On Generalized Spiral-like Analytic Functions

Khalida Inayat Noor ${ }^{\text {a }}$, Nazar Khan ${ }^{\text {a }}$, Muhammad Aslam Noor ${ }^{\text {a }}$
${ }^{a}$ Mathematics Department, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan

Abstract

In this paper, we use the concept of bounded Mocanu variation to introduce a new class of analytic functions, defined in the open unit disc, which unifies a number of classes previously studied such as those of functions with bounded radius rotation and bounded Mocanu variation. It also generalizes the concept of β-spiral likeness in some sense. Some interesting properties of this class including inclusion results, arclength problems and a sufficient condition for univalency are studied.

1. Introduction

Let \mathcal{A} denote the class of functions f :

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $E=\{z:|z|<1\}$. Let S, S^{*}, C and M_{α} be the subclasses of \mathcal{A} which consist of, respectively, univalent, starlike (with respect to origin), convex and α-starlike functions. Let P be the class of functions p, analytic in E with $p(0)=1$ and satisfying $\operatorname{Re}\{p(z)\}>0, \quad z \in E$. The class P is called the class of analytic functions with positive real part. It is well-known [3] that a number of important classes of analytic functions (e.g.C, S^{*}, M_{α}) are related through their derivatives by the functions in P. These functions play a significant role in solving problems from signal theory and construction of quadrature formulas. In the recent years, several interesting subclasses of analytic functions have been introduced and investigated, see $[1,7,9,10,12,17,20,21]$. Motivated and inspired by the recent research going on, we introduce and investigate a new class of analytic function using the concept of bounded Mocanu variation. This new class of analytic functions unifies a number of classes previously studied. We obtain some new results including inclusion results, radius problem and arclength problems for this new class of analytic functions. A sufficient condition for univalency is investigated. Results obtained in this paper may stimulate further research in this field.

[^0]Let P_{k} be the class of functions p, analytic in E, satisfying the properties $p(0)=1, \quad z=r e^{i \theta}$ and

$$
\begin{equation*}
p(z)=\frac{1}{2} \int_{0}^{2 \pi} \frac{1+z e^{-i t}}{1-z e^{-i t}} d \mu(t) \tag{2}
\end{equation*}
$$

where $\mu(t)$ is a function with bounded variation on $[0,2 \pi]$ such that, for $k \geq 2$,

$$
\begin{equation*}
\int_{0}^{2 \pi} d \mu(t)=2, \quad \text { and } \quad \int_{0}^{2 \pi}|d \mu(t)| \leq k \tag{3}
\end{equation*}
$$

This class has been studied in [7]. For $k=2$, we have the class P.
From (2) and (3), it easily follows that $p \in P_{k}$, if and only if,

$$
\begin{equation*}
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z), \quad p_{1}, p_{2} \in P \tag{4}
\end{equation*}
$$

In the following, we list some known classes of analytic functions.
(i) $S_{p}^{*}(\beta)=\left\{f: f \in \mathcal{A}, \quad e^{i \beta} \frac{z f^{\prime}}{f} \in P, \quad \beta \quad\right.$ real, $\left.\quad z \in E, \quad|\beta|<\frac{\pi}{2}\right\}$.

It is known that $S_{p}^{*}(\beta) \subset S$ and $f \in S_{p}^{*}(\beta)$ is called β-spiral like function, see [3].
(ii) $S_{p}^{c}(\beta)=\left\{f: f \in \mathcal{A},\left[\cos \beta\left(\frac{\left(z f^{\prime}\right)^{\prime}}{f^{\prime}}\right)+i \sin \beta \frac{z f^{\prime}}{f}\right] \in P, \quad z \in E, \quad|\beta|<\frac{\pi}{2}\right\}$.

The functions in this class are called β-spiral convex and it is shown [22] that $S_{p}^{c}(\beta) \subset S_{p}^{*}(\beta)$.

$$
\text { (iii) } \quad M^{*}(\alpha, \beta)=\left\{f: f \in \mathcal{A},\left[\left(e^{i \beta}-\alpha \cos \beta\right) \frac{z f^{\prime}}{f}+\alpha \cos \beta\left(1+\frac{z f^{\prime \prime}}{f^{\prime}}\right)\right] \in P\right\}
$$

where α, β are real $\quad|\beta|<\frac{\pi}{2}, \quad z \in E$.
It is shown in [19] that

$$
M^{*}(\alpha, \beta) \subset S_{p}^{*}(\beta)
$$

We note that

$$
M^{*}(\alpha, 0) \equiv M_{\alpha}, \quad M^{*}(1, \beta) \equiv S_{p}^{c}(\beta), \quad \text { and } \quad M^{*}(0, \beta) \equiv S_{p}^{*}(\beta)
$$

We now define the following.
Definition 1.1. Let $f \in \mathcal{A}$. Then, for β real and $|\beta|<\frac{\pi}{2}, \quad f \in R_{k}^{*}(\beta)$ if and only if

$$
\left\{e^{i \beta} \frac{z f^{\prime}}{f}\right\} \in P_{k}, \quad z \in E, k \geq 2
$$

