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A Serrin Type Criterion for Incompressible Hydrodynamic
Flow of Liquid Crystals in Dimension Three

Bingyuan Huang
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Abstract. In the paper, we establish a Serrin type criterion for strong solutions to a simplified density-
dependent Ericksen-Leslie system modeling incompressible, nematic liquid crystal materials in dimension
three. The density may vanish in an open subset of Ω. As a byproduct, we establish the Serrin type criterion
for heat flow of harmonic map whose gradients belong to Lr

xLs
t , where 2

s + 3
r ≤ 1, for 3 < r ≤ ∞.

1. Introduction

We consider the following incompressible hydrodynamic flow of nematic liquids crystals in a bounded
domain Ω ⊂ R3:

ρt + ∇ · (ρu) = 0, (1)
ρut + ρu · ∇u + ∇P = γ∆u − λ∇ · (∇d ⊗ ∇d), (2)

∇ · u = 0, (3)

dt + u · ∇d = θ(∆d + |∇d|2d), (4)

where ρ : Ω × (0,∞) → R+ is the density of the fluid, u : Ω × (0,∞) → R3 is the fluid velocity field,
d : Ω × (0,∞) → S2 represents the macroscopic average of the nematic liquid crystal orientation field; P
denotes the pressure of the fluid, ∇ · (= div) denotes the divergence operator on R3; γ, λ and θ are positive
constants.

(1)-(4) is a simplified version of Ericksen-Leslie system modeling incompressible, nematic liquid crystal
materials. For more details about this model, readers could be referred for instance to [1, 7–10]. For
dimension N = 2 and ρ =const., Lin, Lin and Wang [9] have proved the global existence of Leray-Hopf type
weak solutions to (1)-(4) on bounded domains in R2 (see [4] for Ω = R2). Lin and Wang [12] have further
proved that such weak solutions are unique. A further discussion for N = 2 has been done by Xu and
Zhang [17], where global regularity and uniqueness of weak solution with small initial data was proved.
For N = 3, Wen and Ding [16] have established the local existence and uniqueness of strong solutions
to (1)-(4). whether global weak (or smooth) solutions exist for N = 3 is still unknown. Recently, Huang
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and Wang [5] obtained a Beale-Kato-Majda criterion for smooth solutions to (1)-(4) in R3 when ρ =const.,
namely, if 0 < T∗ < ∞ is the first singular time, then the L1

t L∞x -norm of the vorticity ∇ × u or the L2
t L∞x -norm

of ∇d must become infinity when t↗ T∗.
We would like to point out that the system (1)-(4) includes two important equations as special cases:
(i) When u is zero, (4) becomes the heat flow of harmonic map (see [11]).
(ii) When d is a constant vector field, (1)-(3) becomes the nonhomogeneous incompressible Naiver-Stokes

equations (see [13]).
In this paper, we shall establish a Serrin type criterion for strong solutions to the system (1)-(4), along

with the following initial-boundary condition:

(ρ,u, d)
∣∣∣∣
t=0

= (ρ0,u0, d0), (5)

and

(u,
∂d
∂ν

)
∣∣∣∣
∂Ω

= 0, (6)

where ν is the unit outward normal vector of ∂Ω.
To state the definition of strong solutions to the initial-boundary-value problem (1)-(6), we give some

notations which will be used throughout the paper.
Denote QT = Ω × [0,T],

∫
f dx =

∫
Ω

f dx, Lq := Lq(Ω), Wk,p := Wk,p(Ω), Hk := Wk,2(Ω).

Definition 1.1. (Strong solution) For T > 0, (ρ,u, d) is called a strong solution to the incompressible nematic liquid
crystal system (1)-(6) in Ω × (0,T], if

ρ ∈ C([0,T]; W1,r), ρt ∈ C([0,T]; Lr), for some r > 3,
u ∈ C([0,T]; H2

∩H1
0) ∩ L2(0,T; H3),

ut ∈ L2(0,T; H1
0),
√
ρut ∈ L∞(0,T; L2), |d| = 1, in QT,

d ∈ C([0,T]; H3) ∩ L2(0,T; H4), dt ∈ C([0,T]; H1) ∩ L2(0,T; H2),
dtt ∈ L2(0,T; L2).

and (ρ,u, d) satisfies (1)-(4) a.e. in Ω × (0,T].

