A New Note on Absolute Riezs Summability.I

Hüseyin Bor ${ }^{\text {a }}$
${ }^{a}$ P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

Abstract

In [6], we proved a theorem dealing with absolute Riesz summability. In this paper, we prove that result under more weaker conditions. This theorem also includes some new results.

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be an almost increasing sequence if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [1]). Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$. We denote by u_{n} and t_{n} the nth $(C, 1)$ means of the sequences $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively. The series $\sum a_{n}$ is said to be summable $|C, 1|_{k}, k \geq 1$, if (see [7])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}-u_{n-1}\right|^{k}=\sum_{n=1}^{\infty} \frac{\left|t_{n}\right|^{k}}{n}<\infty \tag{1}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{2}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
R_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{3}
\end{equation*}
$$

defines the sequence $\left(R_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [8]). Let $\left(\theta_{n}\right)$ be any sequence of positive constants. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$, if (see [10])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|R_{n}-R_{n-1}\right|^{k}<\infty \tag{4}
\end{equation*}
$$

[^0]If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability (see [2]). In the special case $p_{n}=1$ for all values of $n,\left|\bar{N}, p_{n}\right|_{k}$ summability reduces to $|C, 1|_{k}$ summability. Also, if we take $\theta_{n}=n$ and $p_{n}=1$ for all values of n, then we get $|C, 1|_{k}$ summability. Furthermore, if we take $\theta_{n}=n$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|R, p_{n}\right|_{k}$ (see [4]) summability.

2. The Known Result

In [6], we proved the following main theorem dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series.
Theorem A. Let $\left(X_{n}\right)$ be an almost increasing sequence and let $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ be a non-increasing sequence. Suppose also that there exists sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{align*}
& \left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{5}\\
& \beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{6}\\
& \sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{7}\\
& \left|\lambda_{n}\right| X_{n}=O(1) \tag{8}
\end{align*}
$$

If

$$
\begin{equation*}
\sum_{n=1}^{m} \theta_{n}^{k-1} \frac{\left|t_{n}\right|^{k}}{n^{k}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{9}
\end{equation*}
$$

and $\left(p_{n}\right)$ is a sequence such that

$$
\begin{align*}
& P_{n}=O\left(n p_{n}\right), \tag{10}\\
& P_{n} \Delta p_{n}=O\left(p_{n} p_{n+1}\right), \tag{11}
\end{align*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{p_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$.
If we take $\theta_{n}=\frac{p_{n}}{p_{n}}$ and consider (10), then we get a result dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series (see [5]). In this case, the condition" $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ is a non-increasing sequence" is automatically satisfied.

3. The Main Result

The aim of this paper is to prove Theorem A under more weaker conditions. Now we shall prove the following theorem.

Theorem . Let $\left(X_{n}\right)$ be an almost increasing sequence and let $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ be a non-increasing sequence. If the conditions (5)-(8), (10)-(11) and

$$
\begin{equation*}
\sum_{n=1}^{m} \theta_{n}^{k-1} \frac{\left|t_{n}\right|^{k}}{n^{k} X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{12}
\end{equation*}
$$

are satisfied, then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$.

Remark 1. It should be noted that condition (12) is reduced to the condition (9) when $k=1$. When $k>1$, the condition (12) is weaker than the condition (9), but the converse is not true. As in [12] we can show that if (9) is satisfied, then we get that

$$
\sum_{n=1}^{m} \theta_{n}^{k-1} \frac{\left|t_{n}\right|^{k}}{n^{k} X_{n}^{k-1}}=O\left(\frac{1}{X_{1}^{k-1}}\right) \sum_{n=1}^{m} \theta_{n}^{k-1} \frac{\left|t_{n}\right|^{k}}{n^{k}}=O\left(X_{m}\right)
$$

If (12) is satisfied, then for $k>1$ we obtain that

$$
\sum_{n=1}^{m} \theta_{n}^{k-1} \frac{\left|t_{n}\right|^{k}}{n^{k}}=\sum_{n=1}^{m} \theta_{n}^{k-1} X_{n}^{k-1} \frac{\left|t_{n}\right|^{k}}{n^{k} X_{n}^{k-1}}=O\left(X_{m}^{k-1}\right) \sum_{n=1}^{m} \theta_{n}^{k-1} \frac{\left|t_{n}\right|^{k}}{n^{k} X_{n}^{k-1}}=O\left(X_{m}^{k}\right) \neq O\left(X_{m}\right)
$$