We note that $R_{k}^{*}(0) \equiv R_{k}$, the class of functions of bounded radius rotation, see [3] and $\quad R_{2}^{*}(\beta) \equiv S_{p}^{*}(\beta) \quad$ and $\quad R_{2}^{*}(0) \equiv$ S^{*}.
Definition 1.2. Let $f \in \mathcal{A}$ and let, for $\frac{f(z) f^{\prime}(z)}{z} \neq 0$ in E,

$$
\begin{equation*}
J(\alpha, \beta, f(z))=\left(e^{i \beta}-\alpha \cos \beta\right) \frac{z f^{\prime}(z)}{f(z)}+\alpha \cos \beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \tag{5}
\end{equation*}
$$

Then

$$
f \in M_{k}^{*}(\alpha, \beta) \quad \text { if and only if } \quad J_{k}(\alpha, \beta, f) \in P_{k}, \quad \text { for } \quad z \in E, \alpha, \beta \quad \text { real and } \quad|\beta|<\frac{\pi}{2} .
$$

We note. as a special case, that the class $M_{p}^{*}(\alpha, 0)$ coincides with the class of functions with bounded Mocanu variation, see [2].

Definition 1.3. Let $f \in \mathcal{A}$ with $\frac{f(z) f^{\prime}(z)}{z} \neq 0$ in E, and let

$$
\tilde{J}(\alpha, \beta, \gamma, f(z))=\left\{\left(e^{i \beta}-\alpha \cos \beta\right) \frac{z f^{\prime}(z)}{f(z)}+\frac{\alpha \cos \beta}{1-\gamma}\left[1-\gamma+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]\right\}
$$

for real $\alpha, \beta, \quad|\beta|<\frac{\pi}{2}$ and $\frac{-1}{2} \leq \gamma<1$. Then

$$
f \in B_{k}(\alpha, \beta, \gamma) \quad \Longleftrightarrow \tilde{J}(\alpha, \beta, \gamma, f) \in P_{k} \quad \text { for } \quad z \in E, \quad k \geq 2
$$

For any real $\alpha, \quad \frac{-1}{2} \leq \gamma<1, \quad \beta=0$, we note that the identity function belongs to $B_{k}(\alpha, 0, \gamma)$ so that $B_{k}(\alpha, \beta, \gamma)$ is not empty in general.

Special Cases.

(i) For $\beta=0$, we have the class $B_{k}(\alpha, \gamma)$ introduced and studied in [8].
(ii) With $k=2, \quad 0 \leq \alpha \leq 1, \quad B_{2}(\alpha, 0,0)$ is a subclass of \mathcal{A} introduced by Mocanu [6].
(iii) The class $B_{2}(\alpha, 0, \gamma)$ consists entirely of univalent functions, see [18].
(iv) $B_{2}(\alpha, \beta, 0) \equiv M_{p}^{*}(\alpha, \beta)$.
(v) $\quad B_{k}(0,0, \gamma) \equiv R_{k}$, where R_{k} denotes the class of bounded radius rotation, see [4].
(vi) $\quad B_{2}(0, \beta, 0) \equiv S_{p}^{*}(\beta) \subset S$.
(vii) $\quad B_{2}(1, \beta, 0) \equiv S_{p}^{c}(\beta)$.

2. Preliminary Results

In this Section, we recall some known results which we shall need later.
Lemma 2.1 [15]. Let $p \in P$ for $z \in E$. Then, for $s>0, \quad \mu \neq-1$ (complex),

$$
\operatorname{Re}\left\{p(z)+\frac{s z p^{\prime}(z)}{p(z)+\mu}\right\}>0
$$

for

$$
\begin{equation*}
|z|<\frac{|\mu+1|}{\sqrt{A+\sqrt{A^{2}-\left|\mu^{2}-1\right|^{2}}}}, \quad A=2(s+1)^{2}+|\mu|^{2}-1 . \tag{6}
\end{equation*}
$$

This bound is best possible.
Lemma 2.2 [16]. Let $f \in \mathcal{A}$ with $\quad \frac{f(z) f^{\prime}(z)}{z} \neq 0$ in E. Then f belongs to the class of Bazilevic (univalent) functions if and only if, for $0 \leq \theta_{1}<\theta_{2} \leq 2 \pi$ and $0<r<1$, we have

$$
\int_{\theta_{1}}^{\theta_{2}}\left[\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(\rho-1) \frac{z f^{\prime}(z)}{f(z)}\right\}-\alpha_{1} \operatorname{Im} \frac{z f^{\prime}(z)}{f(z)}\right] d \theta \geq-\pi
$$

where $z=r e^{i \theta}, \quad \rho>0$ and α_{1} real.