The constants γ, λ, θ play no roles in the analysis, we assume γ = λ = θ = 1 henceforth.

The existence of local strong solutions could be obtained in the paper [16], which might be slightly
modified. More precisely,

Theorem 1.2. Assume that infρ0 ≥ 0, ρ0 ∈ W1,r, for some r > 3, u0 ∈ H2 ⋂
H1

0, ∇d0 ∈ H2 and |d0| = 1 in Ω, in
addition, the following compatiblity conditions are valid

∆u0 − ∇P0 − ∇ · (∇d0 ⊗ ∇d0) =
√
ρ01 and ∇ · u0 = 0, in Ω, (7)

for some (P0, 1) ∈ H1
× L2. Then there exist a positive time T0 > 0 and a unique strong solution (ρ,u, d) of (1)-(6) in

Ω × (0,T0].

The main result here is stated as follows:

Theorem 1.3. Let (ρ,u, d) be a strong solution to (1)-(6). If 0 < T∗ < +∞ is the maximum time of existence of the
strong solutions, then∫ T∗

0

(
‖u‖sLr + ‖∇d‖sLr

)
dt = ∞, (8)

where 2
s + 3

r ≤ 1, for 3 < r ≤ ∞.
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Remark 1.4. If d is a constant vector field, then (8) is the well-known Serrin type criterion for incompressible
Navier-Stokes equations, see [2, 14].

Remark 1.5. If ρ and u are zero, then (8) with r = 3, s = ∞ has been established by Wang [15] for the heat flow of
harmonic map.

2. Proof of Theorem 1.3

Let 0 < T∗ < ∞ be the maximum time for the existence of strong solution (ρ,u, d) to (1)-(6). Namely,
(ρ,u, d) is a strong solution to (1)-(6) in Ω × (0,T] for any 0 < T < T∗, but not a strong solution in Ω × (0,T∗].
Suppose that (8) were false, i.e.

M0 :=
∫ T∗

0

(
‖u‖sLr + ‖∇d‖sLr

)
dt < ∞. (1)

The goal is to show that under the assumption (1), there is a bound C > 0 depending only on M0, ρ0,u0, d0,
Ω, and T∗ such that

sup
0≤t<T∗

[
‖
√
ρut‖L2 + ‖ρ‖W1,r + ‖u‖H2 + ‖d‖H3

]
≤ C. (2)

With (2), we can then show without much difficulty that T∗ is not the maximum time, which is the desired
contradiction.

Throughout the rest of the paper, we denote by C a generic constant depending only on ρ0, u0, d0, T∗,
M0, Ω. We denote by

A . B

if there exists a generic constant C such that A ≤ CB. For two 3× 3 matrices M = (Mi j),N = (Ni j), denote the
scalar product between M and N by

M : N =

3∑
i, j=1

Mi jNi j.

For d : Ω→ S2, denote by ∇d ⊗ ∇d as the 3 × 3 matrix given by

(∇d ⊗ ∇d)i j = 〈∇id,∇ jd〉, 1 ≤ i, j ≤ 3.

The proof is divided into several steps, and we proceed as follows.

Step 1. We shall first establish upper-lower bounds of ρ. More precisely, we have

Lemma 2.1. Let 0 < T∗ < +∞ be the maximum time for the strong solution (ρ,u, d) to (1)-(6). If (7) and (1) hold,
then for a.e. (x, t) ∈ Ω × [0,T∗), we have

0 ≤ inf
x∈Ω

ρ0 ≤ ρ ≤ sup
x∈Ω

ρ0. (3)

Proof. The proof is quite classical by using the characteristic methods (see for instance [6]). �

Step 2. We next establish the global energy inequality for strong solutions, namely,

Lemma 2.2. Let 0 < T∗ < +∞ be the maximum time for the strong solution (ρ,u, d) to (1)-(6). If (7) and (1) hold,
then for a.e. t ∈ [0,T∗), we have

1
2

∫
Ω

(
ρ|u|2 + |∇d|2

)
(t) dx +

∫ t

0

∫
Ω

(
|∇u|2 +

∣∣∣∆d + |∇d|2d
∣∣∣2 )

dx ds

=
1
2

∫
Ω

(
ρ0|u0|

2 + |∇d0|
2
)

dx.
(4)
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Proof. Multiplying (2) and (4) by u and ∆d + |∇d|2d, respectively, integrating by parts over Ω × [0, t], and
using |d| = 1, we can easily get (4). �

Step 3. Estimates of (∇u,∇2d) in L∞t L2
x.

