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Abstract. In this paper, an explicit characterization of the separation properties T0 and T1 at a point p is
given in the topological category of proximity spaces. Furthermore, the (strongly) closed and (strongly) open
subobjects of an object are characterized in the category of proximity spaces and also the characterization
of each of the various notions of the connected objects in this category are given.

1. Introduction

The basic concepts of the theory of proximity spaces were emerged by Frigyes Riesz [30] at the mathe-
matical congress in Roma in 1908. This theory was rediscovered and axiomatized by Efremovich [31], [32]
in 1934, but not published until 1951. He characterized the proximity relation “A is close to B” as a binary
relation on subsets of a set X. In the meanwhile, in 1941, a study was made by Wallace [33], [34] regarding
“separation of sets”. This study can be considered as the primordial version of the proximity concept.

A large part of the early work in proximity spaces was done by Smirnov [28] and [29]. He showed which
topological spaces admit a proximity relation compatible with the given topology [29]. Smirnov was also
the first to discover relationship between proximities and uniformities.

Efremovich [32] defined the closure of a subset A of X to be the collection of all points of X “close” A.
Thereby he showed that a topology (completely regular) can be introduced in a proximity space. He also
showed that every completely regular space X can be turned into a proximity space by using Urysohn’s
function. This is to say, Aδ̄B iff there exist a continuous function f mapping X into [0, 1] such that f (A) = 0
and f (B) = 1.

In later years, some authors such as Leader [25], Lodato [26] and Pervin [27] have worked with weaker
axioms than Efremovich’s proximity axioms. For instance, Pervin omitted the symmetry condition, Leader
and Lodato used a weakened form of one of the Efremovich’s axioms. In this way, some generalized
proximities were appeared.

Baran [2] defined separation properties at a point p, i.e., locally (see [3], [5], [9] and [13]), then generalized
this to point free definitions by using the generic element, [20] p. 39, method of topos theory for an arbitrary
topological category over sets. One reason for doing this is that, in general, objects in a topos may not have
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points, however they always have a generic point. The other reason is that the notions of “closedness” and
“strong closedness” in arbitrary topological categories is defined in terms of T0 and T1 at a point, p. 335 [2].
The notions of “closedness” and “strong closedness” in set based topological categories are introduced by
Baran [2], [4], [8] and it is shown in [9], [10], [13] that these notions form an appropriate closure operator in
the sense of Dikranjan and Giuli [15] in some well-known topological categories.

The main goal of this paper is

1. to give the characterization of the separation properties T0 and T1 at a point p in the topological
category of proximity spaces,

2. to characterize the (strongly) closed and (strongly) open subspaces of a proximity space,
3. to give the characterization of the notions of connectedness and strong connectedness in the category

of proximity spaces.

2. Preliminaries

The following are some basic definitions and notations which we will use throughout the paper.
Let E andB be any categories. The functorU : E −→ B is said to be topological or that E is a topological

category overB ifU is concrete (i.e., faithful and amnestic), has small (i.e., sets) fibers, and for which every
U-source has an initial lift or, equivalently, for which eachU-sink has a final lift [1].

Note that a topological functorU : E −→ B is said to be normalized if constant objects, i.e., subterminals,
have a unique structure [1], [5], [12], [16], or [17].

Recall in [1] or [17], that an object X ∈ E (where X ∈ E stands for X ∈ Ob(E)), a topological category,
is discrete iff every map U(X) → U(Y) lifts to a map X → Y for each object Y ∈ E and an object X ∈ E is
indiscrete iff every mapU(Y)→U(X) lifts to a map Y→ X for each object Y ∈ E.

Let E be a topological category and X ∈ E. A is called a subspace of X if the inclusion map i : A→ X is
an initial lift (i.e., an embedding) and we denote it by A ⊂ X.

Definition 2.1. [22] An (Efremovich) proximity space is a pair (X, δ), where X is a set and δ is a binary relation on
the powerset of X such that

(P1) AδB iff BδA;
(P2) Aδ(B ∪ C) iff AδB or AδC;
(P3) AδB implies A,B , ∅;
(P4) A ∩ B , ∅ implies AδB;
(P5) Aδ̄B implies there is an E ⊆ X such that Aδ̄E and (X − E)δ̄B;

where Aδ̄B means it is not true that AδB.

A function f : (X, δ)→ (Y, δ′) between two proximity spaces is called a proximity mapping (or a p-map) iff
f (A)δ′ f (B) whenever AδB. It can easily be shown that f is a p-map iff f−1(C)δ̄ f−1(D) whenever Cδ̄′D.

We denote the category of proximity spaces and proximity mappings by Prox.

Definition 2.2. [36] Let X be a nonempty set. A proximity-base on X is a binary relation B on P(X) satisfying the
axioms (B1) through (B5) given below:

(B1) (∅,X) < B;
(B2) If A ∩ B , ∅ implies (A,B) ∈ B;
(B3) (A,B) ∈ B iff (B,A) ∈ B;
(B4) If (A,B) ∈ B and A ⊆ A∗, B ⊆ B∗ then (A∗,B∗) ∈ B;
(B5) If (A,B) < B then there exists a set E ⊆ X such that (A,E) < B and (X − E,B) < B.
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2.3 Let B be a proximity-base on a set X and let a binary relation δ on P(X) be defined as follows: (A,B) ∈ δ if,
given any finite covers {Ai : 1 ≤ i ≤ n} and {B j : 1 ≤ j ≤ m} of A and B respectively, then there exists a pair (i, j) such
that (Ai,B j) ∈ B. δ is a proximity on X finer than the relation B [35] or [36].