Lemma 2.3 [5]. Let $u=u_{1}+i u_{2}, \quad v=v_{1}+i v_{2}$ and let $\Psi(u, v)$ be a complex -valued function satisfying the conditions:
(i). $\Psi(u, v)$ is continuous in a domain $\mathcal{D} \subset C^{2}$.
(ii). $(1,0) \in \mathcal{D}$ and $\Psi(1,0)>0$.
(iii). $\operatorname{Re}\left\{\Psi\left(i u_{2}, v_{1}\right) \leq 0\right.$ whenever $\left(i u_{2}, v_{1}\right) \in \mathcal{D}$ and $v_{1} \leq \frac{-1}{2}\left(1+u_{2}^{2}\right)$.

If $h(z)=1+c_{1} z+c_{2} z^{2}+\ldots$, is a function analytic in E, such that $\quad\left(h(z), z h^{\prime}(z)\right) \in \mathcal{D}$ and $\operatorname{Re}\left\{\Psi\left(h(z), z h^{\prime}(z)\right)\right\}>0$ for $z \in E$, then $\operatorname{Reh}(z)>0$ in E.

Lemma 2.4 [13]. Let $f \in R_{2}^{*}(\beta) \equiv S_{p}^{*}(\beta)$. Then for each $\beta, \quad|\beta|<\frac{\pi}{2}$, the following sharp inequality holds.

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} \geq \frac{1-2(\cos \beta) r+(\cos 2 \beta) r^{2}}{1-r^{2}}
$$

3. Main Results

Theorem 3.1. Let $\alpha>0, \quad|\beta|<\frac{\pi}{2}, \quad k \geq 2$. Then $M_{k}^{*}(\alpha, \beta) \subset R_{k}^{*}(\beta)$.
Proof. Let $f \in M_{k}^{*}(\alpha, \beta)$ and let

$$
e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}=(\cos \beta) p(z)+i \sin \beta,
$$

where $p(z)$ is analytic in E with $p(0)=1$.
After simple computation, we have

$$
\begin{align*}
J(\alpha, \beta, f(z)) & =\left(e^{i \beta}-\alpha \cos \beta\right) \frac{z f^{\prime}(z)}{f(z)}+\alpha \cos \beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \\
& =(\cos \beta) p(z)+i \sin \beta+\alpha \cos ^{2} \beta \frac{z p^{\prime}(z)}{(\cos \beta) p(z)+i \sin \beta} \tag{7}
\end{align*}
$$

and $J(\alpha, \beta, f) \in P_{k}$ in E.
Define

$$
\Phi_{\alpha, \beta}(z)=\frac{1}{1+i \tan \beta} \frac{z}{(1-z)^{\alpha}}+\frac{i \tan \beta}{1+i \tan \beta} \frac{z}{(1-z)^{\alpha+1}}
$$

Then, using similar convolution technique, see [8], we have

$$
\begin{equation*}
\left(p(z) \star \frac{\Phi_{\alpha, \beta}(z)}{z}\right)=p(z)+\frac{\alpha z p^{\prime}(z)}{p(z)+i \tan \beta} \tag{8}
\end{equation*}
$$

Now, from (4), (7) and (8), we have

$$
(\cos \beta) \operatorname{Re}\left[p_{i}(z)+\frac{\alpha z p_{j}^{\prime}(z)}{p_{j}(z)+i \tan \beta}\right]>0, \quad \text { for } \quad j=1,2 \quad \text { and } \quad z \in E
$$

We formulate the functional $\Psi(u, v)$ by choosing $u=u_{1}+i u_{2}=p_{j}(z)$ and $v=v_{1}+i v_{2}=z p_{j}^{\prime}(z)$ as

$$
\Psi(u, v)=u+\frac{\alpha v}{u+i \tan \beta} .
$$

We note that the first two conditions of Lemma 2.3 are clearly satisfied. We verify the third condition as follows.

$$
\begin{aligned}
\operatorname{Re} \Psi\left(i u_{2}, v_{1}\right) & =\operatorname{Re}\left\{\frac{\alpha v_{1}}{i\left(u_{2}+\tan \beta\right)}\right\} \\
& \leq-\operatorname{Re}\left\{\frac{\alpha\left(1+u_{2}^{2}\right)}{i 2\left(u_{2}+\tan \beta\right)}\right\} \\
& =\operatorname{Re}\left\{\frac{i \alpha\left(1+u_{2}^{2}\right)}{2\left(u_{2}+\tan \beta\right)}\right\}=0
\end{aligned}
$$

This shows that all the conditions of Lemma 2.3 are satisfied and therefore $p_{j} \in P, \quad z \in E, \quad j=1,2$. Consequently $p \in P_{k}$ in E and this completes the proof.