Lemma 2.3. Let 0 < T∗ < +∞ be the maximum time for the strong solution (ρ,u, d) to (1)-(6). If (7) and (1) hold,
then for a.e. t ∈ [0,T∗), we have∫

Ω

(
|∇u|2 + |∇2d|2

)
(t)dx +

∫ t

0

∫
Ω

(
ρ|ut|

2 + |∇3d|2 + |∇dt|
2
)

dxdt ≤ C. (5)

Proof. Multiplying (2) by ut, and integrating by parts over Ω, we obtain

1
2

d
dt

∫
|∇u|2 dx +

∫
ρ|ut|

2 dx = −

∫
ρ(u · ∇)u · ut dx −

∫
∇ · (∇d ⊗ ∇d) · ut dx =

2∑
i=1

Ii. (6)

For I1, by Cauchy inequality and (3), we have

I1 ≤
1
4

∫
ρ|ut|

2 dx + C
∫
|u|2|∇u|2 dx. (7)

Using Hölder inequality and interpolation inequality, we have∫
|u|2|∇u|2 dx ≤ C‖u‖2Lr‖∇u‖2

L
2r

r−2
, (8)

and

‖∇u‖
L

2r
r−2
≤ ‖∇u‖1−

3
r

L2 ‖∇u‖
3
r

L6 ≤ C‖∇u‖1−
3
r

L2 ‖∇u‖
3
r

H1 . (9)

(8) and (9), together with Cauchy inequality, yield∫
|u|2|∇u|2 dx ≤ C‖u‖2Lr‖∇u‖2(1− 3

r )
L2 ‖∇u‖

6
r

H1 ≤ Cε(‖u‖sLr + 1)‖∇u‖2L2 + ε‖∇u‖2H1 , (10)

for any ε ∈ (0, 1), where 2
s + 3

r ≤ 1, for 3 < r ≤ ∞, which implies 2r
r−3 ≤ s. If r = ∞, then (10) is obvious.

Since
−∆u + ∇P = −ρut − ρu · ∇u − ∇ · (∇d ⊗ ∇d),

we apply the H2-estimate for the Stokes equations (see for instance [3]), together with the similar arguments
as (10), we have

‖∇u‖2H1 .‖ρut‖
2
L2 + ‖ρu · ∇u‖2L2 +

∫
|∇d|2|∇2d|2 dx

.‖
√
ρut‖

2
L2 + ‖u · ∇u‖2L2 + (‖∇d‖sLr + 1)‖∇2d‖2L2 + ‖∇2d‖2H1 ,

(11)

where we have used (3). Substituting (11) into (10), and taking ε ∈ (0, 1) sufficiently small, we obtain∫
|u|2|∇u|2 dx ≤Cε(‖u‖sLr + 1)‖∇u‖2L2 + Cε‖

√
ρut‖

2
L2 + Cε(‖∇d‖sLr + 1)‖∇2d‖2L2

+ Cε‖∇2d‖2H1 .
(12)

Substituting (12) into (7), we have

I1 ≤
1
4

∫
ρ|ut|

2 dx + Cε(‖u‖sLr + 1)‖∇u‖2L2 + Cε‖
√
ρut‖

2
L2

+ Cε(‖∇d‖sLr + 1)‖∇2d‖2L2 + Cε‖∇2d‖2H1 .
(13)
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For I2, using Cauchy inequality, we have

I2 =

∫
∇d ⊗ ∇d : ∇ut dx

=
d
dt

∫
∇d ⊗ ∇d : ∇u dx −

∫
∇dt ⊗ ∇d : ∇u dx −

∫
∇d ⊗ ∇dt : ∇u dx

≤
d
dt

∫
∇d ⊗ ∇d : ∇u dx + Cε

∫
|∇d|2|∇u|2 dx + ε‖∇dt‖

2
L2 .

(14)

To estimate the second term of the right hand side of (14), we apply the similar arguments as (10). Then∫
|∇d|2|∇u|2 dx ≤ Cε(‖∇d‖sLr + 1)‖∇u‖2L2 + ε‖∇u‖2H1 . (15)

Substituting (11) and (12) into (15), we obtain∫
|∇d|2|∇u|2 dx ≤Cε(‖∇d‖sLr + ‖u‖sLr + 1)‖∇u‖2L2 + Cε‖

