# A Serrin Type Criterion for Incompressible Hydrodynamic Flow of Liquid Crystals in Dimension Three 

Bingyuan Huang<br>Department of Basic Education, Hanshan Normal University, Chaozhou, 521041, China.


#### Abstract

In the paper, we establish a Serrin type criterion for strong solutions to a simplified densitydependent Ericksen-Leslie system modeling incompressible, nematic liquid crystal materials in dimension three. The density may vanish in an open subset of $\Omega$. As a byproduct, we establish the Serrin type criterion for heat flow of harmonic map whose gradients belong to $L_{x}^{r} L_{t}^{s}$, where $\frac{2}{s}+\frac{3}{r} \leq 1$, for $3<r \leq \infty$.


## 1. Introduction

We consider the following incompressible hydrodynamic flow of nematic liquids crystals in a bounded domain $\Omega \subset \mathbb{R}^{3}$ :

$$
\begin{align*}
& \rho_{t}+\nabla \cdot(\rho u)=0,  \tag{1}\\
& \rho u_{t}+\rho u \cdot \nabla u+\nabla P=\gamma \Delta u-\lambda \nabla \cdot(\nabla d \otimes \nabla d),  \tag{2}\\
& \nabla \cdot u=0,  \tag{3}\\
& d_{t}+u \cdot \nabla d=\theta\left(\Delta d+|\nabla d|^{2} d\right), \tag{4}
\end{align*}
$$

where $\rho: \Omega \times(0, \infty) \rightarrow \mathbb{R}_{+}$is the density of the fluid, $u: \Omega \times(0, \infty) \rightarrow \mathbb{R}^{3}$ is the fluid velocity field, $d: \Omega \times(0, \infty) \rightarrow S^{2}$ represents the macroscopic average of the nematic liquid crystal orientation field; $P$ denotes the pressure of the fluid, $\nabla \cdot(=\operatorname{div})$ denotes the divergence operator on $\mathbb{R}^{3} ; \gamma, \lambda$ and $\theta$ are positive constants.
(1)-(4) is a simplified version of Ericksen-Leslie system modeling incompressible, nematic liquid crystal materials. For more details about this model, readers could be referred for instance to [1, 7-10]. For dimension $N=2$ and $\rho=$ const., Lin, Lin and Wang [9] have proved the global existence of Leray-Hopf type weak solutions to (1)-(4) on bounded domains in $\mathbb{R}^{2}$ (see [4] for $\Omega=\mathbb{R}^{2}$ ). Lin and Wang [12] have further proved that such weak solutions are unique. A further discussion for $N=2$ has been done by Xu and Zhang [17], where global regularity and uniqueness of weak solution with small initial data was proved. For $N=3$, Wen and Ding [16] have established the local existence and uniqueness of strong solutions to (1)-(4). whether global weak (or smooth) solutions exist for $N=3$ is still unknown. Recently, Huang

[^0]and Wang [5] obtained a Beale-Kato-Majda criterion for smooth solutions to (1)-(4) in $\mathbb{R}^{3}$ when $\rho=$ const., namely, if $0<T_{*}<\infty$ is the first singular time, then the $L_{t}^{1} L_{x}^{\infty}$-norm of the vorticity $\nabla \times u$ or the $L_{t}^{2} L_{x}^{\infty}$-norm of $\nabla d$ must become infinity when $t \nearrow T_{*}$.

We would like to point out that the system (1)-(4) includes two important equations as special cases:
(i) When $u$ is zero, (4) becomes the heat flow of harmonic map (see [11]).
(ii) When $d$ is a constant vector field,(1)-(3) becomes the nonhomogeneous incompressible Naiver-Stokes equations (see [13]).

In this paper, we shall establish a Serrin type criterion for strong solutions to the system (1)-(4), along with the following initial-boundary condition:

$$
\begin{equation*}
\left.(\rho, u, d)\right|_{t=0}=\left(\rho_{0}, u_{0}, d_{0}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left(u, \frac{\partial d}{\partial v}\right)\right|_{\partial \Omega}=0 \tag{6}
\end{equation*}
$$

where $v$ is the unit outward normal vector of $\partial \Omega$.
To state the definition of strong solutions to the initial-boundary-value problem (1)-(6), we give some notations which will be used throughout the paper.

Denote $Q_{T}=\Omega \times[0, T], \int f d x=\int_{\Omega} f d x, L^{q}:=L^{q}(\Omega), W^{k, p}:=W^{k, p}(\Omega), H^{k}:=W^{k, 2}(\Omega)$.
Definition 1.1. (Strong solution) For $T>0,(\rho, u, d)$ is called a strong solution to the incompressible nematic liquid crystal system (1)-(6) in $\Omega \times(0, T]$, if

$$
\begin{gathered}
\rho \in C\left([0, T] ; W^{1, r}\right), \rho_{t} \in C\left([0, T] ; L^{r}\right), \text { for some } r>3, \\
u \in C\left([0, T] ; H^{2} \cap H_{0}^{1}\right) \cap L^{2}\left(0, T ; H^{3}\right), \\
u_{t} \in L^{2}\left(0, T ; H_{0}^{1}\right), \quad \sqrt{\rho} u_{t} \in L^{\infty}\left(0, T ; L^{2}\right),|d|=1, \text { in } \bar{Q}_{T}, \\
d \in C\left([0, T] ; H^{3}\right) \cap L^{2}\left(0, T ; H^{4}\right), d_{t} \in C\left([0, T] ; H^{1}\right) \cap L^{2}\left(0, T ; H^{2}\right), \\
d_{t t} \in L^{2}\left(0, T ; L^{2}\right) .
\end{gathered}
$$

and ( $\rho, u, d$ ) satisfies (1)-(4) a.e. in $\Omega \times(0, T]$.
The constants $\gamma, \lambda, \theta$ play no roles in the analysis, we assume $\gamma=\lambda=\theta=1$ henceforth.
The existence of local strong solutions could be obtained in the paper [16], which might be slightly modified. More precisely,

Theorem 1.2. Assume that inf $\rho_{0} \geq 0, \rho_{0} \in W^{1, r}$, for some $r>3, u_{0} \in H^{2} \bigcap H_{0}^{1}, \nabla d_{0} \in H^{2}$ and $\left|d_{0}\right|=1$ in $\bar{\Omega}$, in addition, the following compatiblity conditions are valid

$$
\begin{equation*}
\Delta u_{0}-\nabla P_{0}-\nabla \cdot\left(\nabla d_{0} \otimes \nabla d_{0}\right)=\sqrt{\rho_{0}} g \text { and } \nabla \cdot u_{0}=0, \text { in } \Omega, \tag{7}
\end{equation*}
$$

for some $\left(P_{0}, g\right) \in H^{1} \times L^{2}$. Then there exist a positive time $T_{0}>0$ and a unique strong solution $(\rho, u, d)$ of (1)-(6) in $\Omega \times\left(0, T_{0}\right]$.

The main result here is stated as follows:
Theorem 1.3. Let $(\rho, u, d)$ be a strong solution to (1)-(6). If $0<T_{*}<+\infty$ is the maximum time of existence of the strong solutions, then

$$
\begin{equation*}
\int_{0}^{T_{*}}\left(\|u\|_{L^{r}}^{s}+\|\nabla d\|_{L^{r}}^{s}\right) d t=\infty \tag{8}
\end{equation*}
$$

where $\frac{2}{s}+\frac{3}{r} \leq 1$, for $3<r \leq \infty$.