Theorem 3.2. For $0<\alpha_{1} \leq \alpha_{2}<1, M_{k}^{*}\left(\alpha_{2}, \beta\right) \subset M_{k}^{*}\left(\alpha_{1}, \beta\right)$.
Proof. Let $f \in M_{k}^{*}\left(\alpha_{2}, \beta\right)$. Then

$$
\begin{aligned}
J\left(\alpha_{1}, \beta, f(z)\right)= & \left(1-\frac{\alpha_{1}}{\alpha_{2}}\right) e^{i \beta} \frac{z f^{\prime}(z)}{f(z)} \\
& +\frac{\alpha_{1}}{\alpha_{2}}\left[\left(e^{i \beta}-\alpha_{2} \cos \beta\right) \frac{z f^{\prime}(z)}{f(z)}+\alpha_{2} \cos \beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right] \\
= & \left(1-\frac{\alpha_{1}}{\alpha_{2}}\right) p(z)+\frac{\alpha_{1}}{\alpha_{2}} h(z)=H(z)
\end{aligned}
$$

where

$$
\begin{aligned}
& p(z)=e^{i \beta} \frac{z f^{\prime}(z)}{f(z)} \in P_{k}, \quad \text { by Theorem 3.1. } \\
& h(z)=J\left(\alpha_{2}, \beta, f(z)\right) \in P_{k}, \quad \text { since } \quad f \in M_{k}^{*}\left(\alpha_{2}, \beta\right) .
\end{aligned}
$$

The class P_{k} is known [3] to be a convex set, and hence it follows that $H \in P_{k}$. This implies that $f \in M_{k}^{*}\left(\alpha_{1}, \beta\right)$. \square

We now deal with the converse case of Theorem 3.2 as follows.
Theorem 3.3. Let $f \in R_{k}^{*}(\beta)$. Then, for $\alpha>0, f \in M_{k}^{*}(\alpha, \beta)$ for $|z|<r_{0}$, where

$$
\begin{equation*}
r_{0}=\frac{\sec \beta}{\sqrt{A+\sqrt{A^{2}-\sec ^{4} \beta}}}, \quad A=2(\alpha+1)^{2}+\tan ^{2} \beta-1 . \tag{9}
\end{equation*}
$$

This result is sharp.
Proof. Let

$$
e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}=(\cos \beta) p(z)+i \sin \beta, \quad p \in P_{k}
$$

where $p(z)$ is given by (4).
Proceeding as in Theorem 3.1, we have

$$
\begin{align*}
J(\alpha, \beta, f(z))= & \left(\frac{k}{4}+\frac{1}{2}\right)\left[(\cos \beta) p_{1}(z)+i \sin \beta+\left(\alpha \cos ^{2} \beta\right) \frac{z p_{1}^{\prime}(z)}{(\cos \beta) p_{1}(z)+i \sin \beta}\right] \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left[(\cos \beta) p_{2}(z)+i \sin \beta+\left(\alpha \cos ^{2} \beta\right) \frac{z p_{2}^{\prime}(z)}{(\cos \beta) p_{2}(z)+i \sin \beta}\right] . \tag{10}
\end{align*}
$$

Now, for $j=1,2$

$$
\begin{aligned}
& \operatorname{Re}\left[(\cos \beta) p_{j}(z)+i \sin \beta+\left(\alpha \cos ^{2} \beta\right) \frac{z p_{j}^{\prime}(z)}{(\cos \beta) p_{j}(z)+i \sin \beta}\right] \\
& =\cos \beta \operatorname{Re}\left[p_{j}(z)+\frac{\alpha z p_{j}^{\prime}(z)}{p_{j}(z)+i \tan \beta}\right]
\end{aligned}
$$

Using Lemma 2.1, with $s=\alpha>0, \quad \mu=i \tan \beta$, it follows that

$$
\operatorname{Re}\left[p_{j}(z)+\frac{\alpha z p_{j}^{\prime}(z)}{p_{j}(z)+i \tan \beta}\right]>0, \quad \text { for } \quad z<r_{0}
$$

where r_{0} is given by (9). Consequently, form (10), it follows that $J(\alpha, \beta, f) \in P_{k}$ for $|z|<r_{0}$ and the proof is complete.

Theorem 3.4. Let $f \in R_{k}^{*}(\beta)$. Then $f \in R_{k}$ for $|z|<r_{\beta}$, where

$$
\begin{equation*}
r_{\beta}=\frac{1}{\cos \beta+\sin \beta} \tag{11}
\end{equation*}
$$

This result is sharp.
Proof. Let

$$
\frac{z f^{\prime}(z)}{f(z)}=p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z)
$$

where p is analytic in E with $p(0)=1$. Then

$$
e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}=\left(\frac{k}{4}+\frac{1}{2}\right)\left(e^{i \beta} p_{1}(z)\right)-\left(\frac{k}{4}-\frac{1}{2}\right)\left(e^{i \beta} p_{2}(z)\right)
$$