√
ρut‖

2
L2

+ Cε(‖∇d‖sLr + 1)‖∇2d‖2L2 + Cε‖∇2d‖2H1 .
(16)

Putting (13), (14) and (16) into (6), choosing ε sufficiently small, we obtain

d
dt

∫
|∇u|2 dx +

∫
ρ|ut|

2 dx ≤2
d
dt

∫
∇d ⊗ ∇d : ∇u dx + Cε(‖u‖sLr + ‖∇d‖sLr + 1)‖∇u‖2L2

+ Cε(‖∇d‖sLr + 1)‖∇2d‖2L2 + Cε‖∇2d‖2H1 + Cε‖∇dt‖
2
L2 .

(17)

Integrating (17) over [0, t], for 0 < t < T∗, and applying Cauchy inequality, we obtain∫
|∇u|2 dx +

∫ t

0

∫
ρ|ut|

2 dxds

≤
1
2
‖∇u‖2L2 + C

∫
|∇d|4 dx + Cε

∫ t

0
(‖u‖sLr + ‖∇d‖sLr + 1)‖∇u‖2L2 ds

+ Cε

∫ t

0
(‖∇d‖sLr + 1)‖∇2d‖2L2 ds + Cε

∫ t

0
‖∇

2d‖2H1 ds + Cε
∫ t

0
‖∇dt‖

2
L2 ds + C.

Thus, ∫
|∇u|2 dx +

∫ t

0

∫
ρ|ut|

2 dxds

≤C
∫
|∇d|4 dx + Cε

∫ t

0
(‖u‖sLr + ‖∇d‖sLr + 1)‖∇u‖2L2 ds

+ Cε

∫ t

0
(‖∇d‖sLr + 1)‖∇2d‖2L2 ds + Cε

∫ t

0
‖∇

2d‖2H1 ds + Cε
∫ t

0
‖∇dt‖

2
L2 ds + C.

(18)

Next, we shall make some estimates about d. To do these, differentiating (4) with respect to x, we have

∇dt − ∇∆d = −∇(u · ∇d) + ∇(|∇d|2d). (19)

Multiplying (19) by 4|∇d|2∇d, and integrating by parts over Ω, we have

d
dt

∫
|∇d|4 dx + 4

∫
(|∇d|2|∇2d|2 + 2|∇d|2

∣∣∣∇|∇d|
∣∣∣2) dx

=4
∫
∇(|∇d|2d)|∇d|2∇d dx − 4

∫
∇(u · ∇d)|∇d|2∇d dx =

2∑
i=1

IIi.

(20)



B.Y. Huang / Filomat 28:7 (2014), 1445–1456 1450

Since
∇(|∇d|2d) = |∇d|2∇d + ∇(|∇d|2)d and ∇d · d = 0,

for II1, we have

II1 = 4
∫
|∇d|6 dx .

∫
|∇d|2|∆d|2 dx, (21)

where we have used the fact

|d| = 1, and |∇d|2 = −∆d · d ≤ |∆d|. (22)

Using the similar arguments as (10), we have∫
|∇d|2|∆d|2 dx ≤ Cε(‖∇d‖sLr + 1)‖∆d‖2L2 + ε‖∆d‖2H1 . (23)

Thus,

II1 ≤ Cε(‖∇d‖sLr + 1)‖∆d‖2L2 + ε‖∆d‖2H1 . (24)

For II2, using (22) again, together with integration by parts, divu = 0 and Cauchy inequality, we have

II2 .

∫
|∇d|4|∇u| dx −

∫
u · ∇(|∇d|4) dx

.

∫
|∇d|2|∆d||∇u| dx

.

∫
|∇d|2|∆d|2 dx +

∫
|∇d|2|∇u|2 dx.

