Filomat 28:7 (2014), 1307–1313 DOI 10.2298/FIL1407307K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some KKM Theorems in Modular Function Spaces

Nasrin Karamikabir^a, Abdolrahman Razani^b

^aDepartment of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran ^bDepartment of Mathematics, Faculty of Science, Imam Khomeini International University, P. O. Box 34149-16818, Qazvin, Iran

Abstract. In this paper, a coincidence theorem is obtained which is generalization of Ky Fan's fixed point theorem in modular function spaces. A modular version of Fan's minimax inequality is proved. Moreover, some best approximation theorems are presented for multi-valued mappings.

1. Introduction

Modular function spaces are natural generalization of spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Calderon-Lozanovskii and many others. The theory of mappings defined on convex subsets of modular function spaces generalized by Khamsi et al. (see e.g. [3–5]). There is a large set of modular space applications in various parts of analysis, probability and mathematical statistics (see e.g. [11–13]).

We need the following definitions in sequel, from [6, 7]:

Let Ω be a nonempty set and Σ be a nontrivial σ -algebra of subsets of Ω . Let \mathcal{P} be a σ -ring of subsets of Ω , such that $E \cap A \in \mathcal{P}$ for any $E \in \mathcal{P}$ and $A \in \Sigma$. Assume that there exists an increasing sequence of sets $K_n \in \mathcal{P}$ such that $\Omega = \bigcup K_n$. By \mathcal{E} , we denote the linear space of all simple functions with supports in \mathcal{P} . By \mathcal{M}_{∞} , we will denote the space of all extended measurable functions, i.e. all functions $f : \Omega \to [-\infty, +\infty]$ such that there exists a sequence $\{g_n\} \subset \mathcal{E}, |g_n| \leq |f|$ and $g_n(w) \to f(w)$ for all $w \in \Omega$. By 1_A , we denote the characteristic function of the set A.

Definition 1.1. Let $\rho : \mathcal{M}_{\infty} \to [0, \infty]$ be a nontrivial, convex and even function. We say that ρ is a regular convex function pseudomodular if

(*i*) $\rho(0) = 0;$

(ii) ρ is monotone, i.e. $|f(w)| \leq |g(w)|$ for all $w \in \Omega$ implies $\rho(f) \leq \rho(g)$, where $f, g \in \mathcal{M}_{\infty}$;

- (iii) ρ is orthogonally subadditive, i.e. $\rho(f1_{A\cup B}) \leq \rho(f1_A) + \rho(f1_B)$ for any $A, B \in \Sigma$ such that $A \cap B \neq \emptyset, f \in \mathcal{M}_{\infty}$;
- (iv) ρ has the Fatou property, i.e. $|f_n(w)| \uparrow |f(w)|$ for all $w \in \Omega$ implies $\rho(f_n) \uparrow \rho(f)$, where $f \in \mathcal{M}_{\infty}$;
- (v) ρ is order continuous in \mathcal{E} , i.e. $g_n \in \mathcal{E}$ and $|g_n(w)| \downarrow 0$ implies $\rho(g_n) \downarrow 0$.

²⁰¹⁰ Mathematics Subject Classification. Primary 46B20 ; Secondary 47H09, 47H10

Keywords. KKM map, coincidence theorem, minimax inequality, modular function space.

Received: 22 April 2013; Accepted: 27 December 2014 Communicated by Dragan S. Djordjević

Email addresses: n.karamikabir@kiau.ac.ir (Nasrin Karamikabir), razani@ipm.ir (Abdolrahman Razani)

We say that $A \in \Sigma$ is ρ -null if $\rho(g1_A) = 0$ for every $g \in \mathcal{E}$. A property holds ρ -almost everywhere if the exceptional set is ρ -null, we define

 $\mathcal{M}(\Omega, \Sigma, \mathcal{P}, \rho) = \{ f \in \mathcal{M}_{\infty}; |f(w)| < \infty \rho - a.e. \}.$

We will write \mathcal{M} instead of $\mathcal{M}(\Omega, \Sigma, \mathcal{P}, \rho)$.