2.4 Let X be a non-empty set, for each i ∈ I, (Xi, δi) be a proximity space and fi : X → (Xi, δi) be a source in
Prox. Define a binary relation B on P(X) as follows: for A,B ∈ P(X), ABB iff fi(A)δi fi(B), for all i ∈ I. B is a
proximity-base on X (Theorem 3.8, [36]). The initial proximity structure δ on X generated by the proximity baseB is
given by for A,B ∈ P(X), AδB iff for any finite covers {Ai : 1 ≤ i ≤ n} and {B j : 1 ≤ j ≤ m} of A and B respectively,
then there exists a pair (i, j) such that (Ai,B j) ∈ B [36].

2.5 Let (X, δ) is a proximity space, Y be a non-empty set and f be a function from a proximity space (X, δ) onto a
set Y. The quotient proximity δ∗ on Y is given by for every A,B ⊂ Y, Aδ∗B iff for each binary rational s in [0, 1] there
is some Cs ⊂ Y such that C0 = A, C1 = B and s < t implies f−1(Cs)δ f−1(Ct) [24] or [37] p.276.

2.6 Let X be set and p ∈ X. Let X ∨p X be the wedge at p ([2] p. 334), i.e., two disjoint copies of X
identified at p, i.e., the pushout of p : 1 → X along itself (where 1 is the terminal object in Set). An epi sink
{i1, i2 : (X, δ) −→ (X∨p X, δ′)}(p−maps), where i1, i2 are the canonical injections, in Prox is a final lift if and only if
the following statement holds. For each pair A,B in the different component of X ∨p X, Aδ′B iff there exist sets C,D
in X such that Cδ{p} and {p}δD with i−1

k (A) = C and i−1
j (B) = D for k, j = 1, 2 and k , j. If A and B are in the same

component of wedge, then Aδ′B iff there exist sets C,D in X such that CδD and i−1
k (A) = C and i−1

k (B) = D for some
k = 1, 2. Specially, if ik(C) = A and ik(D) = B, then (ik(C), ik(D)) ∈ δ′ iff (i−1

k (ik(C)), i−1
k (ik(D))) = (C,D) ∈ δ. This is

a special case of 2.5.
2.7 Let X be a non-empty set. The discrete proximity structure δ on X is given by for A,B ⊂ X, AδB iff A∩B , ∅

[22] p.9.
2.8 Let X be a non-empty set. The indiscrete proximity structure δ on X is given by for A,B ⊂ X, AδB iff A , ∅

and B , ∅ [23] p.5.

3. T0 and T1 proximity spaces at a point

In this section, we give the characterization of T0 and T1 proximity spaces at a point p.
Let B be set and p ∈ B. Let B ∨p B be the wedge at p. A point x in B ∨p B will be denoted by x1(x2) if x is

in the first (resp. second) component of B ∨p B. Note that p1 = p2.
The principal p-axis map, Ap : B ∨p B→ B2 is defined by Ap(x1) = (x, p) and Ap(x2) = (p, x). The skewed

p-axis map, Sp : B∨p B→ B2 is defined by Sp(x1) = (x, x) and Sp(x2) = (p, x). The fold map at p, 5p : B∨p B→ B
is given by 5p(xi) = x for i = 1, 2 [2], [4].

Note that the maps Ap, Sp and 5p are the unique maps arising from the above pushout diagram for
which Api1 = (id, f ), Spi1 = (id, id) : B→ B2, Api2 = Spi2 = ( f , id) : B→ B2, and 5pi j = id, j = 1, 2, respectively,
where, id : B→ B is the identity map and f : B→ B is the constant map at p [10].

Remark 3.1. We define p1, p2 by 1 + p, p + 1 : B ∨p B → B, respectively where 1 : B → B is the identity map,
f : B → B is constant map at p (i.e., having value p). Note that π1Ap = p1 = π1Sp, π2Ap = p2, π2Sp = ∇p, where
πi : B2

→ B is the i-th projection, i = 1, 2. When showing Ap and Sp are initial it is sufficient to show that (p1 and
p2) and (p1 and ∇p) are initial lifts, respectively [2], [4].

Definition 3.2. (cf. [2], [4]) LetU : E −→ Set be a topological functor, X an object in E withU(X) = B. Let F be a
nonempty subset of B. We denote by X/F the final lift of the epiU-sink q :U(X) = B→ B/F = (B\F) ∪ {∗}, where q
is the epi map that is the identity on B\F and identifying F with a point {∗} [2].

Let p be a point in B.

1. X is T0 at p iff the initial lift of theU-source {Ap : B ∨p B→U(X2) = B2 and ∇p : B ∨p B→UD(B) = B} is
discrete, whereD is the discrete functor which is a left adjoint toU.

2. X is T′0 at p iff the initial lift of theU -source {id : B∨pB→U(X∨pX) = B∨pB and∇p : B∨pB→UD(B) = B}
is discrete, where X ∨p X is the wedge in E, i.e., the final lift of theU-sink {i1, i2 :U(X) = B→ B ∨p B} where
i1, i2 denote the canonical injections.
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3. X is T1 at p iff the initial lift of theU-source {Sp : B ∨p B→U(X2) = B2 and ∇p : B ∨p B→UD(B) = B} is
discrete.

Remark 3.3. 1. Note that for the category Top of topological spaces, T0 at p, T′0 at p, or T1 at p reduce to usual
T0 at p or T1 at p, respectively, where a topological space X is called T0 at p (resp. T1 at p) if for each x , p,
there exists a neighborhood of x not containing p or (resp. and) there exists a neighborhood of p not containing
x [6].

