New Type of Generalized Difference Sequence Space of Non-Absolute Type and Some Matrix Transformations

M. Mursaleen ${ }^{\text {a }}$, Ab. Hamid Ganie ${ }^{\text {b }}$, Neyaz Ahmad Sheikh ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Aligarh Muslim University, Aligrah 202002, India
${ }^{b}$ Department of Mathematics, National Institute of Technology Srinagar, 190006, India

Abstract

In the present paper, we introduce a new difference sequence space $r_{B}^{q}(u, p)$ by using the Riesz mean and the B-difference matrix. We show $r_{B}^{q}(u, p)$ is a complete linear metric space and is linearly isomorphic to the space $l(p)$. We have also computed its $\alpha-, \beta$ - and γ-duals. Furthermore, we have constructed the basis of $r_{B}^{q}(u, p)$ and characterize a matrix class $\left(r_{B}^{q}(u, p), l_{\infty}\right)$.

1. Introduction, Background and Notation

We denote the set of all sequences (real or complex) by ω. Any subspace of ω is called the sequence space. Let \mathbb{N}, \mathbb{R} and \mathbb{C} denotes the set of non-negative integers, of real numbers and of complex numbers, respectively. Let l_{∞}, c and c_{0} denote the space of all bounded, convergent and null sequences, respectively. Also, by cs, l_{1} and $l(p)$ we denote the spaces of all convergent, absolutely and p-absolutely convergent series, respectively.

Let X be a real or complex linear space, h be a function from X to the set \mathbb{R} of real numbers. Then, the pair (X, h) is called a paranormed space and h is a paranorm for X, if the following axioms are satisfied : (pn.1) $h(\theta)=0$,
(pn.2) $h(-x)=h(x)$,
(pn.3) $h(x+y) \leq h(x)+h(y)$, and
(pn.4) scalar multiplication is continuous, that is, $\left|\alpha_{n}-\alpha\right| \rightarrow 0$ and $h\left(x_{n}-x\right) \rightarrow 0$ imply $h\left(\alpha_{n} x_{n}-\alpha x\right) \rightarrow 0$ for all α^{\prime} s in \mathbb{R} and x^{\prime} s in X, where θ is a zero vector in the linear space X. Assume here and after that $\left(p_{k}\right)$ be a bounded sequence of strictly positive real numbers with $\sup _{k} p_{k}=H$ and $M=\max \{1, H\}$. Then, the linear space $l(p)$ was defined by Maddox [10] as follows

$$
l(p)=\left\{x=\left(x_{k}\right): \sum_{k}\left|x_{k}\right|^{p_{k}}<\infty\right\}
$$

which is complete space paranormed by

[^0]$$
h_{1}(x)=\left[\sum_{k}\left|x_{k}\right|^{p_{k}}\right]^{1 / M}
$$

We shall assume throughout the text that $p_{k}^{-1}+{p_{k}^{\prime-1}}^{\prime}=1$ provided $1<$ inff $p_{k} \leq H<\infty$.
Let X, Y be two sequence spaces and let $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$, where $n, k \in \mathbb{N}$. Then, the matrix A defines the A-transformation from X into Y, if for every sequence $x=\left(x_{k}\right) \in X$ the sequence $A x=\left\{(A x)_{n}\right\}$, the A-transform of x exists and is in Y; where $(A x)_{n}=\sum_{k} a_{n k} x_{k}$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. By $A \in(X: Y)$, we mean the characterizations of matrices from X to Y i.e., $A: X \rightarrow Y$. A sequence x is said to be A-summable to l if $A x$ converges to l which is called as the A-limit of x. For a sequence space X, the matrix domain X_{A} of an infinite matrix A is defined as

$$
\begin{equation*}
X_{A}=\left\{x=\left(x_{k}\right) \in \omega: A x \in X\right\} \tag{1}
\end{equation*}
$$

Let $\left(q_{k}\right)$ be a sequence of positive numbers and let us write, $Q_{n}=\sum_{k=0}^{n} q_{k}$ for $n \in \mathbb{N}$. Then the matrix $R^{q}=\left(r_{n k}^{q}\right)$ of the Riesz mean $\left(R, q_{n}\right)$ is given by

$$
r_{n k}^{q}= \begin{cases}\frac{q_{k}}{Q_{n}}, & \text { if } 0 \leq k \leq n \\ 0, & \text { if } k>n\end{cases}
$$

