XH)

vec(
−→
YH)

 = M(T+
1 −HTT2T+

1 ,H
T)e.

Corollary 3.4. The least norm problem

||[XH,YH]||2 = ||XH ||
2 + ||YH ||

2 = min
[X,Y]∈HE

(||X||2 + ||Y||2)

has a unique solution [XH,YH] ∈ HE and [XH,YH] can be expressed as (26).
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4. The solution of problem II

Based on our earlier discussions, we now turn our attention to Problem II. The following notations are
necessary for deriving the solutions of Problem II. For A = A1 + A2 j ∈ Qn×m,B = B1 + B2 j ∈ Qk×s, C ∈ Qs×s,
set

P′ = [ f (A)T
⊗ AH

1 ,− f (Aj)H
⊗ AT

2 ]WnK(n)
ηA,

Q′ = [ f (B)T
⊗ BH

1 ,− f (Bj)H
⊗ BT

2 ]WkK(k)
ηA.

Let

Q1 = [ReP′,ReQ′], Q2 = [ImP′, ImQ′], e =

 vec(ReΦC)

vec(ImΦC)

 , (27)

and

R1 = (I2n2−n+2k2−k −Q+
1 Q1)QT

2 ,

Z1 = (I2s2 + (I2s2 − R+
1 R1)Q2Q+

1 Q+T
1 QT

2 (I2s2 − R+
1 R1))−1,

H1 = R+
1 + (I2s2 − R+

1 R1)Z1Q2Q+
1 Q+T

1 (I2n2−n+2k2−k −QT
2 R+

1 ),

∆11 = I2s2 −Q1Q+
1 + Q+T

1 QT
2 Z1(I2s2 − R+

1 R1)Q2Q+
1 ,

∆12 = −Q+T
1 QT

2 (I2s2 − R+R)Z,
∆22 = (I2s2 − R+

1 R1)Z1.

From the results in [15], we have Q1

Q2

+

= (Q+
1 −HT

1 Q2Q+
1 ,H

T
1 ),

 Q1

Q2

+  Q1

Q2

 = Q+
1 Q1 + R1R+

1 ,

I2n2−n+2k2−k −

 Q1

Q2

  Q1

Q2

+

=

 ∆11 ∆12

∆T
12 ∆22

 .
Theorem 4.1. Let A ∈ Qn×s,B ∈ Qk×s, C ∈ Qs×s. Let M1 = diag(K(n)

ηA, K(k)
ηA), and Q1,Q2, e be as in (27). Then

AL =

[X,Y]

∣∣∣∣∣∣∣
 vec(

−→
X)

vec(
−→
Y )

 = M1[Q+
1 −HT

1 Q2Q+
1 ,H

T
1 ]e + M1[I2n2+n+2k2+k − T+

1 T1 − RR+]z

 , (28)

where z ∈ R2n2
−n+2k2

−k is an arbitrary vector.

Corollary 4.2. The quaternion matrix equation (3) has a solution X ∈ ηAQn×n, Y ∈ ηAQk×k if and only if ∆11 ∆12

∆T
12 ∆22

 e = 0. (29)

In this case, denote by AE the solution set of (3). Then

AE =

[X,Y]

∣∣∣∣∣∣∣
 vec(

−→
X)

vec(
−→
Y )

 = M1[(Q+
1 −HT

1 Q2Q+
1 ,H

T
1 )e + (I2n2−n+2k2−k −Q+

1 Q1 − R1R+
1 )z]

 , (30)

where z ∈ R2n2
−n+2k2

−k is an arbitrary vector.
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Furthermore, if (29) holds, then the quaternion matrix equation (3) has a unique solution [X,Y] ∈ AE if and only
if

rank

 Q1

Q2

 = 2n2
− n + 2k2

− k. (31)

In this case,

AE =

[X,Y]

∣∣∣∣∣∣∣
 vec(

−→
X)

vec(
−→
Y )

 = M1(Q+
1 −HT

1 Q2Q+
1 ,H

T
1 )e

 . (32)

Theorem 4.3. Problem II has a unique solution [XA,YA] ∈ AL. This solution satisfies vec(
−→
XA)

vec(
−→
YA)

 = M1(Q+
1 −HT

1 Q2Q+
1 ,H

T
1 )e. (33)

Corollary 4.4. The least norm problem

||[XA,YA]||2 = ||XA||
2 + ||YA||

2 = min
[X,Y]∈AE

(||X||2 + ||Y||2)

has a unique solution [XA,YA] ∈ AE and [XA,YA] can be expressed as (33).