2. LetU : E → Set be a topological functor, X an object in E and p ∈ U(X) be a retract of X, i.e., the initial lift
h : 1→ X of theU-source p : 1→U(X) is a retract, where 1 is the terminal object in Set. Then if X is T0 at p
(resp. T1 at p), then X is T′0 at p but the converse of implication is not true, in general [5], Theorem 2.10.

3. If U : E → Set be a normalized topological functor, then each of T0 at p and T1 at p implies T′0 at p [5],
Corollary 2.11.

4. A topological space (Semiuniform convergence space) X is Ti, i = 0, 1 iff X is Ti, i = 0, 1, at p for all points p
in X [6] (resp. [14], Remark 3.2). IfU : E → Set is a topological functor, X an object in E and p ∈ U(X) is a
retract of X and X is T0 (resp. T1), then X is T0 at p (resp. T1 at p ) but the reverse implication is not true, in
general [5], Theorem 2.6 and [14], Remark 4.2 (3).

5. One of the uses of T0 at p and T1 at p is to define the notions of (strong) closedness in set-based topological
categories which are introduced in [2], [4]. These notions are used in [2], [7], [10] and [11] to generalize each
of the notions of compactness, connectedness, Hausdorffness, and perfectness to arbitrary set-based topological
categories. Moreover, it is shown, in [9], [10], and [13] that they form appropriate closure operators in the sense
of Dikranjan and Giuli [15] in some well-known topological categories.

Theorem 3.4. Let (X, δ) be a proximity space and p ∈ X. (X, δ) is T1 at p iff for each x , p, ({x}, {p}) < δ.

Proof. Suppose (X, δ) is T1 at p, i.e., by 2.4, 2.7, 3.1 and 3.2, for any sets U,V on the wedge, p1Uδp1V,
∇pUδ∇pV and ∇pUδd∇pV iff U ∩ V , ∅ (δd is the discrete proximity structure on X). We shall show that the
condition holds. Suppose for some x, p ∈ X, ({x}, {p}) ∈ δ with x , p. Then, by 2.4, 2.7 and 3.1, for (U,V) ∈ δ′

(δ′ is a proximity structure on the wedge) with U = {x1} and V = {x2}, p1Uδp1V = p1({x1})δp1({x2}) =
π1Sp({x1})δπ1Sp({x2}) = π1({(x, x)})δπ1({(p, x)}) = {x}δ{p}, i.e., ({x}, {p}) ∈ δ, ∇pUδ∇pV = ∇p({x1})δ∇p({x2}) =
π2Sp({x1})δπ2Sp({x2}) = π2({(x, x)})δπ2({(p, x)}) = {x}δ{x}, i.e., ({x}, {x}) ∈ δ, where πi : X2

→ X, i = 1, 2, are the
projection maps, and ∇p({x1})δd∇p({x2}) = {x}δd{x}, i.e., ({x}, {x}) ∈ δd (δd is the discrete proximity structure
on X). But U∩V = ∅. This is a contradiction to the fact that (X, δ) is T1 at p. Hence if ({x}, {p}) ∈ δ, then x = p.

Conversely, suppose that for each x , p, ({x}, {p}) < δ. We need to show that (X, δ) is T1 at p, i.e., by 2.4, 2.7,
3.1 and 3.2, we must show that the proximity structure δ′ on X∨pX induced by Sp : X∨pX→U((X2, δ2)) = X2

and ∇p : X ∨p X → UD((X, δd)) = X is discrete, where δ2 and δd are the product proximity structure on
X2 and the discrete proximity structure on X, respectively. Let (U,V) be any set in δ′, i.e., πiSp(U)δπiSp(V)
(i = 1, 2) and ∇pUδd∇pV.

Since δd is the discrete proximity structure and ∇pUδd∇pV, then ∇pU ∩ ∇pV , ∅. It follows that there
exists x ∈ ∇pU ∩ ∇pV. Hence, there exist y ∈ U and z ∈ V such that ∇py = x = ∇pz. If x = p, then y = pi = z,
(i = 1, 2) and pi ∈ U ∩ V.

If x , p, then y = xi, z = x j (i, j = 1, 2). We need to show that U ∩ V , ∅.
If p ∈ ∇pU ∩ ∇pV, then pi ∈ U ∩ V (i = 1, 2).
Suppose that p < ∇pU ∩ ∇pV. We show that both U and V are in the first or in the second or in both

component of X ∨p X.
If U subset of the first component of X ∨p X and V subset of the second component of X ∨p X, then

{x1} ∈ U and {x2} ∈ V. It follows thatπ1Sp({x1})δπ1Sp({x2}) = π1({(x, x)})δπ1({(p, x)}) = {x}δ{p}, i.e., ({x}, {p}) ∈ δ.
Since ({x}, {p}) < δ (by assumption), ({x1}, {x2}) < δ′ by the condition (P2) of 2.1.

The case U subset of the second component of X∨p X and V subset of the first component of X∨p X can
be handled similarly. Hence U and V can not be in different component of X ∨p X.

If U and V are in both component of X ∨p X, then U ⊇ {x1, x2} and V ⊇ {x1, x2}. Hence U ∩ V , ∅.
If U subset of the first component of X ∨p X and V subset of both component of X ∨p X, then U ⊇ {x1}

and V ⊇ {x1, x2}. Hence U ∩ V , ∅.
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If U subset of both component of X∨p X and V subset of the second component of X∨p X, then U ⊇ {x1, x2}

and V ⊇ {x2}. Hence U ∩ V , ∅.
If U and V are in the first component of X ∨p X, then U ⊇ {x1} and V ⊇ {x1}. Similarly if U and V are in

the second component of X ∨p X, then U ⊇ {x2} and V ⊇ {x2}. Hence U ∩ V , ∅.
If ({xi}, {xi}) ∈ δ′, then π1Sp({x1})δπ1Sp({x1}) = {x}δ{x}, i.e., ({x}, {x}) ∈ δ, π2Sp({x1})δπ2Sp({x1}) = {x}δ{x},

i.e., ({x}, {x}) ∈ δ and π1Sp({x2})δπ1Sp({x2}) = {p}δ{p}, i.e., ({p}, {p}) ∈ δ, π2Sp({x2})δπ2Sp({x2}) = {x}δ{x}, i.e.,
({x}, {x}) ∈ δ.