The Riesz mean $\left(R, q_{n}\right)$ is regular if and only if $Q_{n} \rightarrow \infty$ as $n \rightarrow \infty$ [17].
Recently, Neyaz and Hamid [18] introduced the sequence space $r^{q}(u, p)$ as

$$
r^{q}(u, p)=\left\{x=\left(x_{k}\right) \in \omega: \sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k} u_{k} q_{j} x_{j}\right|^{p_{k}}<\infty\right\},\left(0<p_{k} \leq H<\infty\right) .
$$

Kizmaz [8] defined the difference sequence spaces $Z(\Delta)$ as follows

$$
Z(\Delta)=\left\{x=\left(x_{k}\right) \in \omega:\left(\Delta x_{k}\right) \in Z\right\}
$$

where $Z \in\left\{l_{\infty}, c, c_{0}\right\}$ and $\Delta x_{k}=x_{k}-x_{k-1}$.
Altay and Başar [2] defined the sequence space of p-bounded variation $b v_{p}$ which is defined as

$$
b v_{p}=\left\{x=\left(x_{k}\right) \in \omega: \sum_{k}\left|x_{k}-x_{k-1}\right|^{p}<\infty\right\}, 1 \leq p<\infty .
$$

With the notation of (1), the space $b v_{p}$ can be re-defined as

$$
b v_{p}=\left(l_{p}\right)_{\Delta}, 1 \leq p<\infty
$$

where, Δ denotes the matrix $\Delta=\left(\Delta_{n k}\right)$ and is defined as

$$
\Delta_{n k}= \begin{cases}(-1)^{n-k}, & \text { if } n-1 \leq k \leq n \\ 0, & \text { if } k<n-1 \text { or } k>n\end{cases}
$$

Neyaz and Hamid [19] introduced the space $r^{q}\left(\Delta_{u}^{p}\right)$ as :

$$
r^{q}\left(\Delta_{u}^{p}\right)=\left\{x=\left(x_{k}\right) \in \omega: \sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k} u_{k} q_{j} \Delta x_{j}\right|^{p_{k}}<\infty\right\},
$$

where $\left(0<p_{k} \leq H<\infty\right)$.
In [3] the generalized difference matrix $B=\left(b_{n k}\right)$ is defined as :

$$
b_{n k}= \begin{cases}r, & \text { if } k=n \\ s, & \text { if } k=n-1 \\ 0, & \text { if } 0 \leq k<n-1 \text { or } k>n\end{cases}
$$

for all $n, k \in \mathbb{N}, r, s \in \mathbf{R}-\{0\}$. The matrix B can be reduced to difference matrix Δ incase $r=1, s=-1$.

The approach of constructing a new sequence space by means of matrix domain of a particular limitation method has been studied by several authors viz., $[1,4-7,13,16,18,19]$.

2. The Riesz Sequence Space $r_{B}^{q}(u, p)$ of Non-Absolute Type

In this section, we define the Riesz sequence space $r_{B}^{q}(u, p)$, and prove that the space $r_{B}^{q}(u, p)$ is a complete paranormed linear space and show it is linearly isomorphic to the space $l(p)$.

Define the sequence $y=\left(y_{k}\right)$, which will be frequently used, by the $R_{u}^{q} B$-transform of a sequence $x=\left(x_{k}\right)$, i.e.,

$$
\begin{equation*}
y_{k}(q)=\frac{1}{Q_{k}}\left\{\sum_{j=0}^{k-1} u_{k}\left(q_{j} \cdot r+q_{j+1} \cdot s\right) x_{j}+u_{k} q_{k} \cdot r \cdot x_{k}\right\}, \quad(k \in \mathbf{N}) . \tag{2}
\end{equation*}
$$