5. The solution of problem III

In this section, we now turn our attention to Problem III. The following notations are necessary for
deriving the solutions of Problem III. For A = A1 + A2 j ∈ Qn×s,B = B1 + B2 j ∈ Qk×s, C ∈ Qs×s, set

P′′ = [ f (A)T
⊗ AH

1 ,− f (Aj)H
⊗ AT

2 ]WnK(n)
ηH,

Q′′ = [ f (B)T
⊗ BH

1 ,− f (Bj)H
⊗ BT

2 ]WkK(k)
ηA.

Let

Q3 = [ReP′′,ReQ′′], Q4 = [ImP′′, ImQ′′], e =

 vec(ReΦC)

vec(ImΦC)

 , (34)

and

R2 = (I2n2+n+2k2−k −Q+
3 Q4)QT

4 ,

Z2 = (I2s2 + (I2s2 − R+
2 R2)Q4Q+

3 Q+T
3 QT

4 (I2s2 − R+
2 R2))−1,

H2 = R+
2 + (I2s2 − R+

2 R2)Z2Q4Q+
3 Q+T

3 (I2n2+n+2k2−k −QT
4 R+

2 ),

Λ11 = I2s2 −Q3Q+
3 + Q+T

3 QT
4 Z2(I2s2 − R+

2 R2)Q4Q+
3 ,

Λ12 = −Q+T
3 QT

4 (I2s2 − R+
2 R2)Z2,

Λ22 = (I2s2 − R+
1 R1)Z1.

From the results in [15], we have Q3

Q4

+

= (Q+
3 −HT

2 Q4Q+
3 ,H

T
2 ),

 Q3

Q4

+  Q3

Q4

 = Q+
3 Q3 + R2R+

2 ,

I2n2+n+2k2−k −

 Q3

Q4

  Q3

Q4

+

=

 Λ11 Λ12

ΛT
12 Λ22

 .
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Theorem 5.1. Let A ∈ Qn×s,B ∈ Qk×s, C ∈ Qs×s. Let M2 = diag(K(n)
ηH, K(k)

ηA), and Q3,Q4, e2 be as in (34). Then

SL =

[X,Y]

∣∣∣∣∣∣∣
 vec(

−→
X)

vec(
−→
Y )

 = M2[Q+
3 −HT

2 Q4Q+
3 ,H

T
2 ]e + M2[I2n2+n+2k2−k −Q+

3 Q3 − R2R+
2 ]z

 , (35)

where z ∈ R2n2+n+2k2
−k is an arbitrary vector.

Corollary 5.2. The quaternion matrix equation (3) has a solution X ∈ ηHQn×n, Y ∈ ηAQk×k if and only if Λ11 Λ12

ΛT
12 Λ22

 e = 0. (36)

In this case, denote by SE the solution set of (3). Then

SE =

[X,Y]

∣∣∣∣∣∣∣
 vec(

−→
X)

vec(
−→
Y )

 = M2[(Q+
3 −HT

2 Q4Q+
3 ,H

T
2 )e + (I2n2+n+2k2−k −Q+

3 Q3 − R2R+
2 )z]

 , (37)

where z ∈ R2n2+n+2k2
−k is an arbitrary vector.