We must have (U,V) ⊇ ({xi}, {xi}), (i = 1, 2), i.e., U∩V , ∅ and consequently, by 2.4, 2.7, 3.1 and 3.2, (X, δ)
is T1 at p.

Theorem 3.5. Let (X, δ) be a proximity space and p ∈ X. (X, δ) is T0 at p iff for each x , p, ({x}, {p}) < δ.

Proof. Suppose (X, δ) is T0 at p, i.e., by 2.4, 2.7, 3.1 and 3.2, for any sets U,V on the wedge, p1Uδp1V, p2Uδp2V
and ∇pUδd∇pV iff U ∩ V , ∅ (δd is the discrete proximity structure on X). We shall show that the condition
holds. Suppose for some x, p ∈ X, ({x}, {p}) ∈ δ with x , p. Then, by 2.4, 2.7 and 3.1, for (U,V) ∈ δ′

(δ′ is a proximity structure on the wedge) with U = {x1} and V = {x2}, p1Uδp1V = p1({x1})δp1({x2}) =
π1Ap({x1})δπ1Ap({x2}) = π1({(x, p)})δπ1({(p, x)}) = {x}δ{p}, i.e., ({x}, {p}) ∈ δ, p2Uδp2V = p2({x1})δp2({x2}) =
π2Ap({x1})δπ2Ap({x2}) = π2({(x, p)})δπ2({(p, x)}) = {p}δ{x}, i.e., ({p}, {x}) ∈ δ, where πi : X2

→ X, i = 1, 2, are the
projection maps, and ∇p({x1})δd∇p({x2}) = {x}δd{x}, i.e., ({x}, {x}) ∈ δd (δd is the discrete proximity structure
on X). But U∩V = ∅. This is a contradiction to the fact that (X, δ) is T0 at p. Hence if ({x}, {p}) ∈ δ, then x = p.

Conversely, suppose that for each x , p, ({x}, {p}) < δ. We need to show that (X, δ) is T0 at p, i.e., by 2.4, 2.7,
3.1 and 3.2, we must show that the proximity structure δ′ on X∨pX induced by Ap : X∨pX→U((X2, δ2)) = X2

and ∇p : X ∨p X → UD((X, δd)) = X is discrete, where δ2 and δd are the product proximity structure on X2

and the discrete proximity structure on X, respectively. Let (U,V) be any set in δ′, i.e., πiAp(U)δπiAp(V)
(i = 1, 2) and ∇p(U)δd∇p(V).

Since δd is the discrete proximity structure and ∇pUδd∇pV, then ∇pU ∩ ∇pV , ∅. It follows that there
exists x ∈ ∇pU ∩ ∇pV. Hence, there exist y ∈ U and z ∈ V such that ∇py = x = ∇pz. If x = p, then y = pi = z,
(i = 1, 2) and pi ∈ U ∩ V.

If x , p, then y = xi, z = x j (i, j = 1, 2). We need to show that U ∩ V , ∅.
If p ∈ ∇pU ∩ ∇pV, then pi ∈ U ∩ V (i = 1, 2).
Suppose that p < ∇pU ∩ ∇pV. We show that both U and V are in the first or in the second or in both

component of X ∨p X.
If U subset of the first component of X∨p X and V subset of the second component of X∨p X, then {x1} ∈ U

and {x2} ∈ V. It follows that π1Ap({x1})δπ1Ap({x2}) = π1({(x, p)})δπ1({(p, x)}) = {x}δ{p}, i.e.,= ({x}, {p}) ∈ δ.
Since ({x}, {p}) < δ (by assumption), ({x1}, {x2}) < δ′ by the condition (P2) of 2.1.

The case U subset of the second component of X∨p X and V subset of the first component of X∨p X can
be handled similarly. Hence U and V can not be in different component of X ∨p X.

If U and V are in both component of X ∨p X, then U ⊇ {x1, x2} and V ⊇ {x1, x2}. Hence U ∩ V , ∅.
If U subset of the first component of X ∨p X and V subset of both component of X ∨p X, then U ⊇ {x1}

and V ⊇ {x1, x2}. Hence U ∩ V , ∅.
If U subset of both component of X∨p X and V subset of the second component of X∨p X, then U ⊇ {x1, x2}

and V ⊇ {x2}. Hence U ∩ V , ∅.
If U and V are in the first component of X ∨p X, then U ⊇ {x1} and V ⊇ {x1}. Similarly if U and V are in

the second component of X ∨p X, then U ⊇ {x2} and V ⊇ {x2}. Hence U ∩ V , ∅.
If ({xi}, {xi}) ∈ δ′, then π1Ap({x1})δπ1Ap({x1}) = {x}δ{x}, i.e., ({x}, {x}) ∈ δ, π2Ap({x1})δπ2Ap({x1}) = {p}δ{p},

i.e., ({p}, {p}) ∈ δ and π1Ap({x2})δπ1Ap({x2}) = {p}δ{p}, i.e., ({p}, {p}) ∈ δ, π2Ap({x2})δπ2Ap({x2}) = {x}δ{x}, i.e.,
({x}, {x}) ∈ δ.