Remark 1.4. If $d$ is a constant vector field, then (8) is the well-known Serrin type criterion for incompressible Navier-Stokes equations, see [2, 14].

Remark 1.5. If $\rho$ and $u$ are zero, then (8) with $r=3, s=\infty$ has been established by Wang [15] for the heat flow of harmonic map.

## 2. Proof of Theorem 1.3

Let $0<T_{*}<\infty$ be the maximum time for the existence of strong solution ( $\rho, u, d$ ) to (1)-(6). Namely, ( $\rho, u, d$ ) is a strong solution to (1)-(6) in $\Omega \times(0, T]$ for any $0<T<T_{*}$, but not a strong solution in $\Omega \times\left(0, T_{*}\right]$. Suppose that (8) were false, i.e.

$$
\begin{equation*}
M_{0}:=\int_{0}^{T_{*}}\left(\|u\|_{L^{r}}^{s}+\|\nabla d\|_{L^{r}}^{s}\right) d t<\infty \tag{1}
\end{equation*}
$$

The goal is to show that under the assumption (1), there is a bound $C>0$ depending only on $M_{0}, \rho_{0}, u_{0}, d_{0}$, $\Omega$, and $T_{*}$ such that

$$
\begin{equation*}
\sup _{0 \leq t<T_{*}}\left[\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}+\|\rho\|_{W^{1}, r}+\|u\|_{H^{2}}+\|d\|_{H^{3}}\right] \leq C \tag{2}
\end{equation*}
$$

With (2), we can then show without much difficulty that $T_{*}$ is not the maximum time, which is the desired contradiction.

Throughout the rest of the paper, we denote by $C$ a generic constant depending only on $\rho_{0}, u_{0}, d_{0}, T_{*}$, $M_{0}, \Omega$. We denote by

$$
A \lesssim B
$$

if there exists a generic constant $C$ such that $A \leq C B$. For two $3 \times 3$ matrices $M=\left(M_{i j}\right), N=\left(N_{i j}\right)$, denote the scalar product between $M$ and $N$ by

$$
M: N=\sum_{i, j=1}^{3} M_{i j} N_{i j}
$$

For $d: \Omega \rightarrow S^{2}$, denote by $\nabla d \otimes \nabla d$ as the $3 \times 3$ matrix given by

$$
(\nabla d \otimes \nabla d)_{i j}=\left\langle\nabla_{i} d, \nabla_{j} d\right\rangle, 1 \leq i, j \leq 3
$$

The proof is divided into several steps, and we proceed as follows.
Step 1. We shall first establish upper-lower bounds of $\rho$. More precisely, we have
Lemma 2.1. Let $0<T_{*}<+\infty$ be the maximum time for the strong solution ( $\rho, u, d$ ) to (1)-(6). If (7) and (1) hold, then for a.e. $(x, t) \in \Omega \times\left[0, T_{*}\right)$, we have

$$
\begin{equation*}
0 \leq \inf _{x \in \overline{\bar{\Omega}}} \rho_{0} \leq \rho \leq \sup _{x \in \bar{\Omega}} \rho_{0} \tag{3}
\end{equation*}
$$

Proof. The proof is quite classical by using the characteristic methods (see for instance [6]).
Step 2. We next establish the global energy inequality for strong solutions, namely,
Lemma 2.2. Let $0<T_{*}<+\infty$ be the maximum time for the strong solution ( $\rho, u, d$ ) to (1)-(6). If (7) and (1) hold, then for a.e. $t \in\left[0, T_{*}\right)$, we have

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega}\left(\rho|u|^{2}+|\nabla d|^{2}\right)(t) d x+\int_{0}^{t} \int_{\Omega}\left(|\nabla u|^{2}+\left|\Delta d+|\nabla d|^{2} d\right|^{2}\right) d x d s \\
& =\frac{1}{2} \int_{\Omega}\left(\rho_{0}\left|u_{0}\right|^{2}+\left|\nabla d_{0}\right|^{2}\right) d x \tag{4}
\end{align*}
$$

Proof. Multiplying (2) and (4) by $u$ and $\Delta d+|\nabla d|^{2} d$, respectively, integrating by parts over $\Omega \times[0, t]$, and using $|d|=1$, we can easily get (4).

Step 3. Estimates of $\left(\nabla u, \nabla^{2} d\right)$ in $L_{t}^{\infty} L_{x}^{2}$.
Lemma 2.3. Let $0<T_{*}<+\infty$ be the maximum time for the strong solution ( $\rho, u, d$ ) to (1)-(6). If (7) and (1) hold, then for a.e. $t \in\left[0, T_{*}\right)$, we have

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla u|^{2}+\left|\nabla^{2} d\right|^{2}\right)(t) d x+\int_{0}^{t} \int_{\Omega}\left(\rho\left|u_{t}\right|^{2}+\left|\nabla^{3} d\right|^{2}+\left|\nabla d_{t}\right|^{2}\right) d x d t \leq C \tag{5}
\end{equation*}
$$

Proof. Multiplying (2) by $u_{t}$, and integrating by parts over $\Omega$, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int|\nabla u|^{2} d x+\int \rho\left|u_{t}\right|^{2} d x=-\int \rho(u \cdot \nabla) u \cdot u_{t} d x-\int \nabla \cdot(\nabla d \otimes \nabla d) \cdot u_{t} d x=\sum_{i=1}^{2} I_{i} \tag{6}
\end{equation*}
$$

For $I_{1}$, by Cauchy inequality and (3), we have

$$
\begin{equation*}
I_{1} \leq \frac{1}{4} \int \rho\left|u_{t}\right|^{2} d x+C \int|u|^{2}|\nabla u|^{2} d x \tag{7}
\end{equation*}
$$

Using Hölder inequality and interpolation inequality, we have

$$
\begin{equation*}
\int|u|^{2}|\nabla u|^{2} d x \leq C\|u\|_{L^{r}}^{2}\|\nabla u\|_{L^{\frac{2 r}{r-2}}}^{2} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\nabla u\|_{L^{\frac{2 r}{r-2}}} \leq\|\nabla u\|_{L^{2}}^{1-\frac{3}{r}}\|\nabla u\|_{L^{6}}^{\frac{3}{r}} \leq C\|\nabla u\|_{L^{2}}^{1-\frac{3}{r}}\|\nabla u\|_{H^{1}}^{\frac{3}{r}} . \tag{9}
\end{equation*}
$$