Since $f \in R_{k}^{*}(\beta)$, it follows that $\quad e^{i \beta} p_{j}(z) \in P_{k}, \quad j=1,2$. Using Lemma 2.4, we have

$$
\operatorname{Re}\left\{p_{j}(z)\right\} \geq \frac{1-2(\cos \beta) r+(\cos 2 \beta) r^{2}}{1-r^{2}}
$$

and thus it follows that $p_{j} \in P$ for $|z|<r_{\beta}$, where r_{β} is given by (11) The function

$$
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1+z}{1-z}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1-z}{1+z}
$$

gives us the sharpness.
Theorem 3.5. Let $f \in \mathcal{A}$. Then $f \in B_{k}(\alpha, \beta, \gamma), \quad \alpha \neq 0$, if and only if, there exists a function $g \in B_{k}(0, \beta, \gamma) \equiv$ $R_{k}^{*}(\beta)$ such that

$$
\begin{equation*}
f(z)=\left[m \int_{0}^{z} t^{m-1}\left(\frac{g(t)}{t}\right)^{\frac{(1-\gamma) i \beta}{\cos \beta}} d t\right]^{\frac{1}{m}} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
m=1+\frac{(1-\gamma)\left(e^{i \beta}-\alpha \cos \beta\right)}{\alpha \cos \beta} \tag{13}
\end{equation*}
$$

Proof. From (12), we have after some computation,

$$
\begin{aligned}
e^{i \beta} \frac{z g^{\prime}(z)}{g(z)} & =\left(e^{i \beta}-\alpha \cos \beta\right) \frac{z f^{\prime}(z)}{f(z)}+\frac{\alpha \cos \beta}{1-\gamma}\left[1-\gamma+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right] \\
& =\tilde{J}(\alpha, \beta, \gamma, f(z))
\end{aligned}
$$

If the right hand side belongs to P_{k}, so does the left hand side and conversely.

Theorem 3.6. Let $f \in B_{k}(\alpha, \beta, \gamma)$. Then the function $g \in R_{k}^{*}(\beta)$, where

$$
\begin{equation*}
\left(\frac{g(z)}{z}\right)^{e^{i \beta}}=\left(\frac{f(z)}{z}\right)^{e^{i \beta}-\alpha \cos \beta}\left(f^{\prime}(z)\right)^{\frac{\alpha \cos \beta}{1-\gamma}} \tag{14}
\end{equation*}
$$

Proof. Logarithmic differentiation of (14) and simple calculations yield

$$
e^{i \beta} \frac{z g^{\prime}(z)}{g(z)}=\left(e^{i \beta}-\alpha \cos \beta\right) \frac{z f^{\prime}(z)}{f(z)}+\frac{\alpha \cos \beta}{1-\gamma}\left[1-\gamma+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right],
$$

and since $f \in B_{k}(\alpha, \beta, \gamma)$, we immediately obtain the required result.
Theorem 3.7. $\quad B_{k}(\alpha, \beta, \gamma) \subset B_{k}\left(\alpha_{1}, \beta, \gamma\right), \quad 0 \leq \alpha_{1}<\alpha$.
Proof. Let $f \in B_{k}(\alpha, \beta, \gamma)$. Now

$$
\begin{aligned}
& \frac{1}{1-\gamma}\left[\left(e^{i \beta}-\alpha_{1} \cos \beta\right)(1-\gamma) \frac{z f^{\prime}(z)}{f(z)}+\alpha_{1} \cos \beta\left(1-\gamma+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right] \\
& =\frac{\alpha_{1}}{\alpha}\left[\left(e^{i \beta}-\alpha \cos \beta\right) \frac{z f^{\prime}(z)}{f(z)}+\frac{\alpha \cos \beta}{1-\gamma}\left(1-\gamma+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right] \\
& -\left(\frac{\alpha_{1}-\alpha}{\alpha}\right) e^{i \beta} \frac{z f^{\prime}(z)}{f(z)} \\
& =\frac{\alpha_{1}}{\alpha} H_{1}(z)+\left(1-\frac{\alpha_{1}}{\alpha}\right) H_{2}(z)=H(z),
\end{aligned}
$$

where

$$
\begin{aligned}
& H_{1}=\left(e^{i \beta}-\alpha \cos \beta\right) \frac{z f^{\prime}}{f}+\frac{\alpha \cos \beta}{1-\gamma}\left(1-\gamma+\frac{z f^{\prime \prime}}{f^{\prime}}\right) \in P_{k} \\
& H_{2}=e^{i \beta} \frac{z f^{\prime}}{f} \in P_{k}, \quad(\text { by Theorem 3.1.). }
\end{aligned}
$$

Since P_{k} is a convex set [11], $H \in P_{k}$ and this completes the proof.
Theorem 3.8. Let $f \in B_{k}(\alpha, \beta, \gamma), \quad \alpha>0$. Then f is univalent in E for

$$
k \leq \frac{2[\alpha \cos \beta(1+2 \gamma)+1-\gamma]}{1-\gamma}
$$

Proof. Let $f \in B_{k}(\alpha, \beta, \gamma)$. Then

$$
H(z)=\left\{\left(e^{i \beta}-\alpha \cos \beta\right) \frac{z f^{\prime}(z)}{f(z)}+\frac{\alpha \cos \beta}{1-\gamma}\left(1-\gamma+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\} \in P_{k}, \quad z \in E .
$$