Definition 1.2. Let ρ be a regular convex function pseudomodular. We say that ρ is a regular convex function modular if $\rho(f) = 0$ implies $f = 0 \rho$ -a.e.

The class of all nonzero regular convex function modulars defined on Ω will be denoted by \Re .

Definition 1.3. Let ρ be a convex function modular. A modular function space is the vector space $L_{\rho}(\Omega, \Sigma)$, or briefly L_{ρ} , defined by

 $L_{\rho} = \{ f \in \mathcal{M}; \rho(\lambda f) \to 0 \text{ as } \lambda \to 0 \}.$

The the formula

 $||f||_{\rho} = \inf\{\alpha > 0; \rho(f/\alpha) \le 1\}.$

defines a norm in L_{ρ} which is frequently called the Luxemburg norm.

The $\|.\|_{\rho}$ -distance, from an f to a set $Y \subset L_{\rho}$ to be the quantity

$$dist_{\|.\|_{\rho}}(f, Y) = \inf\{\|f - g\|_{\rho} : g \in Y\}.$$

From [7], $(L_{\rho}, ||f||_{\rho})$ is a complete metric space and the norm $||.||_{\rho}$ is monotone with respect to the natural order in \mathcal{M} . Therefore we can define the $||.||_{\rho}$ -Hausdorff distance by

$$H_{\|.\|_{\rho}}(X,Y) = \max \{ \sup\{dist_{\|.\|_{\rho}}(f,Y) : f \in X\}, \sup\{dist_{\|.\|_{\rho}}(g,X) : g \in Y\} \},\$$

for each $X, Y \subseteq L_{\rho}$.

Definition 1.4. Let $\rho \in \mathfrak{R}$.

- (*i*) We say $\{f_n\}$ is ρ -convergent to f and write $f_n \to f(\rho)$ if and only if $\rho(f_n f) \to 0$.
- (ii) A subset $B \subset L_{\rho}$ is called ρ -closed if for any sequence of $f_n \in B$, the convergence $f_n \to f(\rho)$ implies that f belong to B.
- (iii) A nonempty subset K of L_{ρ} is said to be ρ -compact if for any family $\{A_{\alpha}; A_{\alpha} \in 2^{L_{\rho}}, \alpha \in \Gamma\}$ of ρ -closed subsets with $K \cap A_{\alpha_1} \cap \cdots \cap A_{\alpha_n} \neq \emptyset$, for any $\alpha_1, \cdots, \alpha_n \in \Gamma$, we have

$$K \cap \left(\bigcap_{\alpha \in \Gamma} A_{\alpha}\right) \neq \emptyset.$$

Let $\rho \in \mathfrak{R}$. We have $\rho(f) \leq \liminf \rho(f_n)$, whenever $f_n \to f \rho - a.e$. This property is equivalent to the Fatou property [6, Theorem 2.1].

The concept of KKM-mapping in modular function spaces, was introduced by Khamsi, Latif and Al-Sulami in 2011 [6]. They proved an analogue of Ky Fan's fixed point theorem in these spaces: **Definition 1.5.** Let $\rho \in \mathfrak{R}$ and let $C \subset L_{\rho}$ be nonempty. A multi-valued mapping $G : C \multimap L_{\rho}$ is called a KKM mapping if

$$conv(\{f_1,\cdots,f_n\}) \subset \bigcup_{1 \le i \le n} G(f_i)$$

for any $f_1, \dots, f_n \in C$, where the notation conv(A) describes the convex hull of A.

Theorem 1.6. [6, Theorem 3.2] Let $\rho \in \mathfrak{R}$ and $C \subset L_{\rho}$ be nonempty and $G : C \multimap L_{\rho}$ be a KKM mapping such that for any $f \in C$, G(f) is nonempty and ρ -closed. Assume there exists $f_0 \in C$ such that $G(f_0)$ is ρ -compact. Then, we have

$$\bigcap_{f\in C} G(f) \neq \emptyset.$$

Definition 1.7. Let $\rho \in \mathfrak{R}$ and let C be nonempty ρ -closed subset of L_{ρ} . Let $T : G \to L_{\rho}$ be a map. T is called ρ -continuous if $\{T(f_n)\}$ ρ -converges to T(f) whenever $\{f_n\}$ ρ -converges to f. Also T will be called strongly ρ -continuous if T is ρ -continuous and

$$\liminf_{n\to\infty}\rho(g-T(f_n))=\rho(g-T(f)),$$

for any sequence $\{f_n\} \subset C$ which ρ -converges to f and for any $g \in C$.