(8) and (9), together with Cauchy inequality, yield

$$
\begin{equation*}
\int|u|^{2}|\nabla u|^{2} d x \leq C\|u\|_{L^{r}}^{2}\|\nabla u\|_{L^{2}}^{2\left(1-\frac{3}{r}\right)}\|\nabla u\|_{H^{1}}^{\frac{6}{r}} \leq C_{\epsilon}\left(\|u\|_{L^{r}}^{S}+1\right)\|\nabla u\|_{L^{2}}^{2}+\epsilon\|\nabla u\|_{H^{1}}^{2} \tag{10}
\end{equation*}
$$

for any $\epsilon \in(0,1)$, where $\frac{2}{s}+\frac{3}{r} \leq 1$, for $3<r \leq \infty$, which implies $\frac{2 r}{r-3} \leq s$. If $r=\infty$, then (10) is obvious.
Since

$$
-\Delta u+\nabla P=-\rho u_{t}-\rho u \cdot \nabla u-\nabla \cdot(\nabla d \otimes \nabla d)
$$

we apply the $H^{2}$-estimate for the Stokes equations (see for instance [3]), together with the similar arguments as (10), we have

$$
\begin{align*}
\|\nabla u\|_{H^{1}}^{2} & \lesssim\left\|\rho u_{t}\right\|_{L^{2}}^{2}+\|\rho u \cdot \nabla u\|_{L^{2}}^{2}+\int|\nabla d|^{2}\left|\nabla^{2} d\right|^{2} d x  \tag{11}\\
& \lesssim\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2}+\|u \cdot \nabla u\|_{L^{2}}^{2}+\left(\|\nabla d\|_{L^{2}}^{s}+1\right)\left\|\nabla^{2} d\right\|_{L^{2}}^{2}+\left\|\nabla^{2} d\right\|_{H^{1}}^{2}
\end{align*}
$$

where we have used (3). Substituting (11) into (10), and taking $\epsilon \in(0,1)$ sufficiently small, we obtain

$$
\begin{align*}
\int|u|^{2}|\nabla u|^{2} d x \leq & C_{\epsilon}\left(\|u\|_{L^{r}}^{s}+1\right)\|\nabla u\|_{L^{2}}^{2}+C \epsilon\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2}+C_{\epsilon}\left(\|\nabla d\|_{L^{r}}^{s}+1\right)\left\|\nabla^{2} d\right\|_{L^{2}}^{2}  \tag{12}\\
& +C \epsilon\left\|\nabla^{2} d\right\|_{H^{1}}^{2}
\end{align*}
$$

Substituting (12) into (7), we have

$$
\begin{align*}
I_{1} \leq & \frac{1}{4} \int \rho\left|u_{t}\right|^{2} d x+C_{\epsilon}\left(\|u\|_{L^{r}}^{s}+1\right)\|\nabla u\|_{L^{2}}^{2}+C \epsilon\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2}  \tag{13}\\
& +C_{\epsilon}\left(\|\nabla d\|_{L^{r}}^{s}+1\right)\left\|\nabla^{2} d\right\|_{L^{2}}^{2}+C \epsilon\left\|\nabla^{2} d\right\|_{H^{1}}^{2} .
\end{align*}
$$

For $I_{2}$, using Cauchy inequality, we have

$$
\begin{align*}
I_{2} & =\int \nabla d \otimes \nabla d: \nabla u_{t} d x \\
& =\frac{d}{d t} \int \nabla d \otimes \nabla d: \nabla u d x-\int \nabla d_{t} \otimes \nabla d: \nabla u d x-\int \nabla d \otimes \nabla d_{t}: \nabla u d x  \tag{14}\\
& \leq \frac{d}{d t} \int \nabla d \otimes \nabla d: \nabla u d x+C_{\epsilon} \int|\nabla d|^{2}|\nabla u|^{2} d x+\epsilon\left\|\nabla d_{t}\right\|_{L^{2}}^{2} .
\end{align*}
$$

To estimate the second term of the right hand side of (14), we apply the similar arguments as (10). Then

$$
\begin{equation*}
\int|\nabla d|^{2}|\nabla u|^{2} d x \leq C_{\epsilon}\left(\|\nabla d\|_{L^{r}}^{s}+1\right)\|\nabla u\|_{L^{2}}^{2}+\epsilon\|\nabla u\|_{H^{1}}^{2} \tag{15}
\end{equation*}
$$

Substituting (11) and (12) into (15), we obtain

$$
\begin{align*}
\int|\nabla d|^{2}|\nabla u|^{2} d x \leq & C_{\epsilon}\left(\|\nabla d\|_{L^{r}}^{s}+\|u\|_{L^{r}}^{s}+1\right)\|\nabla u\|_{L^{2}}^{2}+C \epsilon\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2}  \tag{16}\\
& +C_{\epsilon}\left(\|\nabla d\|_{L^{r}}^{s}+1\right)\left\|\nabla^{2} d\right\|_{L^{2}}^{2}+C \epsilon\left\|\nabla^{2} d\right\|_{H^{1}}^{2} .
\end{align*}
$$

Putting (13), (14) and (16) into (6), choosing $\epsilon$ sufficiently small, we obtain

$$
\begin{align*}
\frac{d}{d t} \int|\nabla u|^{2} d x+\int \rho\left|u_{t}\right|^{2} d x \leq 2 & \frac{d}{d t} \int \nabla d \otimes \nabla d: \nabla u d x+C_{\epsilon}\left(\|u\|_{L^{r}}^{s}+\|\nabla d\|_{L^{r}}^{s}+1\right)\|\nabla u\|_{L^{2}}^{2}  \tag{17}\\
& +C_{\epsilon}\left(\|\nabla d\|_{L^{r}}^{s}+1\right)\left\|\nabla^{2} d\right\|_{L^{2}}^{2}+C \epsilon\left\|\nabla^{2} d\right\|_{H^{1}}^{2}+C \epsilon\left\|\nabla d_{t}\right\|_{L^{2}}^{2}
\end{align*}
$$

Integrating (17) over [0, $t$ ], for $0<t<T_{*}$, and applying Cauchy inequality, we obtain

$$
\begin{aligned}
& \int|\nabla u|^{2} d x+\int_{0}^{t} \int \rho\left|u_{t}\right|^{2} d x d s \\
\leq & \frac{1}{2}\|\nabla u\|_{L^{2}}^{2}+C \int|\nabla d|^{4} d x+C_{\epsilon} \int_{0}^{t}\left(\|u\|_{L^{r}}^{s}+\|\nabla d\|_{L^{r}}^{s}+1\right)\|\nabla u\|_{L^{2}}^{2} d s \\
& +C_{\epsilon} \int_{0}^{t}\left(\|\nabla d\|_{L^{r}}^{s}+1\right)\left\|\nabla^{2} d\right\|_{L^{2}}^{2} d s+C \epsilon \int_{0}^{t}\left\|\nabla^{2} d\right\|_{H^{1}}^{2} d s+C \epsilon \int_{0}^{t}\left\|\nabla d_{t}\right\|_{L^{2}}^{2} d s+C .
\end{aligned}
$$

Thus,

$$
\begin{align*}
& \int|\nabla u|^{2} d x+\int_{0}^{t} \int \rho\left|u_{t}\right|^{2} d x d s \\
\leq & C \int|\nabla d|^{4} d x+C_{\epsilon} \int_{0}^{t}\left(\|u\|_{L^{r}}^{s}+\|\nabla d\|_{L^{r}}^{s}+1\right)\|\nabla u\|_{L^{2}}^{2} d s  \tag{18}\\
& +C_{\epsilon} \int_{0}^{t}\left(\|\nabla d\|_{L^{r}}^{s}+1\right)\left\|\nabla^{2} d\right\|_{L^{2}}^{2} d s+C \epsilon \int_{0}^{t}\left\|\nabla^{2} d\right\|_{H^{1}}^{2} d s+C \epsilon \int_{0}^{t}\left\|\nabla d_{t}\right\|_{L^{2}}^{2} d s+C .
\end{align*}
$$