That is

$$
\begin{aligned}
{\left[\frac{(1-\gamma) \cos \beta+\alpha \gamma \cos \beta}{\alpha \cos \beta}-1\right] \frac{z f^{\prime}(z)}{f(z)} } & +\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}+i\left[\frac{(1-\gamma) \sin \beta}{\alpha \cos \beta}\right] \frac{z f^{\prime}(z)}{f(z)} \\
& =H(z)+\gamma
\end{aligned}
$$

Therefore, for $0 \leq \theta_{1}<\theta_{2} \leq 2 \pi, \quad z=r e^{i \theta}$, we have

$$
\begin{aligned}
& \int_{\theta_{1}}^{\theta_{2}}\left\{\operatorname{Re}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\left(\beta_{1}-1\right) \frac{z f^{\prime}(z)}{f(z)}\right]-\alpha_{1} \operatorname{Im} \frac{z f^{\prime}(z)}{f(z)}\right\} d \theta \\
& >-\left[\left(\frac{k}{2}-1\right)\left(\frac{1-\gamma}{\alpha \cos \beta}\right) \pi-2 \gamma \pi\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\beta_{1} & =\frac{(1-\gamma) \cos \beta+\alpha \gamma \cos \beta}{\alpha \cos \beta}=\frac{1-\gamma+\alpha \gamma}{\alpha} \\
\alpha_{1} & =\frac{1-\gamma}{\alpha} \tan \beta
\end{aligned}
$$

Using lemma 2.2, it follows that f is univalent if

$$
\left[\left(\frac{k}{2}-1\right)\left(\frac{1-\gamma}{\alpha \cos \beta}\right)-2 \gamma\right] \leq 1
$$

and this proves the result.

Theorem 3.9. Let $f \in B_{k}(\alpha, \beta, \gamma), \quad \alpha>0$ and let $L_{r}(f)$ denote the length of the curve C,

$$
C=f\left(r e^{i \theta}\right), \quad 0 \leq \theta \leq 2 \pi, \quad \text { and } \quad M(r)=\max _{0 \leq \theta \leq 2 \pi}\left|f\left(r e^{i \theta}\right)\right|
$$

Then, for $0<r<1$,

$$
L_{r}(f) \leq \frac{\pi M(r)}{\alpha \cos \beta}\left\{\begin{array}{lc}
{\left[k\left(1+\left|\alpha \cos \beta-e^{i \beta}\right|\right)+\frac{2 \alpha \gamma \cos \beta}{1-\gamma}\right],} & 0<\alpha<2 \tag{15}\\
k\left(1+\sqrt{\alpha(\alpha-2) \cos ^{2} \beta+1}\right)+\frac{2 \alpha \gamma \cos \beta}{1-\gamma}, & \alpha \geq 2
\end{array}\right.
$$

Proof. With $z=r e^{i \theta}$, and integration by parts, we have

$$
\begin{aligned}
L_{r}(f)= & \int_{0}^{2 \pi}\left|z f^{\prime}(z)\right| d \theta=\int_{0}^{2 \pi} z f^{\prime}(z) e^{-i \arg \left(z f^{\prime}(z)\right)} d \theta \\
= & \int_{0}^{2 \pi} f(z) e^{-i \arg \left(z f^{\prime}(z)\right)} \operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right\} d \theta \\
\leq & \frac{M(r)}{\alpha \cos \beta} \int_{0}^{2 \pi}\left|\operatorname{Re}\left\{\tilde{J}(\alpha, \beta, \gamma, f(z))+\left(\alpha \cos \beta-e^{i \beta}\right) \frac{z f^{\prime}(z)}{f(z)}+\frac{\alpha \gamma \cos \beta}{1-\gamma}\right\}\right| d \theta \\
\leq & \frac{M(r)}{\alpha \cos \beta} \int_{0}^{2 \pi}|\operatorname{Re} \tilde{J}(\alpha, \beta, \gamma, f(z))| d \theta \\
& +\frac{M(r)}{\alpha \cos \beta}\left[\left|\alpha \cos \beta-e^{i \beta}\right| \int_{0}^{2 \pi}\left|\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}\right| d \theta+\int_{0}^{2 \pi}\left|\operatorname{Re} \frac{\alpha \gamma \cos \beta}{1-\gamma}\right| d \theta\right] \\
\leq & \frac{M(r)}{\alpha \cos \beta}\left[k \pi+\left|\alpha \cos \beta-e^{i \beta}\right|(k \pi)+\frac{2 \alpha \gamma \cos \beta}{1-\gamma} \pi\right]
\end{aligned}
$$

and this gives us the required result.
Remark 3.1. For $\alpha>0$ and $f \in B_{k}(\alpha, \beta, \gamma)$, we can write (3.9) as

$$
L_{r}(f) \leq \frac{\pi M(r)}{\alpha \cos \beta}\left\{k(2+\alpha \cos \beta)+\frac{2 \alpha \gamma \cos \beta}{1-\gamma}\right\}
$$