We must have (U,V) ⊇ ({xi}, {xi}), (i = 1, 2), i.e., U∩V , ∅ and consequently, by 2.4, 2.7, 3.1 and 3.2, (X, δ)
is T0 at p.

Remark 3.6. Let (X, δ) be a proximity space and p ∈ X. It follows from 3.4, 3.5 that (X, δ) is T0 at p if and only if
(X, δ) is T1 at p if and only if for each x , p, ({x}, {p}) < δ.
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Theorem 3.7. All proximity spaces are T′0 at p.

Proof. Suppose that (X, δ) is a proximity space and p ∈ X. By 2.4, 2.6, 2.7, 3.1 and 3.2 we will show that for
any (ik(U), ik(V)) ∈ δ′ (δ′ is a proximity structure on X∨p X), if ik(U,V) = (ik(U), ik(V)) ∈ δ′ (k = 1, 2) for some
(U,V) ∈ δ (U,V ⊂ X) and (∇p(ik(U)),∇p(ik(V))) ∈ δd (δd is the discrete proximity structure on X), then we will
show that (ik(U), ik(V)) ⊇ ({pk}, {pk}) or (ik(U), ik(V)) ⊇ ({xk}, {xk}), (k = 1, 2), i.e., ik(U) ∩ ik(V) , ∅.

Since δd is the discrete proximity structure and ∇p(ik(U))δd∇p(ik(V)), then ∇p(ik(U)) ∩ ∇p(ik(V)) , ∅. It
follows that there exists x ∈ ∇p(ik(U)) ∩ ∇p(ik(V)). Hence, there exist y ∈ ik(U) and z ∈ ik(V) such that
∇py = x = ∇pz. If x = p, then y = pk = z, (k = 1, 2) and pk ∈ ik(U) ∩ ik(V).

If x , p, then y = xk, z = xn (k,n = 1, 2). We need to show that ik(U) ∩ ik(V) , ∅.
If p ∈ ∇p(ik(U)) ∩ ∇p(ik(V)), then pk ∈ ik(U) ∩ ik(V) (k = 1, 2).
Suppose that p < ∇p(ik(U))∩∇p(ik(V)). We show that both ik(U) and ik(V) are in the first or in the second

or in both component of X ∨p X.
If ik(U) subset of the first component of X∨p X and ik(V) subset of the second component of X∨p X, then

{x1} ∈ ik(U) and {x2} ∈ ik(V). But, if (ik(U), ik(V)) ⊇ ({x1}, {x2}) ∈ δ′ for some (U,V) ∈ δ and k = 1 (resp. k = 2),
then ({x1}, {x2}) ∈ (i1(U), i1(V)) which shows that x2 (resp. x1) must be in the first (resp. second) component
of X ∨p X, a contradiction since x , p.

Similarly, if ik(U) subset of the second component of X ∨p X and ik(V) subset of the first component of
X ∨p X, then {x2} ∈ ik(U) and {x1} ∈ ik(V). But, if (ik(U), ik(V)) ⊇ ({x2}, {x1}) ∈ δ′ for some (U,V) ∈ δ and k = 1
(resp. k = 2), then ({x2}, {x1}) ∈ (i1(U), i1(V)) which shows that x2 (resp. x1) must be in the first (resp. second)
component of X ∨p X, a contradiction since x , p. Hence ik(U) and ik(V) can not be in different component
of X ∨p X.

If ik(U) and ik(V) are in both component of X ∨p X, then ik(U) ⊇ {x1, x2} and ik(V) ⊇ {x1, x2}. Hence
ik(U) ∩ ik(V) , ∅.

If ik(U) subset of the first component of X ∨p X and ik(V) subset of both component of X ∨p X, then
ik(U) ⊇ {x1} and ik(V) ⊇ {x1, x2}. Hence ik(U) ∩ ik(V) , ∅.

If ik(U) subset of both component of X ∨p X and ik(V) subset of the second component of X ∨p X, then
ik(U) ⊇ {x1, x2} and ik(V) ⊇ {x2}. Hence ik(U) ∩ ik(V) , ∅.

If ik(U) and ik(V) are in the first component of X∨p X, then ik(U) ⊇ {x1} and ik(V) ⊇ {x1}. Similarly if ik(U)
and ik(V) are in the second component of X ∨p X, then ik(U) ⊇ {x2} and ik(V) ⊇ {x2}. Hence ik(U) ∩ ik(V) , ∅.

We must have (ik(U), ik(V)) ⊇ ({xi}, {xi}), (i = 1, 2), i.e., ik(U) ∩ ik(V) , ∅ and consequently, by 2.4, 2.6, 2.7,
3.1 and 3.2, (X, δ) is T′0 at p.

Remark 3.8. If a proximity space (X, δ) is T0 at p ∈ X or T1 at p ∈ X, then it is T′0 at p. However, the converse is
not true generally. For example, let X = {a, b} and δ = {(X,X), ({a}, {a}), ({b}, {b}), (X, {a}), ({a},X), (X, {b}), ({b},X),
({a}, {b}), ({b}, {a})}. Then (X, δ) is T′0 at p = a but it is not T0 at p = a or T1 at p since ({a}, {b}) ∈ δ but a , b.

4. Closedness and Connectedness

In this section, the (strongly) closed and (strongly) open subobjects of an object are characterized in
the category of proximity spaces. Furthermore, the characterization of each of the various notions of the
connected objects in this category are given.

Let B be set and p ∈ B. The infinite wedge product ∨∞p B is formed by taking countably many disjoint
copies of B and identifying them at the point p. Let B∞ = B × B × ... be the countable cartesian product of
B. Define A∞p : ∨∞p B → B∞ by A∞p (xi) = (p, p, ..., p, x, p, ...), where xi is in the i-th component of the infinite
wedge and x is in the i-th place in (p, p, ..., p, x, p, ...) (infinite principal p-axis map), and 5∞p : ∨∞p B −→ B by
5
∞
p (xi) = x for all i ∈ I (infinite fold map), [2], [4].