In Section 2, we generalized some results of Khamsi et al. in [6]. In the next section, we proved a minimax inequality. Section 4 is devoted to some best approximation theorems for multi-valued mappings.

2. KKM-mapping and Coincidence Theorem

Here, we generalize the Ky Fan's fixed point theorem which established in [6].

Lemma 2.1. Let $\rho \in \mathfrak{R}$. Let $K \subset L_{\rho}$ be nonempty convex and ρ -compact. Let $T : K \to L_{\rho}$ be strongly ρ -continuous and $F : K \to K$ be ρ -continuous. Then, there exists $f_0 \in K$ such that

$$\rho(F(f_0) - T(f_0)) = \inf_{f \in K} \rho(F(f) - T(f_0))$$

Proof. Consider the map $G : K \multimap L_{\rho}$ defined by

$$G(g) = \left\{ f \in K; \rho(F(f) - T(f)) \le \rho(F(g) - T(f)) \right\}.$$

Clearly, for each $g \in K$, $G(g) \neq \emptyset$. For any sequence $\{f_n\} \subset G(g)$ which ρ -converges to f, by Fatou property, we have

$$\rho(F(f) - T(f)) \le \liminf_{n \to \infty} \rho(F(f_n) - T(f_n)),$$

but $\{f_n\} \subset G(g)$, so

$$\liminf_{n\to\infty} \rho(F(f_n) - T(f_n)) \le \liminf_{n\to\infty} \rho(F(g) - T(f_n)).$$

Since *T* is strongly ρ -continuous and *F* is ρ -continuous

 $\liminf \rho(F(g) - T(f_n)) = \rho(F(g) - T(f)).$

Therefore

$$\rho(F(f) - T(f)) \le \rho(F(g) - T(f)),$$

namely $f \in G(g)$. Since for any sequence $\{f_n\} \subset G(g)$ which ρ -converges to f, we have $f \in G(g)$, then G(g) is ρ -closed for any $g \in K$. Now, we show that G is a KKM-mapping. If not, then there exists $\{g_1, ..., g_n\} \subset K$ and $f \in conv(\{g_i\})$ such that $f \notin \bigcup G(g_i)$.

This implies

$$\rho(F(g_i) - T(f)) \le \rho(F(f) - T(f)), \quad for \quad i = 1, \cdots, n$$

Let $\epsilon > 0$ be such that $\rho(F(g_i) - T(f)) \le \rho(F(f) - T(f)) - \epsilon$, for $i = 1, \dots, n$. Since ρ is convex, for any $g \in conv(\{g_i\})$, we have

$$\rho(F(g) - T(f)) \le \rho(F(f) - T(f)) - \epsilon.$$

On the other hand $f \in conv(\{g_i\})$, so we get

$$\rho(F(f) - T(f)) \le \rho(F(f) - T(f)) - \epsilon,$$

which is a contradiction. Therefore, *G* is a KKM-mapping. By the ρ -compactness of *K*, we deduce that G(g) is a compact for any $g \in K$. Theorem 1.6 implies the existence of $f_0 \in \bigcap_{g \in K} G(g)$. Hence, $\rho(F(f_0) - T(f_0)) \leq \rho(F(g) - T(f_0))$ for any $g \in K$. So, we have $\rho(F(f_0) - T(f_0)) = \inf_{g \in K} \rho(F(g) - T(f_0))$. \Box

Theorem 2.2. Let $\rho \in \mathfrak{R}$ and $K \subset L_{\rho}$ be nonempty convex and ρ -compact. Let $T : K \to L_{\rho}$ be strongly ρ -continuous, $F : K \to K$ be a continuous and F(K) is a compact. Accume that for any $f \in K$ with $F(f) \neq T(f)$ there exists