Furthermore, if (36) holds, then the quaternion matrix equation (3) has a unique solution [X,Y] ∈ SE if and only
if

rank

 Q3

Q4

 = 2n2 + n + 2k2
− k. (38)

In this case,

SE =

[X,Y]

∣∣∣∣∣∣∣
 vec(

−→
X)

vec(
−→
Y )

 = M2(Q+
3 −HT

2 Q4Q+
3 ,H

T
2 )e

 . (39)

Theorem 5.3. Problem I has a unique solution [XH,YA] ∈ SL. This solution satisfies vec(
−→
XH)

vec(
−→
YA)

 = M2(Q+
3 −HT

2 Q4Q+
3 ,H

T
2 )e. (40)

Corollary 5.4. The least norm problem

||[XH,YA]||2 = ||XH ||
2 + ||YA||

2 = min
[X,Y]∈SE

(||X||2 + ||Y||2)

has a unique solution [XH,YA] ∈ SE and [XH,YA] can be expressed as (40).

References

[1] A. Ben-Israle and T.N.E. Greville, Generalized Inverses: Theory and Applications. Springer, New York, 2003.
[2] X.W. Chang, J.S. Wang, The symmetric solution of the matrix equations AX + YA = C, AXAT + BYBT = C, and (ATXA,BTXB)

= (C,D), Linear Algebra Appl. 179 (1993) 171-189.
[3] T. Ell and S.J. Sangwine, Quaternion involutions and anti-involutions, Comput. Math. Applic. 53 (2007) 137-143.
[4] Z. H. He and Q. W. Wang, A real quaternion matrix equation with applications, Linear Multilinear Algebra 61 (6) (2013) 725-740.
[5] R.A. Horn and F.Z. Zhang, A generalization of the complex Autonne-Takagi factorization to quaternion matrices, Linear Multi-

linear Algebra 60 (2012) 1239-1244.
[6] L.P. Huang, The matrix equation AXB − CXD = E over the quaternion field, Linear Algebra Appl. 234 (1996) 197-208.
[7] T.S. Jiang and M.S. Wei, On a solution of the quaternion matrix equation X − AX̃B = C and its application, Acta Math. Sin. 21

(2005) 483-490.
[8] T.S. Jiang and M.S. Wei, Real representiations of quaternion matrices and quaternion matrix equations, Acta Math. Sin. 26 A

(2006) 578–584. (in Chinese)



S.-F.Yuan et al. / Filomat 28:6 (2014), 1153–1165 1165

[9] I.I. Kyrchei, Cramers rule for some quaternion matrix equations, Appl. Math. Comput. 217 (5) (2010) 2024–2030.
[10] Y.T. Li and W.J. Wu, Symmetric and skew-antisymmetric solutions to systems of real quaternion matrix equations, Comput.

Math. Applic. 55 (2008) 1142-1147.
[11] D. Z. Lian and J. Y. Chiang, The maximal rank of a kind of partial banded block matrix subject to linear equations, Filomat 27 (2)

(2013) 383–391.
[12] A.P. Liao, Z.Z. Bai and Y. Lei, Best approximate solution of matrix equation AXB + CYD = E, SIAM J. Matrix Anal. Appl. 27 (3)

(2006) 675-688.
[13] A.P. Liao, Z.Z. Bai, Least squares solutions of the matrix equation ATXA = D in bisymmetric matrix set, Math. Numer. Sin. 24 (1)

(2002) 9-20. (in Chinese)
[14] A.P. Liao, Z.Z. Bai, Least squares symmetric and skew-symmetric solutions of the matrix equation AXAT + BYBT = C with the

least norm Math. Numer. Sin. 27 (1) (2005) 81-95. (in Chinese)
[15] J.R. Magnus, L-structured matrices and linear matrix equations, Linear Multilinear Algebra 14 (1983) 67-88.
[16] S.Y. Shi and Y. Chen, Least squares solution of matrix equation AXB + CYD = E, SIAM J. Matrix Anal. Appl. 24 (3) (2003) 802-808.
[17] C.Q. Song and G.L. Chen, On solutions of matrix equation XF − AX = C and XF − AX̃ = C over quaternion field, J. Appl. Math.

Comput. 37 (2011) 57-68.
[18] C.Q. Song, G.L. Chen and Q.B. Liu, Explicit solutions to the quaternion matrix equations X − AXF = C and X − AX̃F = C, Int. J.