Remark 2. It should be noted that under the conditions on the sequence $\left(\lambda_{n}\right)$ we have that; $\left(\lambda_{n}\right)$ is bounded and $\Delta \lambda_{n}=O(1 / n)$ (see [3]).
We require the following lemmas for the proof of the theorem.
Lemma 1 ([9]). If $\left(X_{n}\right)$ is an almost increasing sequence, then under the conditions of the Theorem we have that

$$
\begin{align*}
& n X_{n} \beta_{n}=O(1) \tag{13}\\
& \sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{14}
\end{align*}
$$

Lemma 2 ([3]). If the conditions (10) and (11) are satisfied, then $\Delta\left(P_{n} / p_{n} n^{2}\right)=O\left(1 / n^{2}\right)$.

5. Proof of the Theorem

Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum_{n=1}^{\infty} \frac{a_{n} P_{n} \lambda_{n}}{n p_{n}}$. Then, by definition, we have

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=1}^{n} p_{v} \sum_{r=1}^{v} \frac{a_{r} P_{r} \lambda_{r}}{r p_{r}}=\frac{1}{P_{n}} \sum_{v=1}^{n}\left(P_{n}-P_{v-1}\right) \frac{a_{v} P_{v} \lambda_{v}}{v p_{v}} \tag{15}
\end{equation*}
$$

Then for $n \geq 1$

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} P_{v} a_{v} \lambda_{v}}{v p_{v}}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} P_{v} a_{v} v \lambda_{v}}{v^{2} p_{v}}
$$

Using Abel's transformation, we get

$$
\begin{aligned}
T_{n}-T_{n-1} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \Delta\left(\frac{P_{v-1} P_{v} \lambda_{v}}{v^{2} p_{v}}\right) \sum_{r=1}^{v} r a_{r}+\frac{\lambda_{n}}{n^{2}} \sum_{v=1}^{n} v a_{v} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}}(v+1) t_{v} p_{v} \frac{\lambda_{v}}{v^{2}} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v}(v+1) \frac{t_{v}}{v^{2} p_{v}} \\
& -\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} \lambda_{v+1}(v+1) t_{v} \Delta\left(P_{v} / v^{2} p_{v}\right) \\
& +\lambda_{n} t_{n}(n+1) / n^{2} \\
& =T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}
\end{aligned}
$$

To prove the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{16}
\end{equation*}
$$

Now, applying Hölder's inequality, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 1}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}} p_{v}\left|t_{v}\right|\left|\lambda_{v}\right| \frac{1}{v}\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \frac{1}{v^{k}} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \frac{1}{v^{k}} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \frac{1}{v^{k}}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right| p_{v}\left|t_{v}\right|^{k} \frac{1}{P_{v}} \frac{1}{v^{k}}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left|\lambda_{v}\right| \frac{\left|t_{v}\right|^{k}}{v^{k} X_{v}^{k-1}} \theta_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \theta_{v}^{k-1} \frac{\left|t_{v}\right|^{k}}{v^{k} X_{v}^{k-1}\left|\lambda_{v}\right|} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v} \theta_{r}^{k-1} \frac{\left|t_{r}\right|^{k}}{r^{k} X_{r}^{k-1}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \theta_{v}^{k-1} \frac{\left|t_{v}\right|^{k}}{v^{k} X_{v}^{k-1}}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \\
& =O
\end{aligned}
$$

as $m \rightarrow \infty$, by virtue of the hypotheses of the theorem and Lemma 1 . By using (10), we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}}\left|\Delta \lambda_{v}\right| p_{v}\left|t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\Delta \lambda_{v}\right|^{k}\left|t_{v}\right|^{k} p_{v}\right\} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\Delta \lambda_{v}\right|^{k}\left|t_{v}\right|^{k} p_{v} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left|\Delta \lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \theta_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right|^{k-1}\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k} \theta_{v}^{k-1} \\
& =O(1) \sum_{v=1}^{m} \beta_{v}^{k-1} \beta_{v}\left|t_{v}\right|^{k} \theta_{v}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{1}{v X_{v}}\right)^{k-1} \beta_{v}\left|t_{v}\right|^{k} \theta_{v}^{k-1} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \theta_{r}^{k-1} \frac{\left|t_{r}\right|^{k}}{r^{k} X_{r}^{k-1}}+O(1) m \beta_{m} \sum_{v=1}^{m} \theta_{v}^{k-1} \frac{\left|t_{v}\right|^{k}}{v^{k} X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1}\left|(v+1) \Delta \beta_{v}-\beta_{v}\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) a s m \rightarrow \infty,
\end{aligned}
$$