Theorem 2.2. Let $\rho \in K$ and $K \subset L_{\rho}$ be nonempty convex and ρ -compact. Let $I : K \to L_{\rho}$ be strongly ρ -continuous, $F : K \to K$ be ρ -continuous and F(K) is ρ -compact. Assume that for any $f \in K$, with $F(f) \neq T(f)$, there exists $\alpha \in (0, 1)$ such that

$$F(K) \bigcap B_{\rho} \Big(F(f), \alpha \rho(F(f) - T(f)) \Big) \bigcap B_{\rho} \Big(T(f), (1 - \alpha) \rho(F(f) - T(f)) \Big) \neq \emptyset.$$

Then, T(g) = F(g) for some $g \in K$.

Proof. From the previous lemma, there exists $f_0 \in K$ such that

$$\rho(F(f_0) - T(f_0)) = \inf_{g \in K} \rho(F(g) - T(f_0)).$$

We claim that $T(f_0) = F(f_0)$. If $T(f_0) \neq F(f_0)$, then by the ρ -compactness of F(K), there exists $\alpha \in (0, 1)$ such that

$$K_0 = F(K) \bigcap B_{\rho}(F(f_0), \alpha \rho(F(f_0) - T(f_0))) \bigcap B_{\rho}(T(f_0), (1 - \alpha)\rho(F(f_0) - T(f_0))) \neq \emptyset.$$

Let $F(g) \in K_0$. Then, $\rho(F(g) - T(f_0)) \le (1 - \alpha)\rho(F(f_0) - T(f_0))$, which is a contradiction. \Box

Corollary 2.3. Let $\rho \in \mathfrak{R}$ and $K \subset L_{\rho}$ be nonempty convex and ρ -compact. Let $F : K \to K$ be ρ -continuous and F(K) is ρ -compact. If $T : K \to F(K)$ be strongly ρ -continuous, then T(g) = F(g) for some $g \in K$.

3. A Minimax Inequality

In this section, a modular version of Fan's minimax inequality [2] is obtained.

Definition 3.1. Let $\rho \in \mathfrak{R}$, L_{ρ} be a modular function space and C be a convex subset of L_{ρ} . A function $f : C \to \mathbb{R}$ is said to be metrically quasi-concave (resp., metrically quasi-convex) if for each $\lambda \in \mathbb{R}$, the set $\{g \in C : f(g) > \lambda\}$ (resp., $\{g \in C : f(g) < \lambda\}$) is convex.

Lemma 3.2. Let $\rho \in \mathfrak{R}$. Suppose C is a convex subset of a modular function space L_{ρ} , and the function $f : C \times C \to \mathbb{R}$ satisfies the following conditions:

- 1) for each $g \in C$, the function $f(.,g) : C \to \mathbb{R}$ is metrically quasi-concave (resp., metrically quasi-convex) and
- 2) there exists $\gamma \in \mathbb{R}$ such that $f(q,q) \leq \gamma$ (resp., $f(q,q) \geq \gamma$) for each $q \in C$.

Then, the mapping $G : C \multimap L_{\rho}$, which is defined by

 $G(g) = \{h \in C : f(g,h) \le \gamma\} (resp., G(g) = \{h \in C : f(g,h) \ge \gamma\}),\$

is a KKM-mapping.

Proof. The conclusion is proved for the concave case, the convex case is completely similar. Assume that *G* is not a KKM-mapping. Then there exists a finite subset $A = \{g_1, \dots, g_n\}$ of *C* and a point $g_0 \in conv(A)$ such that $g_0 \notin G(g_i)$ for each $i = 1, \dots, n$. We set

$$\lambda = \min\{f(g_i, g_0) : i = 1, \cdots, n\} > \gamma,$$

and $B = \{e \in C : f(e, g_0) > \lambda_0\}$, where $\lambda > \lambda_0 > \gamma$. For each *i*, we have $g_i \in B$. By hypothesis 1), *B* is convex and hence $conv(A) \subseteq B$. So, $g_0 \in B$, and we have $f(g_0, g_0) > \lambda_0 > \gamma$, which is a contradiction by assumption 2). Thus, *G* is a KKM-mapping. \Box