(25)

Putting (16), (23) into (25), and then substituting the resulting inequality and (24) into (20), we obtain

d
dt

∫
|∇d|4 dx + 4

∫
(|∇d|2|∇2d|2 + 2|∇d|2

∣∣∣∇|∇d|
∣∣∣2) dx

≤Cε(‖∇d‖sLr + 1)‖∇2d‖2L2 + Cε‖∇2d‖2H1 + Cε(‖∇d‖sLr + ‖u‖sLr + 1)‖∇u‖2L2

+ Cε‖
√
ρut‖

2
L2 .

(26)

Multiplying (19) by ∇∆d, integrating by parts over Ω and using ∂dt
∂ν = 0 on ∂Ω, we obtain

1
2

d
dt

∫
|∆d|2dx + ‖∇∆d‖2L2 =

∫ (
∇(u · ∇d) − ∇(|∇d|2d)

)
: ∇∆d dx

≤ε‖∆d‖2H1 + Cε

∫
(|∇u|2|∇d|2 + |u|2|∇2d|2) dx + Cε

∫
|∇d|2|∇2d|2 dx + Cε

∫
|∇d|6 dx

≤εC‖∇∆d‖2L2 + Cε(‖∇d‖sLr + ‖u‖sLr + 1)(‖∇u‖2L2 + ‖∇2d‖2L2 ) + Cε‖
√
ρut‖

2
L2 ,

where we have used (16), (21) and (23), together with the arguments as (10) dealing with the term
∫
|u|2|∇2d|2

(replacing the second u on the left side of (10) by ∇d). Choosing ε sufficiently small, we have

d
dt

∫
|∆d|2dx +

3
2
‖∇∆d‖2L2

≤Cε(‖∇d‖sLr + ‖u‖sLr + 1)(‖∇u‖2L2 + ‖∇2d‖2L2 ) + Cε‖
√
ρut‖

2
L2 .

(27)

Multiplying (19) by ∇dt, integrating by parts over Ω, and using ∂dt
∂ν = 0 on ∂Ω, we have

1
2

d
dt

∫
|∆d|2dx + ‖∇dt‖

2
L2 =

∫ (
∇(|∇d|2d) − ∇(u · ∇d)

)
∇dt dx

≤ε‖∇dt‖
2
L2 + C

∫ (
|∇d|2|∇2d|2 + |∇d|6 + |∇u|2|∇d|2 + |u|2|∇2d|2

)
dx

≤ε‖∇dt‖
2
L2 + εC‖∇∆d‖2L2 + Cε(‖∇d‖sLr + ‖u‖sLr + 1)(‖∇u‖2L2 + ‖∇2d‖2L2 ) + Cε‖

√
ρut‖

2
L2 .

(28)
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Putting (26), (27) and (28) together, choosing ε sufficiently small, we have

d
dt

∫ (
|∆d|2 + |∇d|4

)
dx +

∫ (
|∇∆d|2 + |∇dt|

2 + |∇d|2|∇2d|2
)

dx

.
(
‖∇d‖sLr + ‖u‖sLr + 1

) (
‖∇u‖2L2 + ‖∇2d‖2L2

)
+ Cε‖

√
ρut‖

2
L2 .

(29)

Integrating (29) from 0 to t, for 0 < t < T∗, and using the standard elliptic estimates for Neumann problem
and (4), we obtain∫ (

|∇
2d|2 + |∇d|4

)
(t) dx +

∫ t

0

∫ (
|∇

3d|2 + |∇dt|
2 + |∇d|2|∇2d|2

)
dxds

≤C
∫ t

0

(
‖∇d‖sLr + ‖u‖sLr + 1

) (
‖∇u‖2L2 + ‖∇2d‖2L2

)
ds + Cε

∫ t

0
‖
√
ρut‖

2
L2 ds + C.

(30)

Multiplying (30) by 2C and adding the resulting inequality into (18), choosing ε sufficiently small, we have∫ (
|∇u|2 + |∇2d|2

)
(t) dx +

∫ t

0

∫ (
ρ|ut|

2 + |∇3d|2 + |∇dt|
2
)

dxds

≤C
∫ t

0

(
‖∇d‖sLr + ‖u‖sLr + 1

) (
‖∇u‖2L2 + ‖∇2d‖2L2

)
ds + C.

(31)

By Gronwall inequality and (1), we get (5). �

As an immediate consequence of Lemma 2.3, we have

Corollary 2.4. Let 0 < T∗ < +∞ be the maximum time for the strong solution (ρ,u, d) to (1)-(6). If (7) and (1) hold,
then for a.e. t ∈ [0,T∗), we have∫

Ω

|dt|
2(t) dx +

∫ t

0
‖∇u‖2H1 (s) ds ≤ C. (32)

Proof. It follows from (4) and (5) that ∫
Ω

|dt|
2
≤ C.