Comput. Math. 89 (2012) 890-900.
[19] C. Q. Song,, G. L. Chen and X. Y. Zhang, An iterative solution to coupled quaternion matrix equations, Filomat 26 (4) (2012)

809–826.
[20] C.C. Took and D.P. Mandic, Augmented second-order statistics of quaternion random signals, Signal Processing 91 (2011) 214-224.
[21] C.C. Took, D.P. Mandic and F.Z. Zhang, On the unitary diagonalisation of a special class of quaternion matrices, Appl. Math.

Lett. 24 (2011) 1806-1809.
[22] C. C. Took and D. P. Mandic, The quaternion LMS algorithm for adaptive filtering of hypercomplex real world processes, IEEE

Trans. Signal Process. 57 (2009) 1316-1327.
[23] C. C. Took and D. P. Mandic, Quaternion-valued stochastic gradient-based adaptive IIR filtering, IEEE Trans. Signal Process. 58

(7) (2010) 3895-3901
[24] Q.W. Wang, J. Jiang, Extreme ranks of (skew-)Hermitian solutions to a quaternion matrix equation, Electron. J. Linear Algebra

20 (2010) 552-573.
[25] Q.W. Wang and C.K. Li, Ranks and the least-norm of the general solution to a system of quaternion matrix equations, Linear

Algebra Appl. 430 (2009) 1626-1640.
[26] Q.W. Wang, van der J. W. Woude and H.X. Chang, A system of real quaternion matrix equations with applications, Linear Algebra

Appl. 431 (2009) 2291-2303.
[27] Q.W. Wang, S. W. Yu and Q. Zhang, The real solutions to a system of quaternion matrix equations with applications, Comm.

Algebra 37 (2009) 2060-2079.
[28] Q.W. Wang and F. Zhang, The reflexive re-nonnegative definite solution to a quaternion matrix equation, Electron. J. Linear

Algebra 17 (2008) 88-101.
[29] Q.W. Wang, H.S. Zhang and S.W. Yu, On solutions to the quaternion matrix equation AXB + CYD = E, Electron. J. Linear Algebra

17 (2008) 343-358.
[30] J.Wu, K.Y. Zhang, X.M. Liu, An iterarive algorithm for solving a multi-variables matrix equations over different constrainted

matrices, J Numerical Methods Comput. Appl. 32(2) (2011) 105-116. (in Chinese)
[31] G.P. Xu, M.S. Wei and D.S. Zheng, On solutions of matrix equation AXB + CYD = F, Linear Algebra Appl. 279 (1998) 93-109.
[32] S.F. Yuan and A.P. Liao, Least squares solution of quaternion matrix equation with the least norm, Linear Multilinear Algebra

59(9) (2011) 985-998.
[33] S.F. Yuan, A.P. Liao and Y. Lei, Least squares symmetric solution of the matrix equation AXB + CYD = E with the least norm,

Math. Numer. Sin. 29(2) (2007) 203-216. (in Chinese)
[34] S.F. Yuan, A.P. Liao and Y. Lei, Least squares Hermitian solution of the matrix equation (AXB,CXD) = (E,F) with the least norm

over the skew field of quaternions, Math. Comput. Modelling 48 (2008) 91-100.
[35] S.F. Yuan, Q.W. Wang, Two special kinds of least squares solutions for the quanternion matrix equation AXB+CXD = E, Electron.

J. Linear Algebra 23 (2012) 257-274.
[36] S.F. Yuan, Q.W. Wang, X. Zhang, Least-squares problem for the quaternion matrix equation AXB + CYD = E over different

constrained matrices, Int. J. Comput. Math. 90 (2013) 565-576.
[37] F.Z. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl. 251 (1997) 21-57.
[38] X. Zhang, The general Hermitian nonnegative-definite and positive-definite solutions to the matrix equation GXG∗ + HYH∗ = C,

J. Appl. Math. Comput. 14 (2004) 51-67.