Following Başar and Altay [1], Mursaleen et al [14, 15], Neyaz and Hamid [18, 19], Başarir and Öztürk [4], we define the sequence space $r_{B}^{q}(u, p)$ as the set of all sequences such that $R_{u}^{q} B$ transform of it is in the space $l(p)$, that is,

$$
r_{B}^{q}(u, p)=\left\{x=\left(x_{k}\right) \in \omega: y_{k}(q) \in l(p)\right\} .
$$

Note that if we take $r=1$ and $s=-1$, the sequence spaces $r_{B}^{q}(u, p)$ reduces to $r^{q}\left(\Delta_{u}^{p}\right)$, introduced by Neyaz and Hamid [19]. Also, if $\left(u_{k}\right)=e=(1,1, \ldots)$, the sequence spaces $r_{B}^{q}(u, p)$ reduces to $r_{B}^{q}(p)$ Başarir [3].

With the notation of (1) that

$$
r_{B}^{q}(u, p)=\{l(p)\}_{R_{u}}^{q} .
$$

Now, we prove the following theorem which is essential in the text.

Theorem 2.1. $r_{B}^{q}(u, p)$ is a complete linear metric space paranormed by h_{B}, defined as

$$
h_{B}(x)=\left[\sum_{k}\left|\frac{1}{Q_{k}}\left(\sum_{j=0}^{k-1} u_{k}\left(q_{j} \cdot r+q_{j+1} \cdot s\right) x_{j}+q_{k} u_{k} \cdot r x_{k}\right)\right|^{p_{k}}\right]^{\frac{1}{M}}
$$

where $\sup _{k} p_{k}=H$ and $M=\max \{1, H\}$.
Proof. The linearity of $r_{B}^{q}(u, p)$ with respect to the co-ordinatewise addition and scalar multiplication follows from the inequalities which are satisfied for $z, x \in r_{B}^{q}(u, p)$ [11]

$$
\begin{align*}
& {\left[\sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k-1} u_{k}\left(q_{j} \cdot r+q_{j+1} \cdot s\right)\left(x_{j}+z_{j}\right)+q_{k} \cdot r \cdot u_{k}\left(x_{k}+z_{k}\right)\right|^{p_{k}}\right]^{\frac{1}{M}} } \\
\leq & {\left[\sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k-1} u_{k}\left(q_{j} \cdot r+q_{j+1} \cdot s\right) x_{j}+q_{k} \cdot r \cdot u_{k} x_{k}\right|^{p_{k}}\right]^{\frac{1}{M}}+\left[\sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k-1} u_{k}\left(q_{j} \cdot r+q_{j+1} \cdot s\right) z_{j}+q_{k} \cdot r \cdot u_{k} z_{k}\right|^{p_{k}}\right]^{\frac{1}{M}} } \tag{3}
\end{align*}
$$

and for any $\alpha \in \mathbf{R}$ [12]

$$
\begin{equation*}
|\alpha|^{p_{k}} \leq \max \left(1,|\alpha|^{M}\right) \tag{4}
\end{equation*}
$$

It is clear that, $h_{B}(\theta)=0$ and $h_{B}(x)=h_{B}(-x)$ for all $x \in r_{B}^{q}(u, p)$. Again the inequality (3) and (4), yield the subadditivity of h_{B} and

$$
h_{B}(\alpha x) \leq \max (1,|\alpha|) h_{B}(x)
$$

Let $\left\{x^{n}\right\}$ be any sequence of points of the space $r_{B}^{q}(u, p)$ such that $h_{B}\left(x^{n}-x\right) \rightarrow 0$ and $\left(\alpha_{n}\right)$ is a sequence of scalars such that $\alpha_{n} \rightarrow \alpha$. Then, since the inequality,

$$
h_{B}\left(x^{n}\right) \leq h_{B}(x)+h_{B}\left(x^{n}-x\right)
$$

holds by subadditivity of $h_{B},\left\{h_{B}\left(x^{n}\right)\right\}$ is bounded and we thus have

$$
\begin{aligned}
h_{B}\left(\alpha_{n} x^{n}-\alpha x\right)= & {\left[\sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k-1} u_{k}\left(q_{j} \cdot r+q_{j+1} \cdot s\right)\left(\alpha_{n} x_{j}^{n}-\alpha x_{j}\right)+u_{k} q_{k} \cdot r\left(\alpha_{n} x_{k}^{n}-\alpha x_{k}\right)\right|^{p_{k}}\right]^{\frac{1}{M}} } \\
& \leq\left|\alpha_{n}-\alpha\right|^{\frac{1}{M}} h_{B}\left(x^{n}\right)+|\alpha|^{\frac{1}{M}} h_{B}\left(x^{n}-x\right)
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$. That is to say, that the scalar multiplication is continuous. Hence, h_{B} is paranorm on the space $r_{B}^{q}(u, p)$.