By (11), (12), (1) and (5), we get the last part of (32). �

Step 4. Estimates of (∇2u,∇3d) in L∞t L2
x.

Lemma 2.5. Let 0 < T∗ < +∞ be the maximum time for the strong solution (ρ,u, d) to (1)-(6). If (7) and (1) hold,
then for a.e. t ∈ [0,T∗), we have

‖
√
ρut‖L2 + ‖∇dt‖L2 + ‖∇d‖H2 +

∫ t

0

∫
Ω

(|∇ut|
2 + |dtt|

2)dxdt ≤ C. (33)

Proof. Differentiating the equation (2) with respect to t, we get

ρutt + ρtut + ρu · ∇ut + ρtu · ∇u + ρut · ∇u + ∇Pt

= ∆ut − ∇ · (∇dt ⊗ ∇d + ∇d ⊗ ∇dt).
(34)
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Multiplying (34) by ut, integrating by parts over Ω, and using (1), (3), Sobolev inequality, and Hölder
inequality, we have

1
2

d
dt

∫
ρ|ut|

2dx +

∫
|∇ut|

2dx

.

∫
(ρ|u||∇ut||ut| + ρ|u||∇u|2|ut| + ρ|u|2|∇2u||ut| + ρ|u|2|∇u||∇ut|

+ ρ|ut|
2
|∇u| + |∇dt||∇d||∇ut|) dx

=

6∑
j=1

III j.

(35)

For III1 and III5, we have

III1 + III5 . ‖
√
ρ‖L∞‖u‖L6‖

√
ρut‖L3‖∇ut‖L2 + ‖

√
ρ‖L∞‖∇u‖L2‖

√
ρut‖L3‖ut‖L6

. ‖
√
ρut‖

1
2

L2‖
√
ρut‖

1
2

L6‖∇ut‖L2 . ‖
√
ρut‖

1
2

L2‖∇ut‖
3
2

L2

≤
1
6
‖∇ut‖

2
L2 + C‖

√
ρut‖

2
L2 ,

where we have used Hölder inequality, Sobolev inequality, (3), (5), the interpolation inequality and Young
inequality.

Similarly, we have

III2 + III3 + III4 .‖ρ‖L∞‖u‖L6‖ut‖L6‖∇u‖2L3 + ‖ρ‖L∞‖u‖2L6‖∇
2u‖L2‖ut‖L6

+ ‖ρ‖L∞‖u‖2L6‖∇u‖L6‖∇ut‖L2

.‖∇ut‖L2‖∇u‖L2‖∇u‖H1 + ‖∇u‖H1‖∇ut‖L2 ≤
1
6
‖∇ut‖

2
L2 + C‖∇u‖2H1 ,

and

III6 . ‖∇ut‖L2‖∇dt‖L3‖∇d‖L6 ≤
1
6
‖∇ut‖

2
L2 + C‖∇dt‖

2
L3 ≤

1
6
‖∇ut‖

2
L2 + C‖∇dt‖L2‖∇dt‖H1 .

Substituting these estimates of IIIi into (35), for i = 1, 2, ..., 6, we have

d
dt

∫
ρ|ut|

2 dx +

∫
|∇ut|

2 dx

.‖
√
ρut‖

2
L2 + ‖∇u‖2H1 + ‖∇dt‖L2‖∇dt‖H1

.‖
√
ρut‖

2
L2 + ‖u‖sLr + ‖∇d‖sLr + ‖∇2d‖2H1 + ‖∇dt‖L2‖∇dt‖H1 + 1,

(36)

where we have used (5), (11) and (12).
Differentiating (4) with respect to t, multiplying the resulting equation by dtt, integrating by parts over Ω,
and using ∂dt

∂ν = 0 on ∂Ω, we obtain

1
2

d
dt

∫
|∇dt|

2 dx +

∫
|dtt|

2 dx =

∫
〈∂t

(
|∇d|2d − u · ∇d

)
, dtt〉 dx

.‖dtt‖L2‖dt‖L6‖∇d‖2L6 + ‖dtt‖L2‖∇dt‖L3‖∇d‖L6

+ ‖dtt‖L2‖u‖L6‖∇dt‖L3 + ‖dtt‖L2‖ut‖L6‖∇d‖L3

≤
1
2
‖dtt‖

2
L2 + C(‖∇dt‖L2‖∇dt‖H1 + ‖∇ut‖

2
L2 + ‖∇dt‖

2
L2 + 1),

where we have used Sobolev inequality, Hölder inequality, the interpolation inequality, (4), (5) and (32).
This implies

d
dt

∫
|∇dt|

2dx +

∫
|dtt|

2dx ≤ C(‖∇dt‖L2‖∇dt‖H1 + ‖∇ut‖
2
L2 + ‖∇dt‖

2
L2 + 1). (37)
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Now we need to estimate ‖∇dt‖H1 . In fact, by applying the standard H2-estimate on the equation (4)
under the boundary condition (6), together with (4), (5), (32) and the interpolation inequality, we have