Theorem 3.10. Let $f \in B_{k}(\alpha, \beta, \gamma), \quad \alpha>0$ and be given by (1). Then, for $n \geq 2$,

$$
n\left|a_{n}\right|=O(1) M\left(\frac{n-1}{n}\right)
$$

where $O(1)$ is a constant depending on $\quad \alpha, \beta, \gamma$ and k only.
Proof. The result follows immediately from Theorem 3.9, since

$$
n\left|a_{n}\right| \leq \frac{1}{2 \pi r^{n}} \int_{0}^{2 \pi}\left|z f^{\prime}(z)\right| d \theta=\frac{1}{2 \pi r^{n}} L_{r}(f)
$$

Theorem 3.11. The class $B_{k}(0, \beta, \gamma)$ is preserved under the integral operator $I_{c}(f)$ defined as follows.

$$
\begin{equation*}
I_{c}(f)=F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t, \quad c>0 \tag{16}
\end{equation*}
$$

Proof. Set

$$
\begin{align*}
e^{i \beta} \frac{z F^{\prime}(z)}{F(z)}= & (\cos \beta) p(z)+i \sin \beta \\
= & \left(\frac{k}{4}+\frac{1}{2}\right)\left[(\cos \beta) p_{1}(z)+i \sin \beta\right] \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left[(\cos \beta) p_{2}(z)+i \sin \beta\right] \tag{17}
\end{align*}
$$

where $p(z)$ is analytic in E with $p(0)=1$. Then, from (16), we have

$$
\begin{equation*}
e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}=\cos \beta\left[p(z)+i \sin \beta+\frac{z p^{\prime}(z)}{p(z)+c \sec \beta+i \tan \beta}\right] \tag{18}
\end{equation*}
$$

Define

$$
\Phi_{c, \beta}(z)=\left(\frac{1}{1+c \sec \beta+i \tan \beta}\right) \frac{z}{1-z}+\left(\frac{c \sec \beta+i \tan \beta}{1+c \sec \beta+i \tan \beta}\right) \frac{z}{(1-z)^{2}}
$$

Then

$$
\begin{equation*}
\left(p(z) \star \frac{\Phi_{c, \beta}(z)}{z}\right)=\left[p(z)+\frac{z p^{\prime}(z)}{p(z)+c \sec \beta+i \tan \beta}\right] \tag{19}
\end{equation*}
$$

From (17), (18) and (19), we have

$$
\begin{aligned}
e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}= & \left(\frac{k}{4}+\frac{1}{2}\right)\left((\cos \beta) p_{1}(z)+i \sin \beta+\frac{\left(\cos ^{2} \beta\right) z p_{1}^{\prime}(z)}{(\cos \beta) p_{1}(z)+c+i \sin \beta}\right] \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left((\cos \beta) p_{2}(z)+i \sin \beta+\frac{\left(\cos ^{2} \beta\right) z p_{2}^{\prime}(z)}{(\cos \beta) p_{2}(z)+c+i \sin \beta}\right]
\end{aligned}
$$

Since

$$
e^{i \beta} \frac{z f^{\prime}(z)}{f(z)} \in P_{k}, \quad \text { for } \quad z \in E
$$

it follows that

$$
\operatorname{Re}\left[(\cos \beta) p_{j}(z)+i \sin \beta+\frac{\left(\cos ^{2} \beta\right) z p_{j}^{\prime}(z)}{(\cos \beta) p_{j}(z)+c+i \sin \beta}\right]>0, \quad z \in E, \quad j=1,2
$$

We want to show that $\operatorname{Re}\left\{p_{j}(z)\right\}>0$ in E, which will imply that $p \in P_{k}$ in E. We proceed by performing the functional $\Psi(u, v)$ with $u=u_{1}+i u_{2}=p_{j}(z)$ and $\quad v=v_{1}+i v_{2}=z p_{j}^{\prime}(z)$. Thus

$$
\Psi(u, v)=u+i \tan \beta+\frac{v}{u+c \sec \beta+i \tan \beta} .
$$

The first two conditions of Lemma 2.3 are clearly satisfied. We verify the condition (iii) as follows.

$$
\begin{aligned}
\operatorname{Re} \Psi\left(i u_{2}, v_{1}\right) & =\operatorname{Re}\left[\frac{v_{1}}{c \sec \beta+i\left(u_{2}+\tan \beta\right)}\right] \\
& =\frac{c(\sec \beta) v_{1}}{c^{2} \sec ^{2} \beta+\left(u_{2}+\tan \beta\right)^{2}} \\
& \leq \frac{-1}{2} \frac{c \sec \beta\left(1+u_{2}^{2}\right)}{c^{2} \sec ^{2} \beta+\left(u_{2}+\tan \beta\right)^{2}} \leq 0 .
\end{aligned}
$$

This proves $\operatorname{Re}\left\{p_{j}(z)\right\}>0, \quad j=1,2$ and the proof is complete.