It remains to prove the completeness of the space $r_{B}^{q}(u, p)$. Let $\left\{x^{j}\right\}$ be any Cauchy sequence in the space $r_{B}^{q}(u, p)$, where $x^{i}=\left\{x_{0}^{i}, x_{1}^{i}, \ldots\right\}$. Then, for a given $\epsilon>0$ there exists a positive integer $n_{0}(\epsilon)$ such that

$$
\begin{equation*}
h_{B}\left(x^{i}-x^{j}\right)<\epsilon \tag{5}
\end{equation*}
$$

for all $i, j \geq n_{0}(\epsilon)$. Using definition of h_{B} and for each fixed $k \in \mathbb{N}$ that

$$
\left|\left(R_{u}^{q} B x^{i}\right)_{k}-\left(R_{u}^{q} B x^{j}\right)_{k}\right| \leq\left[\sum_{k}\left|\left(R_{u}^{q} B x^{i}\right)_{k}-\left(R_{u}^{q} B x^{j}\right)_{k}\right|^{p_{k}}\right]^{\frac{1}{M}}<\epsilon
$$

for $i, j \geq n_{0}(\epsilon)$, which leads us to the fact that $\left\{\left(R_{u}^{q} B x^{0}\right)_{k},\left(R_{u}^{q} B x^{1}\right)_{k}, \ldots\right\}$ is a Cauchy sequence of real numbers for every fixed $k \in \mathbb{N}$. Since \mathbb{R} is complete, it converges, say, $\left(R_{u}^{q} B x^{i}\right)_{k} \rightarrow\left(\left(R_{u}^{q} B x\right)_{k}\right.$ as $i \rightarrow \infty$. Using these infinitely many limits $\left(R_{u}^{q} B x\right)_{0},\left(R_{u}^{q} B x\right)_{1}, \ldots$, we define the sequence $\left\{\left(R_{u}^{q} B x\right)_{0},\left(R_{u}^{q} B x\right)_{1}, \ldots\right\}$. From (5) for each $m \in N$ and $i, j \geq n_{0}(\epsilon)$,

$$
\begin{equation*}
\sum_{k=0}^{m}\left|\left(R_{u}^{q} B x^{i}\right)_{k}-\left(R_{u}^{q} B x^{j}\right)_{k}\right|^{p_{k}} \leq h_{B}\left(x^{i}-x^{j}\right)^{M}<\epsilon^{M} \tag{6}
\end{equation*}
$$

Take any $i, j \geq n_{0}(\epsilon)$. First, let $j \rightarrow \infty$ in (6) and then $m \rightarrow \infty$, we obtain

$$
h_{B}\left(x^{i}-x\right) \leq \epsilon .
$$

Finally, taking $\epsilon=1$ in (6) and letting $i \geq n_{0}(1)$. we have by Minkowski's inequality for each $m \in \mathbb{N}$ that

$$
\left[\sum_{k=0}^{m}\left|\left(R_{u}^{q} B x\right)_{k}\right|^{p_{k}}\right]^{\frac{1}{M}} \leq h_{B}\left(x^{i}-x\right)+h_{B}\left(x^{i}\right) \leq 1+h_{B}\left(x^{i}\right)
$$

which implies that $x \in r_{B}^{q}(u, p)$. Since $h_{B}\left(x-x^{i}\right) \leq \epsilon$ for all $i \geq n_{0}(\epsilon)$, it follows that $x^{i} \rightarrow x$ as $i \rightarrow \infty$, hence we have shown that $r_{B}^{q}(u, p)$ is complete, hence the proof .

If we take $r=1, s=-1$ in the theorem 2.1, then we have the following result which was proved by Neyaz and Hamid [19].