‖∇dt‖H1 .‖∇dt‖L2 + ‖dtt‖L2 + ‖∂t(u · ∇d)‖L2 + ‖∂t(|∇d|2d)‖L2

.‖∇dt‖L2 + ‖dtt‖L2 + ‖ut‖L6‖∇d‖L3 + ‖u‖L6‖∇dt‖L3

+ ‖dt‖L6‖∇d‖2L6 + ‖∇dt‖L3‖∇d‖L6

.‖dtt‖L2 + ‖∇ut‖L2 + ‖∇dt‖
1
2

L2‖∇dt‖
1
2

H1 + ‖∇dt‖L2 + 1

≤
1
2
‖∇dt‖H1 + C (‖dtt‖L2 + ‖∇ut‖L2 + ‖∇dt‖L2 + 1) .

Thus

‖∇dt‖H1 .‖dtt‖L2 + ‖∇ut‖L2 + ‖∇dt‖L2 + 1. (38)

Substituting (38) into (37), and using Cauchy inequality, we obtain

d
dt

∫
|∇dt|

2 dx +

∫
|dtt|

2 dx ≤
1
2
‖dtt‖

2
L2 + C

(
‖∇ut‖

2
L2 + ‖∇dt‖

2
L2 + 1

)
.

Thus
d
dt

∫
|∇dt|

2dx +
1
2

∫
|dtt|

2dx ≤C
(
‖∇ut‖

2
L2 + ‖∇dt‖

2
L2 + 1

)
. (39)

Multiplying (36) by 2C and adding the resulting inequality into (39), applying (38), using (1), (5), and then
employing Gronwall inequality, we obtain

sup
0≤t≤T

∫
(ρ|ut|

2 + |∇dt|
2) dx +

∫ T

0

∫
Ω

(|∇ut|
2 + |dtt|

2) dx dt ≤ C. (40)

To estimate ∇3d in L∞t L2
x(Ω × [0,T]), applying (5), (40) and the standard H3-estimate on the equation (19)

under the boundary condition (6), we have

‖∇d‖2H2 .‖∇dt‖
2
L2 + ‖∇(u · ∇d)‖2L2 + ‖∇(|∇d|2d)‖2L2 + 1

.‖∇dt‖
2
L2 + ‖∇d‖2L∞

(
‖∇u‖2L2 + ‖∇2d‖2L2

)
+ ‖∇d‖6L6 +

∫
|u|2|∇2d|2dx + 1

.1 + ‖∇d‖2L∞ +

∫
|u|2|∇2d|2 dx.

(41)

For the last term on the right hand side of (41), using the interpolation inequality, and applying (5), we have∫
|u|2|∇2d|2dx ≤‖u‖2L6‖∇

2d‖2L3 . ‖∇u‖2L2‖∇
2d‖L2‖∇

2d‖H1

≤ε‖∇d‖2H2 + Cε.
(42)

Substituting (42) into (41), and choosing ε sufficiently small, we have

‖∇d‖2H2 .1 + ‖∇d‖2L∞ . (43)

Using the interpolation inequality again, together with (43), (4) and Young inequality, we have

‖∇d‖2H2 ≤ C + C‖∇d‖
1
2

L2‖∇d‖
3
2

H2 ≤
1
2
‖∇d‖2H2 + C,

which clearly yields that

‖∇d‖H2 ≤ C.