Next, we shall make some estimates about $d$. To do these, differentiating (4) with respect to $x$, we have

$$
\begin{equation*}
\nabla d_{t}-\nabla \Delta d=-\nabla(u \cdot \nabla d)+\nabla\left(|\nabla d|^{2} d\right) \tag{19}
\end{equation*}
$$

Multiplying (19) by $4|\nabla d|^{2} \nabla d$, and integrating by parts over $\Omega$, we have

$$
\begin{align*}
& \frac{d}{d t} \int|\nabla d|^{4} d x+4 \int\left(|\nabla d|^{2}\left|\nabla^{2} d\right|^{2}+\left.2|\nabla d|^{2}|\nabla| \nabla d\right|^{2}\right) d x \\
= & 4 \int \nabla\left(|\nabla d|^{2} d\right)|\nabla d|^{2} \nabla d d x-4 \int \nabla(u \cdot \nabla d)|\nabla d|^{2} \nabla d d x=\sum_{i=1}^{2} I I_{i} . \tag{20}
\end{align*}
$$

Since

$$
\nabla\left(|\nabla d|^{2} d\right)=|\nabla d|^{2} \nabla d+\nabla\left(|\nabla d|^{2}\right) d \text { and } \nabla d \cdot d=0 \text {, }
$$

for $I I_{1}$, we have

$$
\begin{equation*}
I I_{1}=4 \int|\nabla d|^{6} d x \lesssim \int|\nabla d|^{2}|\Delta d|^{2} d x \tag{21}
\end{equation*}
$$

where we have used the fact

$$
\begin{equation*}
|d|=1 \text {, and }|\nabla d|^{2}=-\Delta d \cdot d \leq|\Delta d| \text {. } \tag{22}
\end{equation*}
$$

Using the similar arguments as (10), we have

$$
\begin{equation*}
\int|\nabla d|^{2}|\Delta d|^{2} d x \leq C_{\epsilon}\left(\|\nabla d\|_{L^{\prime}}^{s}+1\right)\|\Delta d\|_{L^{2}}^{2}+\epsilon\|\Delta d\|_{H^{1}}^{2} . \tag{23}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
I I_{1} \leq C_{\epsilon}\left(\|\nabla d\|_{L^{\prime}}^{s}+1\right)\|\Delta d\|_{L^{2}}^{2}+\epsilon\|\Delta d\|_{H^{1}}^{2} . \tag{24}
\end{equation*}
$$

For $I I_{2}$, using (22) again, together with integration by parts, $\operatorname{div} u=0$ and Cauchy inequality, we have

$$
\begin{align*}
I I_{2} & \lesssim \int|\nabla d|^{4}|\nabla u| d x-\int u \cdot \nabla\left(|\nabla d|^{4}\right) d x \\
& \lesssim \int|\nabla d|^{2}|\Delta d||\nabla u| d x  \tag{25}\\
& \lesssim \int|\nabla d|^{2}|\Delta d|^{2} d x+\int|\nabla d|^{2}|\nabla u|^{2} d x .
\end{align*}
$$

Putting (16), (23) into (25), and then substituting the resulting inequality and (24) into (20), we obtain

$$
\begin{align*}
& \frac{d}{d t} \int|\nabla d|^{4} d x+4 \int\left(|\nabla d|^{2}\left|\nabla^{2} d\right|^{2}+2|\nabla d|^{2}|\nabla| \nabla d \|^{2}\right) d x \\
& \leq C_{\epsilon}\left(\|\nabla d\|_{L^{r}}^{s}+1\right)\left\|\nabla^{2} d\right\|_{L^{2}}^{2}+C \epsilon\left\|\nabla^{2} d\right\|_{H^{1}}^{2}+C_{\epsilon}\left(\|\nabla d\|_{L^{r}}^{s}+\|u\|_{L^{r}}^{s}+1\right)\|\nabla u\|_{L^{2}}^{2}  \tag{26}\\
& \quad+C \epsilon\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2} .
\end{align*}
$$

Multiplying (19) by $\nabla \Delta d$, integrating by parts over $\Omega$ and using $\frac{\partial d_{t}}{\partial v}=0$ on $\partial \Omega$, we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int|\Delta d|^{2} d x+\|\nabla \Delta d\|_{L^{2}}^{2}=\int\left(\nabla(u \cdot \nabla d)-\nabla\left(|\nabla d|^{2} d\right)\right): \nabla \Delta d d x \\
& \leq \epsilon\|\Delta d\|_{H^{1}}^{2}+C_{\epsilon} \int\left(|\nabla u|^{2}|\nabla d|^{2}+|u|^{2}\left|\nabla^{2} d\right|^{2}\right) d x+C_{\epsilon} \int|\nabla d|^{2}\left|\nabla^{2} d\right|^{2} d x+C_{\epsilon} \int|\nabla d|^{6} d x \\
& \leq \epsilon C\|\nabla \Delta d\|_{L^{2}}^{2}+C_{\epsilon}\left(\|\nabla d\|_{L^{\prime}}^{s}+\|u\|_{L^{\prime}}^{s}+1\right)\left(\|\nabla u\|_{L^{2}}^{2}+\left\|\nabla^{2} d\right\|_{L^{2}}^{2}\right)+C \epsilon\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2},
\end{aligned}
$$

where we have used (16), (21) and (23), together with the arguments as (10) dealing with the term $\int|u|^{2}\left|\nabla^{2} d\right|^{2}$ (replacing the second $u$ on the left side of (10) by $\nabla d$ ). Choosing $\epsilon$ sufficiently small, we have

$$
\begin{align*}
& \frac{d}{d t} \int|\Delta d|^{2} d x+\frac{3}{2}\|\nabla \Delta d\|_{L^{2}}^{2}  \tag{27}\\
& \leq C_{\epsilon}\left(\|\nabla d\|_{L^{+}}^{s}+\|u\|_{L^{+}}^{s}+1\right)\left(\|\nabla u\|_{L^{2}}^{2}+\left\|\nabla^{2} d\right\|_{L^{2}}^{2}\right)+C \epsilon\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2} .
\end{align*}
$$

Multiplying (19) by $\nabla d_{t}$, integrating by parts over $\Omega$, and using $\frac{\partial d_{t}}{\partial v}=0$ on $\partial \Omega$, we have

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int|\Delta d|^{2} d x+\left\|\nabla d_{t}\right\|_{L^{2}}^{2}=\int\left(\nabla\left(|\nabla d|^{2} d\right)-\nabla(u \cdot \nabla d)\right) \nabla d_{t} d x \\
& \leq \epsilon\left\|\nabla d_{t}\right\|_{L^{2}}^{2}+C \int\left(|\nabla d|^{2}\left|\nabla^{2} d\right|^{2}+|\nabla d|^{6}+|\nabla u|^{2}|\nabla d|^{2}+|u|^{2}\left|\nabla^{2} d\right|^{2}\right) d x  \tag{28}\\
& \leq \epsilon\left\|\nabla d_{t}\right\|_{L^{2}}^{2}+\epsilon C\|\nabla \Delta d\|_{L^{2}}^{2}+C_{\epsilon}\left(\|\nabla d\|_{L^{\prime}}^{s}+\|u\|_{L^{r}}^{s}+1\right)\left(\|\nabla u\|_{L^{2}}^{2}+\left\|\nabla^{2} d\right\|_{L^{2}}^{2}\right)+C \epsilon\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2} .
\end{align*}
$$