Definition 3.3. Let $\rho \in \mathfrak{R}$. A real-valued function $f : L_{\rho} \times L_{\rho} \to \mathbb{R}$ is said to be ρ -generally lower (resp., upper) semi continuous on L_{ρ} whenever, for each $g \in L_{\rho}$, $\{h \in L_{\rho} : f(g,h) \leq \lambda\}$ (resp., $\{h \in L_{\rho} : f(g,h) \geq \lambda\}$) is ρ -closed for each $\lambda \in \mathbb{R}$.

The following is the analogue of Fan's minimax inequality in modular function spaces.

Theorem 3.4. Let $\rho \in \mathfrak{R}$. Suppose *C* is a nonempty, ρ -compact and convex subset of a complete modular function space L_{ρ} and $f : C \times C \to \mathbb{R}$ satisfies the following

- 1) f is a ρ -generally lower (resp., upper) semi continuous ;
- 2) for each $h \in C$, the function $f(.,h) : C \to \mathbb{R}$ is metrically quasi-concave (resp., metrically quasi-convex) and
- 3) there exists $\gamma \in \mathbb{R}$ such that $f(q, q) \leq \gamma$ (resp., $f(q, q) \geq \gamma$) for each $q \in C$.

Then, there exists an $h_0 \in C$ *such that*

$$\begin{split} \sup_{g \in C} f(g,h_0) &\leq \sup_{g \in C} f(g,g), \\ (resp., \inf_{g \in C} f(g,h_0) &\geq \inf_{g \in C} f(g,g)). \end{split}$$

for each $q \in C$.

Proof. By hypothesis 3), $\lambda = \sup_{g \in C} f(g, g) < \infty$. For each $g \in C$, we define the mapping $G : C \multimap C$ by

$$G(g) = \{h \in C : f(g, h) \le \lambda\},\$$

which is ρ -closed by assumption 1). By Lemma 3.2, *G* is a KKM-mapping. So by using Theorem 1.6, we have

$$\bigcap_{g \in C} G(g) \neq \emptyset$$

Therefore, there exists an $h_0 \in \bigcap_{g \in C} G(g)$. Thus, $f(g, h_0) \leq \lambda$ for every $g \in C$. Hence,

$$\sup_{g\in C} f(g,h_0) \le \sup_{g\in C} f(g,g).$$

This completes the proof. \Box

4. Some Best Approximation Theorems

In this section, we prove some best approximation theorems for multi-valued mappings in modular function spaces.

Definition 4.1. Let $X, Y \subseteq L_{\rho}$.

- (i) A map $F : X \multimap Y$ is said to be ρ -upper semi continuous if for each ρ -closed set $B \subseteq Y$, $F^-(B)$ is ρ -closed in X.
- (ii) A map $G : D \subseteq X \multimap X$ is called quasi-convex if the set $G^{-}(C)$ is convex for each convex subset C of X.

First, note that the $\|.\|_{\rho}$ -Hausdorff distance can be rewritten as follows

$$H_{\parallel,\parallel_{o}}(X,Y) = \inf\{\epsilon > o : X \subset O_{\epsilon}(Y) \text{ and } Y \subset O_{\epsilon}(X)\},\$$

where, for each $A \subset L_{\rho}$, $O_{\epsilon}(A) = \{f \in L_{\rho} : dist_{\|.\|_{\rho}}(f, A) < \epsilon\}.$

Also, by definitions of ρ -closed and ρ -compact sets in modular function spaces with $\|.\|_{\rho}$ -Hausdorff distance and by [8, Proposition 14.11] we conclude that, if F(f) is ρ -compact for each $f \in X$, then F is ρ -upper semi continuous if and only if for each $f \in X$ and $\epsilon > 0$, there exist $\delta > 0$ such that for each $f' \in B(f, \delta)$, we have $F(f') \subseteq B(F(f), \epsilon)$.