Corollary 2.2. $r^{q}\left(\Delta_{u}^{p}\right)$ is a complete linear metric space paranormed by h_{Δ}, defined as

$$
h_{\Delta}(x)=\left[\sum_{k}\left|\frac{1}{Q_{k}}\left(\sum_{j=0}^{k-1} u_{k}\left(q_{j}-q_{j+1}\right) x_{j}+q_{k} u_{k} x_{k}\right)\right|^{p_{k}}\right]^{\frac{1}{M}},
$$

where $\sup _{k} p_{k}=H$ and $M=\max \{1, H\}$.
Note that one can easily see the absolute property does not hold on the spaces $r_{B}^{q}(u, p)$, that is $h_{B}(x) \neq h_{B}(|x|)$ for atleast one sequence in the space $r_{B}^{q}(u, p)$ and this says that $r_{B}^{q}(u, p)$ is a sequence space of non-absolute type.

Theorem 2.3. The sequence space $r_{B}^{q}(u, p)$ of non-absolute type is linearly isomorphic to the space $l(p)$, where $0<p_{k} \leq H<\infty$.

Proof. To prove the theorem, we should show the existence of a linear bijection between the spaces $r_{B}^{q}(u, p)$ and $l(p)$, where $0<p_{k} \leq H<\infty$. With the notation of (2), define the transformation T from $r_{B}^{q}(u, p)$ to $l(p)$ by $x \rightarrow y=T x$. The linearity of T is trivial. Further, it is obvious that $x=\theta$ whenever $T x=\theta$ and hence T is injective.

Let $y \in l(p)$ and define the sequence $x=\left(x_{k}\right)$ by

$$
x_{k}=\sum_{n=0}^{k-1}(-1)^{k-n}\left(\frac{s^{k-n-1}}{r^{k-n} q_{n+1}}+\frac{s^{k-n}}{r^{k-n+1} q_{n}}\right) Q_{n} u_{k}^{-1} y_{n}+\frac{Q_{k} u_{k}^{-1} y_{k}}{r \cdot q_{k}}
$$

Then,

$$
\begin{aligned}
& h_{B}(x)=\left[\sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k-1} u_{k}\left(q_{j} \cdot r+q_{j+1} \cdot s\right) x_{j}+u_{k} q_{k} \cdot r \cdot x_{k}\right|^{p_{k}}\right]^{\frac{1}{M}} \\
&=\left[\sum_{k}\left|\sum_{j=0}^{k} \delta_{k j} y_{j}\right|^{p_{k}}\right]^{\frac{1}{M}} \\
&=\left[\sum_{k}\left|y_{k}\right|^{p_{k}}\right]^{\frac{1}{M}}=h_{1}(y)<\infty
\end{aligned}
$$

where,

$$
\delta_{k j}= \begin{cases}1, & \text { if } k=j \\ 0, & \text { if } k \neq j\end{cases}
$$

Thus, we have $x \in r_{B}^{q}(u, p)$. Consequently, T is surjective and is paranorm preserving. Hence, T is a linear bijection and this says us that the spaces $r_{B}^{q}(u, p)$ and $l(p)$ are linearly isomorphic, hence the proof.

3. Duals and Basis of $r_{B}^{q}(u, p)$

In this section, we compute α-, β - and γ-duals of $r_{B}^{q}(u, p)$ and construct its basis.
Theorem 3.1. (i) Let $1<p_{k} \leq H<\infty$ for every $k \in \mathbb{N}$. Define the sets $D_{1}(u, p)$ and $D_{2}(u, p)$ as follows

$$
D_{1}(u, p)=
$$

$$
\bigcup_{B>1}\left\{a=\left(a_{k}\right) \in \omega: \sup _{K \in F} \sum_{k}\left|\sum_{n \in K}\left[\nabla_{u}(n, k) a_{n} Q_{k}+\frac{a_{n}}{r \cdot q_{n}} u_{n}^{-1} Q_{n}\right] B^{-1}\right|^{p_{k}^{\prime}}<\infty\right\}
$$