Putting (26), (27) and (28) together, choosing $\epsilon$ sufficiently small, we have

$$
\begin{align*}
& \frac{d}{d t} \int\left(|\Delta d|^{2}+|\nabla d|^{4}\right) d x+\int\left(|\nabla \Delta d|^{2}+\left|\nabla d_{t}\right|^{2}+|\nabla d|^{2}\left|\nabla^{2} d\right|^{2}\right) d x  \tag{29}\\
& \lesssim\left(\|\nabla d\|_{L^{r}}^{s}+\|u\|_{L^{r}}^{s}+1\right)\left(\|\nabla u\|_{L^{2}}^{2}+\left\|\nabla^{2} d\right\|_{L^{2}}^{2}\right)+C \epsilon\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2} .
\end{align*}
$$

Integrating (29) from 0 to $t$, for $0<t<T_{*}$, and using the standard elliptic estimates for Neumann problem and (4), we obtain

$$
\begin{align*}
& \int\left(\left|\nabla^{2} d\right|^{2}+|\nabla d|^{4}\right)(t) d x+\int_{0}^{t} \int\left(\left|\nabla^{3} d\right|^{2}+\left|\nabla d_{t}\right|^{2}+|\nabla d|^{2}\left|\nabla^{2} d\right|^{2}\right) d x d s  \tag{30}\\
\leq & C \int_{0}^{t}\left(\|\nabla d\|_{L^{r}}^{s}+\|u\|_{L^{r}}^{s}+1\right)\left(\|\nabla u\|_{L^{2}}^{2}+\left\|\nabla^{2} d\right\|_{L^{2}}^{2}\right) d s+C \epsilon \int_{0}^{t}\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2} d s+C .
\end{align*}
$$

Multiplying (30) by 2 C and adding the resulting inequality into (18), choosing $\epsilon$ sufficiently small, we have

$$
\begin{align*}
& \int\left(|\nabla u|^{2}+\left|\nabla^{2} d\right|^{2}\right)(t) d x+\int_{0}^{t} \int\left(\rho\left|u_{t}\right|^{2}+\left|\nabla^{3} d\right|^{2}+\left|\nabla d_{t}\right|^{2}\right) d x d s  \tag{31}\\
\leq & C \int_{0}^{t}\left(\|\nabla d\|_{L^{r}}^{s}+\|u\|_{L^{r}}^{s}+1\right)\left(\|\nabla u\|_{L^{2}}^{2}+\left\|\nabla^{2} d\right\|_{L^{2}}^{2}\right) d s+C
\end{align*}
$$

By Gronwall inequality and (1), we get (5).
As an immediate consequence of Lemma 2.3, we have
Corollary 2.4. Let $0<T_{*}<+\infty$ be the maximum time for the strong solution ( $\left.\rho, u, d\right)$ to (1)-(6). If (7) and (1) hold, then for a.e. $t \in\left[0, T_{*}\right)$, we have

$$
\begin{equation*}
\int_{\Omega}\left|d_{t}\right|^{2}(t) d x+\int_{0}^{t}\|\nabla u\|_{H^{1}}^{2}(s) d s \leq C \tag{32}
\end{equation*}
$$

Proof. It follows from (4) and (5) that

$$
\int_{\Omega}\left|d_{t}\right|^{2} \leq C
$$

By (11), (12), (1) and (5), we get the last part of (32).
Step 4. Estimates of $\left(\nabla^{2} u, \nabla^{3} d\right)$ in $L_{t}^{\infty} L_{x}^{2}$.
Lemma 2.5. Let $0<T_{*}<+\infty$ be the maximum time for the strong solution ( $\rho, u, d$ ) to (1)-(6). If (7) and (1) hold, then for a.e. $t \in\left[0, T_{*}\right)$, we have

$$
\begin{equation*}
\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}+\left\|\nabla d_{t}\right\|_{L^{2}}+\|\nabla d\|_{H^{2}}+\int_{0}^{t} \int_{\Omega}\left(\left|\nabla u_{t}\right|^{2}+\left|d_{t t}\right|^{2}\right) d x d t \leq C \tag{33}
\end{equation*}
$$

Proof. Differentiating the equation (2) with respect to $t$, we get

$$
\begin{align*}
& \rho u_{t t}+\rho_{t} u_{t}+\rho u \cdot \nabla u_{t}+\rho_{t} u \cdot \nabla u+\rho u_{t} \cdot \nabla u+\nabla P_{t}  \tag{34}\\
& =\Delta u_{t}-\nabla \cdot\left(\nabla d_{t} \otimes \nabla d+\nabla d \otimes \nabla d_{t}\right) .
\end{align*}
$$

Multiplying (34) by $u_{t}$, integrating by parts over $\Omega$, and using (1), (3), Sobolev inequality, and Hölder inequality, we have

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int \rho\left|u_{t}\right|^{2} d x+\int\left|\nabla u_{t}\right|^{2} d x \\
\lesssim & \int\left(\rho|u|\left|\nabla u_{t}\right|\left|u_{t}\right|+\rho|u|\left\|\left.\nabla u\right|^{2}\left|u_{t}\right|+\left.\rho|u|^{2}\left|\nabla^{2} u \|\left|u_{t}\right|+\rho\right| u\right|^{2}|\nabla u|\left|\nabla u_{t}\right|\right.\right.  \tag{35}\\
& \left.+\rho\left|u_{t}\right|^{2}|\nabla u|+\left|\nabla d_{t}\right| \nabla d \| \nabla u_{t} \mid\right) d x \\
= & \sum_{j=1}^{6} I I I_{j} .
\end{align*}
$$

For $I I I_{1}$ and $I I I_{5}$, we have

$$
\begin{aligned}
I I I_{1}+I I I_{5} & \lesssim\|\sqrt{\rho}\|_{L^{\infty}}\|u\|_{L^{6}}\left\|\sqrt{\rho} u_{t}\right\|_{L^{3}}\left\|\nabla u_{t}\right\|_{L^{2}}+\|\sqrt{\rho}\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\left\|\sqrt{\rho} u_{t}\right\|_{L^{3}}\left\|u_{t}\right\|_{L^{6}} \\
& \lesssim\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{\frac{1}{2}}\left\|\sqrt{\rho} u_{t}\right\|_{L^{6}}^{\frac{1}{2}}\left\|\nabla u_{t}\right\|_{L^{2}} \lesssim\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{\frac{1}{2}}\left\|\nabla u_{t}\right\|_{L^{2}}^{\frac{3}{2}} \\
& \leq \frac{1}{6}\left\|\nabla u_{t}\right\|_{L^{2}}^{2}+C\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2}
\end{aligned}
$$

where we have used Hölder inequality, Sobolev inequality, (3), (5), the interpolation inequality and Young inequality.