Theorem 4.2. Let $\rho \in \mathfrak{R}$. Suppose X is a ρ -compact subset of L_{ρ} and $F, G : X \multimap L_{\rho}$ are ρ -upper semi continuous maps with nonempty ρ -compact convex values and G is quasi-convex. Then, there exists $f_0 \in X$ such that

$$H_{\|.\|_{\rho}}(G(f_0), F(f_0)) = \inf_{f \in X} H_{\|.\|_{\rho}}(G(f), F(f_0)).$$

Proof. Let $S : X \multimap X$ be defined by

$$S(g) = \{ f \in X : H_{\|.\|_{\rho}}(G(f), F(f)) \le H_{\|.\|_{\rho}}(G(g), F(f)) \}.$$

For each $g \in X$, $S(g) \neq \emptyset$. We show that S(g) is ρ -closed for each $g \in X$. Suppose that $\{g_n\}$ be a sequence in S(g) such that $g_n \longrightarrow g^*(\rho)$. We claim that $g^* \in S(g)$. Let $\epsilon > 0$ be arbitrary. Since F is ρ -upper semi continuous with ρ -compact values, so there exists N_1 such that for each $n \ge N_1$, we have

$$F(q_n) \subseteq \overline{B}(F(q^*), \epsilon).$$

Similarly, there exists N_2 such that for each $n \ge N_2$, we have

$$G(q_n) \subseteq \overline{B}(G(q^*), \epsilon).$$

Let $N = \max\{N_1, N_2\}$. Then, we have

$$\begin{split} H_{\|.\|_{\rho}}(G(g^*), F(g^*)) &\leq H_{\|.\|_{\rho}}(G(g^*), G(g_n)) + H_{\|.\|_{\rho}}(G(g_n), F(g_n)) \\ &\quad + H_{\|.\|_{\rho}}(F(g_n), F(g^*)) \\ &\leq 2\epsilon + H_{\|.\|_{\rho}}(G(g_n), F(g_n)) \\ &\leq 2\epsilon + H_{\|.\|_{\rho}}(G(g), F(g_n)) \\ &\leq 2\epsilon + H_{\|.\|_{\rho}}(G(g), F(g^*)) + H_{\|.\|_{\rho}}(F(g^*), F(g_n)) \\ &\leq 3\epsilon + H_{\|.\|_{\rho}}(G(g), F(g^*)). \end{split}$$

Since ϵ was arbitrary, so

$$H_{\|.\|_{\rho}}(G(g^*), F(g^*)) \le H_{\|.\|_{\rho}}(G(g), F(g^*)),$$

so $g^* \in S(g)$. Now, we show that for each $\{f_1, \dots, f_n\} \subset X$, $co(\{f_1, \dots, f_n\}) \subset S(\{f_1, \dots, f_n\})$. Assume to the contrary that, if there exists $h \in co(\{f_1, \dots, f_n\})$ such that $h \notin S(f)$ for each $f \in \{f_1, \dots, f_n\}$, then $H_{\|\cdot\|_{\ell}}(G(f), F(h)) < H_{\|\cdot\|_{\ell}}(G(h), F(h))$, for some $f \in \{f_1, \dots, f_n\}$. Moreover

$$G(f) \bigcap \left(\bigcup_{h' \in F(h)} B\left(h', \max_{f' \in \{f_1, \cdots, f_n\}} H_{\|\cdot\|_p}(G(f'), F(h)) \right) \right) \neq \emptyset,$$

for each $f \in \{f_1, \dots, f_n\}$. Since F(h) is convex, so

$$\bigcup_{h'\in F(h)} B\left(h', \max_{f'\in\{f_1,\cdots,f_n\}} H_{\|.\|_{\rho}}(G(f'), F(h))\right)$$

is convex. Since *G* is quasi-convex, then

$$G(h) \bigcap \left(\bigcup_{h' \in F(h)} B\left(h', \max_{f' \in \{f_1, \cdots, f_n\}} H_{\|.\|_p}(G(f'), F(h)) \right) \right) \neq \emptyset,$$

and so $H_{\|.\|_{\rho}}(G(h), F(h)) \leq \max_{f' \in \{f_1, \cdots, f_n\}} H_{\|.\|_{\rho}}(G(f'), F(h)) < H_{\|.\|_{\rho}}(G(h), F(h))$. This is a contradiction. Now, by Theorem 1.6, there exists $f_0 \in X$ such that $f_0 \in \bigcap_{f \in X} S(f)$. Hence, $H_{\|.\|_{\rho}}(G(f_0), F(f_0)) = \inf_{f \in X} H_{\|.\|_{\rho}}(G(f), F(f_0))$. \Box