The proof is now complete. �
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Corollary 2.6. Under the same assumptions as in Lemma 2.5, we have for a.e. t ∈ [0,T∗)

‖∇u‖H1 (t) +

∫ t

0
‖u‖2W2,6 (s) ds ≤ C, and

∫ t

0

(
‖∇

2dt‖
2
L2 + ‖∇4d‖2L2

)
(s) ds ≤ C. (44)

Proof. By (11), we have

‖∇u‖2H1 .‖ρut‖
2
L2 + ‖ρu · ∇u‖2L2 +

∫
|∇d|2|∇2d|2 dx

.‖u‖2L6‖∇u‖2L3 + ‖∇d‖2L6‖∇
2d‖2L3 + 1

≤C‖∇u‖L2‖∇u‖H1 + C ≤
1
2
‖∇u‖2H1 + C,

where we have used Hölder inequality, (3), the interpolation inequality, (5), (33) and Cauchy inequality.
Thus,

sup
0≤t≤T

‖∇u‖H1 ≤ C. (45)

Similarly, we have

‖u‖W2,6 .‖ρut‖L6 + ‖ρu · ∇u‖L6 + ‖∇ · (∇d ⊗ ∇d)‖L6

.‖ut‖L6 + ‖u‖L∞‖∇u‖L6 + ‖∇d‖L∞‖∇2d‖L6

.‖∇ut‖L2 + ‖∇u‖2H1 + 1,

thus ∫ T

0
‖u‖2W2,6 dt ≤ C,

where we have used (33) and (45).
It follows from (38) and (33) that∫ T

0
‖∇

2dt‖
2
L2 dt ≤ C. (46)

Applying the standard H4-estimate to (4), we have

‖∇
4d‖2L2 .‖∇

2dt‖
2
L2 + ‖∇2(u · ∇d)‖2L2 + ‖∇2(|∇d|2d)‖2L2 + 1

.‖∇2dt‖
2
L2 + ‖u‖2L∞‖∇

3d‖2L2 + ‖∇d‖2L∞‖∇
2u‖2L2 + ‖∇u‖2L6‖∇

2d‖2L3 + 1

.‖∇2dt‖
2
L2 + 1.

Integrating this inequality over [0,T], and using (46), we get∫ T

0
‖∇

4d‖2L2 dt ≤ C.

�

Step 5. Estimate of ∇ρ in L∞t Lr
x.

Lemma 2.7. Let 0 < T∗ < +∞ be the maximum time for the strong solution (ρ,u, d) to (1)-(6). If (7) and (1) hold,
then for a.e. t ∈ [0,T∗), we have

‖∇ρ‖Lr (t) +

∫ t

0
‖∇u‖2H2 ds ≤ C. (47)
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Proof. Using (3), we change (1) into this equation

ρt + u · ∇ρ = 0. (48)

Differentiating (48) with respect to x, we have

∇ρt + ∇u · ∇ρ + u · ∇∇ρ = 0. (49)

Multiplying (49) by r|∇ρ|r−2
∇ρ, integrating by parts over Ω, and using the interpolation inequality and (5),

we have

d
dt
‖∇ρ‖rLr . ‖∇u‖L∞‖∇ρ‖rLr . ‖∇u‖

1
4

L2‖∇u‖
3
4

W1,6‖∇ρ‖
r
Lr . ‖∇u‖

3
4

W1,6‖∇ρ‖
r
Lr . (50)

By Gronwall inequality, together with (44), we have

sup
0≤t≤T

‖∇ρ‖Lr ≤ C. (51)

By (2) together with the H3-estimate for the Stokes equations, we have

‖∇u‖2H2 .‖∇(ρut)‖2L2 + ‖∇(ρu · ∇u)‖2L2 + ‖∇∇ · (∇d ⊗ ∇d)‖2L2

.‖∇ut‖
2
L2 + ‖∇ρ‖2L3‖ut‖

2
L6 + ‖∇ρ‖2L3‖u‖2L∞‖∇u‖2L6 + ‖ρ‖2L∞‖∇u‖4L4

+ ‖ρ‖2L∞‖u‖
2
L∞‖∇

2u‖2L2 + ‖∇d‖2L∞‖∇
3d‖2L2 + ‖∇2d‖4L4

.‖∇ut‖
2
L2 + 1,

where we have used Hölder inequality, Sobolev inequality, (3), (33), (44) and (51). This, together with (33),
gives ∫ t

0
‖∇u‖2H2 ≤ C.

The proof is now complete. �

Step 6. Completion of proof of Theorem 1.3:

With the above established estimates, we obtain (2). This implies that T∗ is not the maximum time of
existence of strong solutions, which contradicts the definition of T∗. Therefore, (1) is false. The proof of
Theorem 1.3 is now complete.
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