Similarly, we have

$$
\begin{aligned}
I I I_{2}+I I I_{3}+I I I_{4} \lesssim & \|\rho\|_{L^{\infty}}\|u\|_{L^{6}}\left\|u_{t}\right\|_{L^{6}}\|\nabla u\|_{L^{3}}^{2}+\|\rho\|_{L^{\infty}}\|u\|_{L^{6}}^{2}\left\|\nabla^{2} u\right\|_{L^{2}}\left\|u_{t}\right\|_{L^{6}} \\
& +\|\rho\|_{L^{\infty}}\|u\|_{L^{6}}^{2}\|\nabla u\|_{L^{6}}\left\|\nabla u_{t}\right\|_{L^{2}} \\
& \lesssim\left\|\nabla u_{t}\right\|_{L^{2}}\|\nabla u\|_{L^{2}}\|\nabla u\|_{H^{1}}+\|\nabla u\|_{H^{1}}\left\|\nabla u_{t}\right\|_{L^{2}} \leq \frac{1}{6}\left\|\nabla u_{t}\right\|_{L^{2}}^{2}+C\|\nabla u\|_{H^{1}}^{2},
\end{aligned}
$$

and

$$
I I I_{6} \leqq\left\|\nabla u_{t}\right\|_{L^{2}}\left\|\nabla d_{t}\right\|_{L^{3}}\|\nabla d\|_{L^{6}} \leq \frac{1}{6}\left\|\nabla u_{t}\right\|_{L^{2}}^{2}+C\left\|\nabla d_{t}\right\|_{L^{3}}^{2} \leq \frac{1}{6}\left\|\nabla u_{t}\right\|_{L^{2}}^{2}+C\left\|\nabla d_{t}\right\|_{L^{2}}\left\|\nabla d_{t}\right\|_{H^{1}}
$$

Substituting these estimates of $I I I_{i}$ into (35), for $i=1,2, \ldots, 6$, we have

$$
\begin{align*}
& \quad \frac{d}{d t} \int \rho\left|u_{t}\right|^{2} d x+\int\left|\nabla u_{t}\right|^{2} d x \\
& \lesssim\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2}+\|\nabla u\|_{H^{1}}^{2}+\left\|\nabla d_{t}\right\|_{L^{2}}\left\|\nabla d_{t}\right\|_{H^{1}}  \tag{36}\\
& \lesssim\left\|\sqrt{\rho} u_{t}\right\|_{L^{2}}^{2}+\|u\|_{L^{r}}^{s}+\|\nabla d\|_{L^{r}}^{s}+\left\|\nabla^{2} d\right\|_{H^{1}}^{2}+\left\|\nabla d_{t}\right\|_{L^{2}}\left\|\nabla d_{t}\right\|_{H^{1}}+1,
\end{align*}
$$

where we have used (5), (11) and (12).
Differentiating (4) with respect to $t$, multiplying the resulting equation by $d_{t t}$, integrating by parts over $\Omega$, and using $\frac{\partial d_{t}}{\partial v}=0$ on $\partial \Omega$, we obtain

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} \int\left|\nabla d_{t}\right|^{2} d x+\int\left|d_{t t}\right|^{2} d x= & \int\left\langle\partial_{t}\left(|\nabla d|^{2} d-u \cdot \nabla d\right), d_{t t}\right\rangle d x \\
\leq & \left\|d_{t t}\right\|_{L^{2}}\left\|d_{t}\right\|_{L^{6}}\|\nabla d\|_{L^{6}}^{2}+\left\|d_{t t}\right\|_{L^{2}}\left\|\nabla d_{t}\right\|_{L^{3}}\|\nabla d\|_{L^{6}} \\
& +\left\|d_{t t}\right\|_{L^{2}}\|u\|_{L^{6}}\left\|\nabla d_{t}\right\|_{L^{3}}+\left\|d_{t t}\right\|_{L^{2}}\left\|u_{t}\right\|_{L^{6}}\|\nabla d\|_{L^{3}} \\
\leq & \frac{1}{2}\left\|d_{t t}\right\|_{L^{2}}^{2}+C\left(\left\|\nabla d_{t}\right\|_{L^{2}}\left\|\nabla d_{t}\right\|_{H^{1}}+\left\|\nabla u_{t}\right\|_{L^{2}}^{2}+\left\|\nabla d_{t}\right\|_{L^{2}}^{2}+1\right)
\end{aligned}
$$

where we have used Sobolev inequality, Hölder inequality, the interpolation inequality, (4), (5) and (32). This implies

$$
\begin{equation*}
\frac{d}{d t} \int\left|\nabla d_{t}\right|^{2} d x+\int\left|d_{t t}\right|^{2} d x \leq C\left(\left\|\nabla d_{t}\right\|_{L^{2}}\left\|\nabla d_{t}\right\|_{H^{1}}+\left\|\nabla u_{t}\right\|_{L^{2}}^{2}+\left\|\nabla d_{t}\right\|_{L^{2}}^{2}+1\right) \tag{37}
\end{equation*}
$$

Now we need to estimate $\left\|\nabla d_{t}\right\|_{H^{1}}$. In fact, by applying the standard $H^{2}$-estimate on the equation (4) under the boundary condition (6), together with (4), (5), (32) and the interpolation inequality, we have

$$
\begin{aligned}
\left\|\nabla d_{t}\right\|_{H^{1}} & \lesssim\left\|\nabla d_{t}\right\|_{L^{2}}+\left\|d_{t t}\right\|_{L^{2}}+\left\|\partial_{t}(u \cdot \nabla d)\right\|_{L^{2}}+\left\|\partial_{t}\left(|\nabla d|^{2} d\right)\right\|_{L^{2}} \\
& \lesssim\left\|\nabla d_{t}\right\|_{L^{2}}+\left\|d_{t t}\right\|_{L^{2}}+\left\|u_{t}\right\|_{L^{6}}\|\nabla d\|_{L^{3}}+\|u\|_{L^{6}}\left\|\nabla d_{t}\right\|_{L^{3}} \\
& +\left\|d_{t}\right\|_{L^{6}}\|\nabla d\|_{L^{6}}^{2}+\left\|\nabla d_{t}\right\|_{L^{3}}\|\nabla d\|_{L^{6}} \\
& \lesssim\left\|d_{t t}\right\|_{L^{2}}+\left\|\nabla u_{t}\right\|_{L^{2}}+\left\|\nabla d_{t}\right\|_{L^{2}}^{\frac{1}{2}}\left\|\nabla d_{t}\right\|_{H^{1}}^{\frac{1}{2}}+\left\|\nabla d_{t}\right\|_{L^{2}}+1 \\
& \leq \frac{1}{2}\left\|\nabla d_{t}\right\|_{H^{1}}+C\left(\left\|d_{t t}\right\|_{L^{2}}+\left\|\nabla u_{t}\right\|_{L^{2}}+\left\|\nabla d_{t}\right\|_{L^{2}}+1\right) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left\|\nabla d_{t}\right\|_{H^{1}} \lesssim\left\|d_{t t}\right\|_{L^{2}}+\left\|\nabla u_{t}\right\|_{L^{2}}+\left\|\nabla d_{t}\right\|_{L^{2}}+1 . \tag{38}
\end{equation*}
$$

Substituting (38) into (37), and using Cauchy inequality, we obtain

$$
\frac{d}{d t} \int\left|\nabla d_{t}\right|^{2} d x+\int\left|d_{t t}\right|^{2} d x \leq \frac{1}{2}\left\|d_{t t}\right\|_{L^{2}}^{2}+C\left(\left\|\nabla u_{t}\right\|_{L^{2}}^{2}+\left\|\nabla d_{t}\right\|_{L^{2}}^{2}+1\right)
$$