Note, also, that A∞p is the unique map arising from the multiple pushout of p : 1 → B for which
A∞p i j = (p, p, ..., p, id, p, ...) : B→ B∞, where the identity map, id, is in the j-th place [10].
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Definition 4.1. (cf. [2], [4]) LetU : E −→ Set be a topological functor, X an object in E withU(X) = B. Let F be a
nonempty subset of B. We denote by X/F the final lift of the epiU-sink q :U(X) = B→ B/F = (B\F) ∪ {∗}, where q
is the epi map that is the identity on B\F and identifying F with a point {∗} [2].

Let p be a point in B.

1. p is closed iff the initial lift of the U-source {A∞p : ∨∞p B → U(X∞) = B∞ and ∇∞p : ∨∞p B → UD(B) = B} is
discrete.

2. F ⊂ X is closed iff {∗}, the image of F, is closed in X/F or F = ∅.
3. F ⊂ X is strongly closed iff X/F is T1 at {∗} or F = ∅.
4. If B = F = ∅, then we define F to be both closed and strongly closed.

Recall that a prebornological space is a pair (B,F), where F is a family of subsets of B that is closed
under nonempty finite union and contains all finite nonempty subsets of B. A morphism (B,F)→ (B1,F1)
of such spaces is a function f : B→ B1 such that f (C) ∈ F1 if C ∈ F. We denote by PBorn, the category thus
obtained. This category is topological category over Set [8].

The category Prord of preordered spaces has as objects the pairs (B,R), where B is a set and R is a
reflexive and transitive relation on B and has as morphism (B,R)→ (B1,R1) those functions f : B→ B1 such
that if aRb, then f (a)R1 f (b) for all a, b ∈ B. This category is topological category over Set [13].

Lemma 4.2. ([13], Theorem 3.6) Let (B,R) be a preordered set (i.e., R is a reflexive and transitive relation on B), and
∅ , F ⊂ B. Then,

(i) F is a closed subset of B iff for any x ∈ B, if there exists a, b ∈ F such that xRa and bRx, then x ∈ F.
(ii) F is a strongly closed subset of B iff for each x ∈ B, if there exists a ∈ F such that xRa or aRx, then x ∈ F.

Lemma 4.3. ([4], Theorem 3.9 and 3.10) Let (B,F) be a prebornological space. Then,

(i) A subset F ⊂ B is closed iff B = F or F = ∅.
(ii) All subsets of B are strongly closed.

Remark 4.4. 1. In Top, the notion of closedness coincides with the usual one [2] and F is strongly closed iff F is
closed and for each x < F there exists a neighbourhood of F missing x [2]. If a topological space is T1, then the
notions of closedness and strong closedness coincide [2].

2. In general, for an arbitrary topological category, the notions of closedness and strong closedness are independent
of each other. To see this, let B = {−1, 1}, R = {(−1, 1), (−1,−1), (1, 1)} and F = {1}. Then (B,R) is a preordered
set and by 4.2, F is closed, but F is not strongly closed. On the other hand, let B = R, the set of real numbers,
and F = P(R)− {∅}, the set of all nonempty subsets ofR. Note, [8] Remark 3.2, that (B,F) is a prebornological
space and by 4.3, Q, the set of rational numbers, is strongly closed, but Q is not closed.

Theorem 4.5. Let (X, δ) be a proximity space and p ∈ X. {p} is closed in X iff for any B ⊂ X, if {p}δB, then p ∈ B.

Proof. Suppose {p} is closed in X, i.e., by 4.1, the proximity structure δ′ on ∨∞p X induced by A∞p : ∨∞p X →
U(X∞) = X∞ and ∇∞p : ∨∞p X → UD(X) = X is discrete. We will show that for any B ⊂ X, if {p}δB,
then p ∈ B. Suppose that {p}δB while p < B, for some B ⊂ X. Then for some x , p and x ∈ B,
we get ({x}, {p}) ∈ δ by the condition (P2) of 2.1. Note that ({x1}, {x2}) ∈ δ′, since π1A∞p {x1}δπ1A∞p {x2} =
π1{(x, p, p, ...)}δπ1{(p, x, p, ...)} = {x}δ{p}, i.e., ({x}, {p}) ∈ δ (by assumption), π2A∞p {x1}δπ2A∞p {x2} = π2{(x, p,
p, ...)}δπ2{(p, x, p, ...)} = {p}δ{x}, i.e., ({p}, {x}) ∈ δ (by assumption and by the condition (P1) of 2.1), for i ≥ 3,
πiA∞p {x1}δπiA∞p {x2} = πi{(x, p, p, ...)}δπi{(p, x, p, ...)} = {p}δ{p}, i.e., ({p}, {p}) ∈ δ (by the condition (P4) of 2.1)
where πi : X∞ → X projection function and∇∞p ({x1})δd∇

∞
p ({x2}) = {x}δd{x}, i.e., ({x}, {x}) ∈ δd (δd is the discrete

proximity structure on X). But {x1} ∩ {x2} = ∅. This is a contradiction to the fact that δ′ is discrete. Hence if
p < B, then {p}δ̄B.