in view of the hypotheses of the theorem and Lemma 1. By using Lemma 2, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 3}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} P_{v}\left|\lambda_{v+1} \| t_{v}\right| \frac{1}{v} \frac{v+1}{v}\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}} p_{v}\left|\lambda_{v+1}\right| \frac{1}{v}\left|t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v} \frac{1}{v^{k}}\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k}\right\} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v} \frac{1}{v^{k}}\left|\lambda_{v+1}\right|^{k-1}\left|\lambda_{v+1} \| t_{v}\right|^{k} \\
& \times\left\{\sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}}\right\} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1} \frac{1}{v^{k}}\left(\frac{1}{X_{v}}\right)^{k-1}\left|\lambda_{v+1} \| t_{v}\right|^{k} \theta_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right| \theta_{v}^{k-1} \frac{\left|t_{v}\right|^{k}}{v^{k} X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v+1}\right| \sum_{r=1}^{v} \theta_{r}^{k-1} \frac{\left|t_{r}\right|^{k}}{r^{k} X_{r}^{k-1}}+O(1)\left|\lambda_{m+1}\right| \sum_{v=1}^{m} \theta_{v}^{k-1} \frac{\left|t_{v}\right|^{k}}{v^{k} X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v+1}\right| X_{v+1}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
& =O(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
& =O(1) \sum_{v=1}^{m} \beta_{v} X_{v}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the theorem and Lemma 1. Finally, as in $T_{n, 3}$, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{n, 4}\right|^{k} & =O(1) \sum_{n=1}^{m} \theta_{n}^{k-1}\left(\frac{n+1}{n}\right)^{k} \frac{1}{n^{k}}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \theta_{n}^{k-1} \frac{1}{n^{k}}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n} \| t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \theta_{n}^{k-1} \frac{1}{n^{k}}\left(\frac{1}{X_{n}}\right)^{k-1}\left|\lambda_{n} \| t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| \theta_{n}^{k-1} \frac{\left|t_{n}\right|^{k}}{n^{k} X_{n}{ }^{k-1}}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

This completes the proof of the theorem. If we take $p_{n}=1$ for all values of n, then we get a new result concerning the $\left|C, 1, \theta_{n}\right|_{k}$ summability. Also, if we take $\theta_{n}=n$, then we have another new result dealing with $\left|R, p_{n}\right|_{k}$ summability. Finally, if we take $\theta_{n}=n$ and $p_{n}=1$ for all values of n, then we get a result concerning the $|C, 1|_{k}$ summability.

Acknowledgement. The author expresses his thanks to the referee for his/her useful comments and suggestions.

References

[1] N. K. Bari and S. B. Stečkin, Best approximation and differential properties of two conjugate functions, Trudy. Moskov. Mat. Obšč. 5 (1956) 483-522 (Russian).
[2] H. Bor, On two summability methods, Math. Proc. Camb. Philos. Soc. 97 (1985) 147-149.
[3] H. Bor, Absolute summability factors for infinite series, Indian J. Pure Appl. Math. 19 (1988) 664-671.
[4] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991) 1009-1012.
[5] H. Bor, A note on absolute Riesz summability factors, Math. Inequal. Appl. 10 (2007) 619-625.
[6] H. Bor, A new note on absolute Riesz summability, Math. Comput. Modelling. 55 (2012) 1639-1643.
[7] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957) 113-141.
[8] G. H. Hardy, Divergent Series, Oxford Univ. Press. Oxford (1949).
[9] S. M. Mazhar, A note on absolute summability factors, Bull. Inst. Math. Acad. Sinica. 25 (1997) 233-242.
[10] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc. 115 (1992) 313-317.
[11] W. T. Sulaiman, A note on $|A|_{k}$ summability factors of infinite series, Appl. Math. Comput. 216 (2010) 2645-2648.

[^0]: 2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99
 Keywords. Absolute summability factors; almost increasing sequences; Riesz mean; infinite series; Hölder inequality; Minkowski inequality

 Received: 30 June 2013; Accepted: 19 March 2014
 Communicated by Dragan S. Djordjevic
 Email address: hbor33@gmail.com (Hüseyin Bor)