Thus

$$
\begin{equation*}
\frac{d}{d t} \int\left|\nabla d_{t}\right|^{2} d x+\frac{1}{2} \int\left|d_{t t}\right|^{2} d x \leq C\left(\left\|\nabla u_{t}\right\|_{L^{2}}^{2}+\left\|\nabla d_{t}\right\|_{L^{2}}^{2}+1\right) \tag{39}
\end{equation*}
$$

Multiplying (36) by $2 C$ and adding the resulting inequality into (39), applying (38), using (1), (5), and then employing Gronwall inequality, we obtain

$$
\begin{equation*}
\sup _{0 \leq t \leq T} \int\left(\rho\left|u_{t}\right|^{2}+\left|\nabla d_{t}\right|^{2}\right) d x+\int_{0}^{T} \int_{\Omega}\left(\left|\nabla u_{t}\right|^{2}+\left|d_{t t}\right|^{2}\right) d x d t \leq C . \tag{40}
\end{equation*}
$$

To estimate $\nabla^{3} d$ in $L_{t}^{\infty} L_{x}^{2}(\Omega \times[0, T])$, applying (5), (40) and the standard $H^{3}$-estimate on the equation (19) under the boundary condition (6), we have

$$
\begin{align*}
\|\nabla d\|_{H^{2}}^{2} & \lesssim\left\|\nabla d_{t}\right\|_{L^{2}}^{2}+\|\nabla(u \cdot \nabla d)\|_{L^{2}}^{2}+\left\|\nabla\left(|\nabla d|^{2} d\right)\right\|_{L^{2}}^{2}+1 \\
& \lesssim\left\|\nabla d_{t}\right\|_{L^{2}}^{2}+\|\nabla d\|_{L^{\infty}}^{2}\left(\|\nabla u\|_{L^{2}}^{2}+\left\|\nabla^{2} d\right\|_{L^{2}}^{2}\right)+\|\nabla d\|_{L^{6}}^{6}+\int|u|^{2}\left|\nabla^{2} d\right|^{2} d x+1  \tag{41}\\
& \lesssim 1+\|\nabla d\|_{L^{\infty}}^{2}+\int|u|^{2}\left|\nabla^{2} d\right|^{2} d x
\end{align*}
$$

For the last term on the right hand side of (41), using the interpolation inequality, and applying (5), we have

$$
\begin{align*}
\int|u|^{2}\left|\nabla^{2} d\right|^{2} d x & \leq\|u\|_{L^{6}}^{2}\left\|\nabla^{2} d\right\|_{L^{3}}^{2} \lesssim\|\nabla u\|_{L^{2}}^{2}\left\|\nabla^{2} d\right\|_{L^{2}}\left\|\nabla^{2} d\right\|_{H^{1}}  \tag{42}\\
& \leq \epsilon\|\nabla d\|_{H^{2}}^{2}+C_{\epsilon}
\end{align*}
$$

Substituting (42) into (41), and choosing $\epsilon$ sufficiently small, we have

$$
\begin{equation*}
\|\nabla d\|_{H^{2}}^{2} \lesssim 1+\|\nabla d\|_{L^{\infty}}^{2} \tag{43}
\end{equation*}
$$

Using the interpolation inequality again, together with (43), (4) and Young inequality, we have

$$
\|\nabla d\|_{H^{2}}^{2} \leq C+C\|\nabla d\|_{L^{2}}^{\frac{1}{2}}\|\nabla d\|_{H^{2}}^{\frac{3}{2}} \leq \frac{1}{2}\|\nabla d\|_{H^{2}}^{2}+C,
$$

which clearly yields that
$\|\nabla d\|_{H^{2}} \leq C$.
The proof is now complete.

Corollary 2.6. Under the same assumptions as in Lemma 2.5, we have for a.e. $t \in\left[0, T_{*}\right)$

$$
\begin{equation*}
\|\nabla u\|_{H^{1}}(t)+\int_{0}^{t}\|u\|_{W^{2,6}}^{2}(s) d s \leq C, \text { and } \int_{0}^{t}\left(\left\|\nabla^{2} d_{t}\right\|_{L^{2}}^{2}+\left\|\nabla^{4} d\right\|_{L^{2}}^{2}\right)(s) d s \leq C \tag{44}
\end{equation*}
$$

Proof. By (11), we have

$$
\begin{aligned}
\|\nabla u\|_{H^{1}}^{2} & \leq\left\|\rho u_{t}\right\|_{L^{2}}^{2}+\|\rho u \cdot \nabla u\|_{L^{2}}^{2}+\int|\nabla d|^{2}\left|\nabla^{2} d\right|^{2} d x \\
& \leq\|u\|_{L^{6}}^{2}\|\nabla u\|_{L^{3}}^{2}+\|\nabla d\|_{L^{6}}^{2}\left\|\nabla^{2} d\right\|_{L^{3}}^{2}+1 \\
& \leq C\|\nabla u\|_{L^{2}}\|\nabla u\|_{H^{1}}+C \leq \frac{1}{2}\|\nabla u\|_{H^{1}}^{2}+C
\end{aligned}
$$

where we have used Hölder inequality, (3), the interpolation inequality, (5), (33) and Cauchy inequality. Thus,

$$
\begin{equation*}
\sup _{0 \leq t \leq T}\|\nabla u\|_{H^{1}} \leq C \tag{45}
\end{equation*}
$$

Similarly, we have

$$
\begin{aligned}
\|u\|_{W^{2}, 6} & \lesssim\left\|\rho u_{t}\right\|_{L^{6}}+\|\rho u \cdot \nabla u\|_{L^{6}}+\|\nabla \cdot(\nabla d \otimes \nabla d)\|_{L^{6}} \\
& \lesssim\left\|u_{t}\right\|_{L^{6}}+\|u\|_{L^{\infty}}\|\nabla u\|_{L^{6}}+\|\nabla d\|_{L^{\infty}}\left\|\nabla^{2} d\right\|_{L^{6}} \\
& \lesssim\left\|\nabla u_{t}\right\|_{L^{2}}+\|\nabla u\|_{H^{1}}^{2}+1,
\end{aligned}
$$

thus

$$
\int_{0}^{T}\|u\|_{W^{2,6}}^{2} d t \leq C
$$

where we have used (33) and (45).
It follows from (38) and (33) that

$$
\begin{equation*}
\int_{0}^{T}\left\|\nabla^{2} d_{t}\right\|_{L^{2}}^{2} d t \leq C \tag{46}
\end{equation*}
$$

Applying the standard $H^{4}$-estimate to (4), we have

$$
\begin{aligned}
\left\|\nabla^{4} d\right\|_{L^{2}}^{2} & \lesssim\left\|\nabla^{2} d_{t}\right\|_{L^{2}}^{2}+\left\|\nabla^{2}(u \cdot \nabla d)\right\|_{L^{2}}^{2}+\left\|\nabla^{2}\left(|\nabla d|^{2} d\right)\right\|_{L^{2}}^{2}+1 \\
& \lesssim\left\|\nabla^{2} d_{t}\right\|_{L^{2}}^{2}+\|u\|_{L^{\infty}}^{2}\left\|\nabla^{3} d\right\|_{L^{2}}^{2}+\|\nabla d\|_{L^{\infty}}^{2}\left\|\nabla^{2} u\right\|_{L^{2}}^{2}+\|\nabla u\|_{L^{\circ}}^{2}\left\|\nabla^{2} d\right\|_{L^{3}}^{2}+1 \\
& \lesssim\left\|\nabla^{2} d_{t}\right\|_{L^{2}}^{2}+1 .
\end{aligned}
$$