Conversely, suppose that the condition holds. We need to show that {p} is closed in X. By 4.1,
we must show that the proximity structure δ′ on ∨∞p X induced by A∞p : ∨∞p X → U(X∞) = X∞ and
∇
∞
p : ∨∞p X → UD(X) = X is discrete. Since δd is the discrete proximity structure, then ∇∞p U ∩ ∇∞p V , ∅ for
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all U,V ⊂ ∨∞p X. If ∇∞p U ∩ ∇∞p V , ∅, then there exists x ∈ ∇∞p U ∩ ∇∞p V, i.e., x ∈ ∇∞p U and x ∈ ∇∞p V. Hence,
there exists y ∈ U and there exists z ∈ V such that ∇∞p y = x = ∇∞p z. If x = p, then y = pi = z for all i ∈ I, and
pi ∈ U ∩ V.

If x , p, then y = xi, z = x j (i , j) for all i, j ∈ I. We need to show that U ∩ V , ∅.
If p ∈ ∇∞p U ∩ ∇∞p V, then pi ∈ U ∩ V for all i ∈ I.
Suppose that p < ∇∞p U∩∇∞p V. We show that both U and V are in the i. component or in the j. component

or in the i. component and in the j. component of ∨∞p X.
If U subset of the i. component of ∨∞p X and V subset of the j. component of ∨∞p X, then {xi} ∈ U and

{x j} ∈ V. It follows that πiA∞p ({xi})δπiA∞p ({x j}) = {x}δ{p}, i.e., ({x}, {p}) ∈ δ and π jA∞p ({xi})δπ jA∞p ({x j}) = {p}δ{x},
i.e., ({p}, {x}) ∈ δ. Since ({p}, {x}) < δ (by assumption), ({xi}, {x j}) < δ′ by the condition (P2) of 2.1.

The case U subset of the j. component of ∨∞p X and V subset of the i. component of ∨∞p X can be handled
similarly. Hence U and V can not be in different component of ∨∞p X.

If U and V are in the i. component of ∨∞p X and in the j. component of ∨∞p X, then U ⊇ {xi, x j}, V ⊇ {xi, x j}.
Hence U ∩ V , ∅.

If U subset of the i. component and the j. component of ∨∞p X and V subset of the j. component of ∨∞p X,
then U ⊇ {xi, x j} and V ⊇ {x j}. Hence U ∩ V , ∅.

If U subset of the i. component of ∨∞p X and V subset of the i. component of ∨∞p X and of the j. component
of ∨∞p X, then U ⊇ {xi} and V ⊇ {xi, x j}. Hence U ∩ V , ∅.

If U and V are in the i. component of ∨∞p X, then U ⊇ {xi} and V ⊇ {xi}. Similarly if U and V are in the j.
component of ∨∞p X, then U ⊇ {x j} and V ⊇ {x j}. Hence U ∩ V , ∅.

If ({xi}, {xi}) ∈ δ′ for all i ∈ I, thenπiA∞p ({xi})δπiA∞p ({xi}) = {x}δ{x}, i.e., ({x}, {x}) ∈ δ and∇∞p ({xi})δd∇
∞
p ({xi}) =

{x}δd{x}, i.e., ({x}, {x}) ∈ δd for any point x in B.
Consequently if (U,V) ∈ δ′, then (U,V) ⊇ ({xi}, {xi}) for all i ∈ I or (U,V) ⊇ ({pi}, {pi}) for all i ∈ I. Hence

by 2.7, δ′ is discrete on ∨∞p X, i.e., {p} is closed in X.

Theorem 4.6. Let (X, δ) be a proximity space. Then ∅ , F ⊂ X is closed iff x ∈ F whenever {x}δF for all x ∈ X.

Proof. Suppose that F is closed and x < F whenever {x}δF for some x ∈ X. By Definition 4.1, F is closed iff {∗}
is closed in X/F and by 4.5, {∗} is closed in X/F iff for any B ⊂ X/F, {∗}δ′B then ∗ ∈ B, where δ′ is the quotient
proximity structure on X/F that is induced by the map q : X → X/F (defined in the Definition 4.1). Since
{x}δF and q is a p-map, we have q({x})δ′q(F)={x}δ′{∗}, i.e., ({x}, {∗}) ∈ δ′, a contradiction since ∗ < {x} ⊂ X/F.

Conversely, suppose that x ∈ F whenever {x}δF for any x ∈ X. We shall show that F is closed, i.e., {∗}δ′B
then ∗ ∈ B, for any B ⊂ X/F. Suppose that ∗ < B, for some B ⊂ X/F. Since {∗}δ′B, then for each binary
rational s in [0, 1] there is some Cs ⊂ X/F such that C0 = {∗}, C1 = B and s < t implies q−1(Cs)δq−1(Ct).
q−1({∗})δq−1(B) = FδB, by definition of q-map and 2.5. Since FδB, then there exists y ∈ B such that Fδ{y} by
the condition (P2) of 2.1. But for all y ∈ B, y < F since ∗ < B. This is a contradiction.

Theorem 4.7. Let (X, δ) be a proximity space. Then ∅ , F ⊂ X is strongly closed iff x ∈ F whenever {x}δF for all
x ∈ X.

Proof. Suppose that F is strongly closed and x < F whenever {x}δF for some x ∈ X. By Definition 4.1, F is
strongly closed iff X/F is T1 at {∗} and by 3.4, X/F is T1 at {∗} iff for any B ⊂ X/F, {∗}δ′B then ∗ ∈ B, where δ′ is
the quotient proximity structure on X/F that is induced by the map q : X→ X/F (defined in the Definition
4.1). Since {x}δF and q is a p-map, we have q({x})δ′q(F)={x}δ′{∗}, i.e., ({x}, {∗}) ∈ δ′, a contradiction since
∗ < {x} ⊂ X/F.