Corollary 4.3. Let $\rho \in \mathfrak{R}$. Suppose X is a ρ -compact subset of L_{ρ} and $G : X \to X$ is an onto, quasi-convex and ρ -upper semi continuous map with nonempty ρ -compact convex values and $S : X \to X$ is a continuous single valued map. Then, there exists $f_0 \in X$ such that $S(f_0) \in G(f_0)$.

Corollary 4.4. Let $\rho \in \mathfrak{R}$. Suppose X is a ρ -compact subset of L_{ρ} and $G : X \multimap X$ is a quasi-convex and ρ -upper semi continuous map with nonempty ρ -compact convex values. Then, there exists $f_0 \in X$ such that

$$H_{\|.\|_{\rho}}(G(f_0), f_0) = \inf_{f \in X} H_{\|.\|_{\rho}}(G(f), f_0).$$

Corollary 4.5. Let $\rho \in \mathfrak{R}$. Suppose X is a ρ -compact subset of L_{ρ} and $G : X \multimap X$ is a ρ -upper semi continuous map with nonempty ρ -compact convex values. If $G(f) \cap X = \emptyset$ for all $f \in \partial X$, then G has a fixed point.

Proof. If *G* does not have a fixed point then by Theorem 4.2, there exists $f_0 \in \partial X$ such that

$$0 < H_{\|.\|_{\rho}}(f_0, G(f_0)) \le H_{\|.\|_{\rho}}(f, G(f_0)),$$

for all $f \in X$. Since $f_0 \in \partial X$, we have $G(f_0) \cap X \neq \emptyset$, which is a contradiction. \Box

References

- Z. Birnbaum, W. Orlicz, Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math 3 (1931) 1-67.
- [2] K. Fan, A minimax inequality and application in inequalities. O. Shisha, Ed, J. Inequal. Academic Press, New York 3 (1972) 103-113.
- [3] M. A. Khamsi, W. M. Kozlowski, On asymptotic pointwise contractions in modular function spaces, Nonlinear Anal 73 (2010) 2957-2967.
- [4] M. A. Khamsi, W. M. Kozlowski and C. Shutao, Some geometrical properties and fixed point theorems in Orlicz spaces, J. Math. Appl 155 (1991) 393-412.
- [5] M. A. Khamsi, A convexity property in modular function spaces, Math Japonica 44.2 (1996) 269-279.
- [6] M. A. Khamsi, A. Latif and H. Al-Sulami, KKM and Ky Fan theorems in modular function spaces, Fixed Point Theory Appl 1 (2011) 1-8.
- [7] W.M. Kozlowski, Modular Function Spaces, M.Dekker, 1988.
- [8] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Nicolaus Copernicus University, Toruń, Poland, 2006.
- [9] M. Musielak, W. Orlicz, On modular spaces, Studia Math 18 (1959) 49-65.
- [10] H. Nakano, Modulared Semi-Ordered Linear Spaces, Tokyo, Japan, 1950.
- [11] A. Razani, M. Beyg Mohamadi, S. Homaei Pour and E. Nabizadeh, A new version of Krasnoselskiis fixed point theorem in modular space, Fixed Point Theory 9 (2) (2008) 533-539.
- [12] A. Razani, R. Moradi, Common fixed point theorems of integlal type in modular spaces, Bulletin of the Iranian Mathematical Society 35 (2) (2009) 11-24.
- [13] A. Razani, Results in Fixed Point Theory, Andisheh Zarrin, Ghazvin, Iran, 2010.