Integrating this inequality over [ $0, T$ ], and using (46), we get

$$
\int_{0}^{T}\left\|\nabla^{4} d\right\|_{L^{2}}^{2} d t \leq C
$$

Step 5. Estimate of $\nabla \rho$ in $L_{t}^{\infty} L_{x}^{r}$.
Lemma 2.7. Let $0<T_{*}<+\infty$ be the maximum time for the strong solution ( $\rho, u, d$ ) to (1)-(6). If (7) and (1) hold, then for a.e. $t \in\left[0, T_{*}\right)$, we have

$$
\begin{equation*}
\|\nabla \rho\|_{L^{r}}(t)+\int_{0}^{t}\|\nabla u\|_{H^{2}}^{2} d s \leq C \tag{47}
\end{equation*}
$$

Proof. Using (3), we change (1) into this equation

$$
\begin{equation*}
\rho_{t}+u \cdot \nabla \rho=0 \tag{48}
\end{equation*}
$$

Differentiating (48) with respect to $x$, we have

$$
\begin{equation*}
\nabla \rho_{t}+\nabla u \cdot \nabla \rho+u \cdot \nabla \nabla \rho=0 \tag{49}
\end{equation*}
$$

Multiplying (49) by $r|\nabla \rho|^{r-2} \nabla \rho$, integrating by parts over $\Omega$, and using the interpolation inequality and (5), we have

$$
\begin{equation*}
\frac{d}{d t}\|\nabla \rho\|_{L^{r}}^{r} \lesssim\|\nabla u\|_{L^{\infty}}\|\nabla \rho\|_{L^{r}}^{r} \lesssim\|\nabla u\|_{L^{2}}^{\frac{1}{4}}\|\nabla u\|_{W^{1,6}}^{\frac{3}{4}}\|\nabla \rho\|_{L^{r}}^{r} \lesssim\|\nabla u\|_{W^{1,6}}^{\frac{3}{4}}\|\nabla \rho\|_{L^{r}}^{r} . \tag{50}
\end{equation*}
$$

By Gronwall inequality, together with (44), we have

$$
\begin{equation*}
\sup _{0 \leq t \leq T}\|\nabla \rho\|_{L^{r}} \leq C . \tag{51}
\end{equation*}
$$

By (2) together with the $H^{3}$-estimate for the Stokes equations, we have

$$
\begin{aligned}
\|\nabla u\|_{H^{2}}^{2} & \lesssim\left\|\nabla\left(\rho u_{t}\right)\right\|_{L^{2}}^{2}+\|\nabla(\rho u \cdot \nabla u)\|_{L^{2}}^{2}+\|\nabla \nabla \cdot(\nabla d \otimes \nabla d)\|_{L^{2}}^{2} \\
& \lesssim\left\|\nabla u_{t}\right\|_{L^{2}}^{2}+\|\nabla \rho\|_{L^{3}}^{2}\left\|u_{t}\right\|_{L^{6}}^{2}+\|\nabla \rho\|_{L^{3}}^{2}\|u\|_{L^{\infty}}^{2}\|\nabla u\|_{L^{6}}^{2}+\|\rho\|_{L^{\infty}}^{2}\|\nabla u\|_{L^{4}}^{4} \\
& \quad+\|\rho\|_{L^{\infty}}^{2}\|u\|_{L^{\infty}}^{2}\left\|\nabla^{2} u\right\|_{L^{2}}^{2}+\|\nabla d\|_{L^{\infty}}^{2}\left\|\nabla^{3} d\right\|_{L^{2}}^{2}+\left\|\nabla^{2} d\right\|_{L^{4}}^{4} \\
& \lesssim\left\|\nabla u_{t}\right\|_{L^{2}}^{2}+1,
\end{aligned}
$$

where we have used Hölder inequality, Sobolev inequality, (3), (33), (44) and (51). This, together with (33), gives

$$
\int_{0}^{t}\|\nabla u\|_{H^{2}}^{2} \leq C
$$

The proof is now complete.
Step 6. Completion of proof of Theorem 1.3:
With the above established estimates, we obtain (2). This implies that $T_{*}$ is not the maximum time of existence of strong solutions, which contradicts the definition of $T_{*}$. Therefore, (1) is false. The proof of Theorem 1.3 is now complete.

## References

[1] J. L. Ericksen, Hydrostatic theory of liquid crystal. Arch. Rational Mech. Anal. 9 (1962), 371-378.
[2] E. B. Fabes, B. F. Jones, N. M. Riviere, The initial value problem for the Navier-Stokes equations with data in $L^{p}$. Arch. Rational Mech. Anal., 45 (1972), 222-240.
[3] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Linearized Steady Problems, Vol. 1, in: Springer Tracts in Natural Philosophy, vol. 38, Springer-Verlag, New York, 1994.
[4] M. C. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in $\mathbb{R}^{2}$. Cal. Var. P.D.E., 40 (2011), 15-36.
[5] T. Huang, C. Y. Wang, Blow up criterion for nematic liquid crystal flows. Comm. P.D.E., 2012, to appear.
[6] O.A. Ladyzhenskaya, V.A. Solonnikov, Unique solvability of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids, J. Soviet. Math. 9 (1978), 697-749.
[7] F. M. Leslie, Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal. 28 (1968), 265-283.
[8] F. H. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena. Comm. Pure Appl. Math., 42 (1989), 789-814.
[9] F. H. Lin, J. Y. Lin, C. Y. Wang, Liquid crystal flows in two dimensions. Arch. Rational Mech. Anal., 197 (2010) 297-336.
[10] F. H. Lin, C. Liu, Nonparabolic Dissipative Systems Modeling the Flow of Liquid Crystals. Comm. Pure Appl. Math., Vol. XLVIII, 501-537 (1995).
[11] F. H. Lin, C. Y. Wang: The Analysis of Harmonic Maps and Their Heat Flows. World Scientific, Hackensack, 2008.
[12] F. H. Lin, C. Y. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chinese Annals of Mathematics, 31B (6), 2010, 921-938.
[13] P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1. Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 3, Oxford Science Publications/The Clarendon Press/Oxford University Press, New York, 1996, xiv+237 pp.
[14] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal., 9 (1962), 187-195.
[15] C. Y. Wang, Heat flow of harmonic maps whose gradients belong to $L_{x}^{n} L_{t}^{\infty}$. Arch. Rational Mech. Anal. 188 (2008), 309-349.
[16] H. Y. Wen, S. J. Ding, Solution of incompressible hydrodynamic flow of liquid crystals . Nonlinear Analysis, Real World and Applications, 12 (2011), 1510-1531.
[17] X. Xu, Z. F. Zhang, Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows. J. Differential Equations, 252 (2012), 1169-1181.


[^0]:    2010 Mathematics Subject Classification. 35Q35, 76N10.
    Keywords. Liquid crystals, incompressible flow, strong solutions, Serrin type criterion.
    Received: 30 Jun 2013; Accepted: 3 February 2014
    Communicated by Jelena Manojlović
    This work was supported by Youth Fund of Hanshan Normal University(No.LQ201203).
    Email address: huangby8@hstc.edu.cn (Bingyuan Huang)