Conversely, suppose that x ∈ F whenever {x}δF for any x ∈ X. We shall show that F is strongly closed,
i.e., by 3.4, if {∗}δ′B, then ∗ ∈ B, for any B ⊂ X/F. Suppose that ∗ < B, for some B ⊂ X/F. Since {∗}δ′B,
then for each binary rational s in [0, 1] there is some Cs ⊂ X/F such that C0 = {∗}, C1 = B and s < t implies
q−1(Cs)δq−1(Ct). q−1({∗})δq−1(B) = FδB, by definition of q-map and 2.5. Since FδB, then there exists y ∈ B such
that Fδ{y} by the condition (P2) of 2.1. But for all y ∈ B, y < F since ∗ < B. This is a contradiction.

Definition 4.8. Let E be a topological category over Set, X an object in E and F be a nonempty subset of X.
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1. F ⊂ X is open iff Fc, the complement of F, is closed in X.
2. F ⊂ X is strongly open iff Fc, the complement of F, is strongly closed in X [11].

Note that in Top the notion of openness coincides with the usual one [11]. If a topological space is T1,
then the notions of openness and strong openness coincide [11].

Theorem 4.9. Let (X, δ) be a proximity space. ∅ , F ⊂ X is (strongly) open iff x ∈ Fc whenever {x}δFc for all x ∈ X.

Proof. It follows from 4.6, 4.7 and 4.8.

Definition 4.10. ([37], p. 268) Let (X, δ) be a proximity space and A ⊂ X. Define Ā = {x|xδA} and if Ā = A, then
A is said to be closed.

Remark 4.11. 1. Let (X, δ) be a proximity space and A ⊂ X. A is closed (in the usual above sense) iff for each
x ∈ X, if xδA, then x ∈ A.

2. Let (X, δ) be a proximity space. It follows from 4.6, 4.7 and 4.10 that the notions of closedness (in our sense)
and strong closedness coincide with the notion of closedness in the usual sense.

We now give the characterization the various notions of connectedness in the category of proximity
spaces.

Definition 4.12. Let E be a topological category over Set and X be an object in E.

1. X is connected iff the only subsets of X both strongly open and strongly closed are X and ∅ [11].
2. X is strongly connected iff the only subsets of X both open and closed are X and ∅ [11].
3. X is D-connected iff any morphism from X to any discrete object is constant (cf. [11], [17], [18], [19], [21]).

Note that for the category Top of topological spaces, the notion of strongly connectedness and D-
connectedness coincides with the usual notion of connectedness. If a topological space X is T1, then, by
4.12, the notions of connectedness and strong connectedness coincide [11].

Theorem 4.13. A proximity space (X, δ) is (strongly) connected iff for any non-empty proper subset F of X, either
the condition (1) or (2) holds.

1. x < F whenever {x}δF for some x ∈ X.
2. x < Fc whenever {x}δFc for some x ∈ X.

Proof. Suppose that (X, δ) is (strongly) connected but conditions (1) and (2) do not hold for some non-empty
proper subset F of X. Since the condition (1) does not hold, we get x ∈ F whenever {x}δF for all x ∈ X which
means that subset F is (strongly) closed by 4.6 or 4.7. Since the condition (2) does not hold, we get x ∈ Fc for
all x ∈ X, whenever {x}δFc. This means that Fc is (strongly) closed. So F is (strongly) open by 4.9. Hence F
is open and closed. But this is a contradiction since (X, δ) is (strongly) connected.

Conversely, suppose that the condition (1) holds. Then x < F whenever {x}δF for some x ∈ X and F is
not (strongly) closed 4.6 or 4.7. Suppose that the condition (2) holds. Then for some x ∈ X, x < Fc whenever
{x}δFc. This means that Fc is not (strongly) closed. So F is not (strongly) open by 4.9. Hence the only subsets
of X both (strongly) open and (strongly) closed are X and ∅. From here (X, δ) is (strongly) connected.

Theorem 4.14. Suppose (X, δ) is any proximity space. (X, δ) is D-connected iff {x}δ{y} for all x, y ∈ X with x , y.

Proof. Suppose that (X, δ) is D-connected and the condition does not hold, i.e., ({x}, {y}) < δ for some x, y ∈ X
with x , y. Let (Y, δ′) be a discrete proximity space with CardY > 1. Define f : (X, δ) → (Y, δ′) by f (t) = a,
if t = x and f (t) = b, if t ∈ {x}c. We show that f is a p-map. Since (Y, δ′) is a discrete proximity space and
{a} ∩ {b} = ∅, ({a}, {b}) < δ′. Since ({x}, {y}) < δ and f−1({a}) = {x}, f−1({b}) = {x}c, then ( f−1({a}), f−1({b})) < δ,
i.e., ({x}, {x}c) < δ. Indeed, if ({x}, {x}c) ∈ δ, then ( f ({x}), f ({x}c)) = ({a}, {b}) ∈ δ′. But this is a contradiction
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since (Y, δ′) is the discrete proximity space. Consequently, f is a p-map but it is not a constant map. This is
a contradiction since (X, δ) is a D-connected. Hence {x}δ{y} for all x, y ∈ X with x , y.

Conversely, suppose that the condition holds. Let f : (X, δ)→ (Y, δ′) be a p-map with (Y, δ′) is a discrete
proximity space. If CardY = 1, then f is constant and (X, δ) is D-connected. Suppose that CardY > 1 and
f is not constant. There exist x, y ∈ X with x , y such that f (x) , f (y). Hence { f (x)} ∩ { f (y)} = ∅ and
({ f (x)}, { f (y)}) < δ′. Since f is p-map, ( f−1({ f (x)}), f−1({ f (y)})) < δ, i.e., ({x}, {y}) < δ. But this is a contradiction
by assumption. Hence f must be constant and this means that (X, δ) is D-connected.
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