Using the similar technique of Theorem 3.3, we can easily prove the converse case of Theorem 3.11 as follows.

Theorem 3.12. Let $F \in B_{k}(0, \beta, \gamma)$ and be defined by (16). Then $f \in B_{k}(0, \beta, \gamma)$ for $|z|<r_{1}$, where the value of r_{1} is exact and is given by (6) in Lemma 2.1 with $s=1$ and $\mu=(c \sec \beta+i \tan \beta)$.

Conclusion. In this paper, we have used the concept of bounded Mocanu variation to introduce some new classes of analytic functions in the unit disk. The main results in the paper deal with containment properties between such classes and some distortion estimates. We have also discussed several specials cases of our main results. The ideas and techniques of this work may motivate and inspire the others to explore this interesting field further.

Acknowledgement. The authors would like to thank Dr. S. M. Junaid Zaidi, Rector, CIIT, for providing excellent research facilities. The authors are grateful to the referees for their constructive and valuable suggestions. This research is supported by HEC NRPU project No: $20-1966 / R \& D / 11-2553$.

References

[1] M. Caglar, H. Ohan and E. Deniz, Majorization for certain subclass of analytic functions involving the generalized Noor integral operator, Filomat, 27(1)(2013), 143-148.
[2] H. B. Coonce and M. R. Ziegler, Functions with bounded Mocanu variation, Rev. Roum. Math. Pure Appl. 19(1974), $1093-1104$.
[3] A. W. Goodman, Univalent Functions, Vols. I, II, Polygonal House, Washington, N. J., 1983.
[4] V. Karunakaran and K. Padma, Functions of bounded radius rotation, Indian J. Pure Appl. Math. 12(1981), 621-627.
[5] S. S. Miller, Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc. 81(1975), 79-81.
[6] P. T. Mocanu, Une propriete de convexite generalisee dans la theorie de la representation conforme, Mathematica(Cluj), 11(1969), 127-133.
[7] K. I. Noor and S. Z. H. Bukhari, Some subclasses of analytic and spiral-like functions of complex order involving the SrivastavaAttiya integral operators, Integral Transform. Speci. Funct. 2(1)(2010), 907-916.
[8] K. I. Noor and A. Muhammad, On analytic functions with generalized bounded Mocanu variation, Appl. Math. Comput. 196(2008), 802-811.
[9] M. Obradovic and P. Ponnusanny, Radius of univalence of certain class of analytic functions, Filomat, 27(2013), 1085-1090.
[10] H. Orhan, D. Raducanu, M. Caglar and M. Bayram, Coefficent estimates and other properties for a class of spirallike functions associated with a differential opertaor, Abst. Appl. Anal. 2013(2013): Article ID 415319, 7 pages.
[11] B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math., 10(1971), 7-16.
[12] Y. Polatoglu and A. Sen, Some results on subclasses of Janowski λ-spirallike functions of complex order, Gen. Math. 15(2-3)(2007), 88-97.
[13] M. S. Robertson, Radii of starlikeness and close-to-convexity, Proc. Amer. Math. Soc. 16(1965), 847-852.
[14] F. Ronning, PC-fractions and Szego-polynomials associated with starlike functions, Numer. Algorithms, 3(1992), 383-392.
[15] S. Ruscheweyh and V. Singh, On certain extremal problems for functions with positive real part, Proc. Amer. Math. Soc. 61(1976), 329-334.
[16] T. Shiel-Small, On Bazilevic functions, Quart. J. Math. 23(1972), 135-142.
[17] H. M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(5)(2013), 831-842.
[18] K. C. Tarabicka, J. Godula and E. Zlotkiewicz, On a class of Bazilevic functions, Ann. Univ.. Marie Curie-Sklodowska, 33(1979), 45-56.
[19] P. G. Umarani, On a subclass of spiral-like functions, Indian J. Pure Appl. Math. 10(1979), 1292-1297.
[20] Q.-H. Xu, C.-B. Lv and H. M. Srivastava, Coefficient estimates for the inverses of a certain general class of spirallike functions, Appl. Math. Comput. 219(2013), 7000-7011.
[21] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimates problems, Appl. Math. Comput. 218(2012), 11461-11465.
[22] H. Yoshikawa, On a subclass of spiral-like functions, Mem. Fac. Sci. Kyushu Univ. A. 25(1971), 271-279.

[^0]: 2010 Mathematics Subject Classification. 30C45, 30C50
 Keywords. β-spiral convex, α-starlike, univalent, Mocanu variation, radius rotation, functions with positive real part, convolution, arclength, integral operator.

 Received: 11 July 2013; Revised: 09 October 2013; Accepted: 25 October 2013
 Communicated by Hari M. Srivastava
 Email addresses: khalidanoor@hotmail.com (Khalida Inayat Noor), nazarmaths@gmail.com (Nazar Khan), noormaslam@hotmail.com (Muhammad Aslam Noor)