and
$D_{2}(u, p)=$

$$
\bigcup_{B>1}\left\{a=\left(a_{k}\right) \in \omega: \sum_{k}\left|\left[\left(\frac{a_{k}}{r \cdot u_{k} q_{k}}+\nabla_{u}(n, k) \sum_{i=k+1}^{n} a_{i}\right) Q_{k}\right] B^{-1}\right|^{p_{k}^{\prime}}<\infty\right\},
$$

where

$$
\nabla_{u}(n, k)=(-1)^{k-n}\left(\frac{s^{k-n-1}}{r^{k-n} q_{n+1}}+\frac{s^{k-n}}{r^{k-n+1} q_{n}}\right) u_{k}^{-1} .
$$

Then,

$$
\left[r_{B}^{q}(u, p)\right]^{\alpha}=D_{1}(u, p), \quad\left[r_{B}^{q}(u, p)\right]^{\beta}=D_{2}(u, p) \cap c s, \text { and }\left[r_{B}^{q}(u, p)\right]^{\beta}=D_{2}(u, p) .
$$

(ii) Let $0<p_{k} \leq 1$ for every $k \in \mathbb{N}$. Define the sets $D_{3}(u, p)$ and $D_{4}(u, p)$ as follows
$D_{3}(u, p)=$

$$
\left\{a=\left(a_{k}\right) \in \omega: \sup _{K \in F} \sup _{k}\left|\sum_{n \in K}\left[\nabla_{u}(n, k) a_{n} Q_{k}+\frac{a_{n}}{r \cdot q_{n}} u_{n}^{-1} Q_{n}\right] B^{-1}\right|^{p_{k}}<\infty\right\}
$$

and

$$
D_{4}(u, p)=\left\{a=\left(a_{k}\right) \in \omega: \sup _{k}\left|\left[\left(\frac{a_{k}}{r \cdot u_{k} q_{k}}+\nabla_{u}(n, k) \sum_{i=k+1}^{n} a_{i}\right) Q_{k}\right]\right|^{p_{k}}<\infty\right\}
$$

Then,

$$
\left[r_{B}^{q}(u, p)\right]^{\alpha}=D_{3}(u, p), \quad\left[r_{B}^{q}(u, p)\right]^{\beta}=D_{4}(u, p) \cap c s, \text { and }\left[r_{B}^{q}(u, p)\right]^{\gamma}=D_{4}(u, p) .
$$

For the proof of the Theorem 3.1, we need following lemmas.
Lemma 3.2. [7] (i) Let $1<p_{k} \leq H<\infty$. Then $A \in\left(l(p): l_{1}\right)$ if and only if there exists an integer $B>1$ such that

$$
\sup _{K \in F} \sum_{k \in \mathbb{N}}\left|\sum_{n \in K} a_{n k} B^{-1}\right|^{p_{k}^{\prime}}<\infty
$$

(ii) Let $0<p_{k} \leq 1$. Then $A \in\left(l(p): l_{1}\right)$ if and only if

$$
\sup _{K \in F} \sup _{k \in \mathbb{N}}\left|\sum_{n \in K} a_{n k} B^{-1}\right|^{p_{k}}<\infty .
$$

Lemma 3.3. [9] (i) Let $1<p_{k} \leq H<\infty$. Then, $A \in\left(l(p): l_{\infty}\right)$ if and only if there exists an integer $B>1$ such that

$$
\begin{equation*}
\sup _{n} \sum_{k}\left|a_{n k} B^{-1}\right|^{p_{k}^{\prime}}<\infty . \tag{7}
\end{equation*}
$$

(ii) Let $0<p_{k} \leq 1$ for every $k \in \mathbb{N}$. Then $A \in\left(l(p): l_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n, k \in \mathbb{N}}\left|a_{n k}\right|^{p_{k}}<\infty . \tag{8}
\end{equation*}
$$

Lemma 3.4. [9] Let $0<p_{k} \leq H<\infty$ for every $k \in N$. Then $A \in(l(p): c)$ if and only if (7) and (8) hold along with

$$
\begin{equation*}
\lim _{n} a_{n k}=\beta_{k} \text { for } k \in \mathbb{N} \tag{9}
\end{equation*}
$$

Proof of Theorem 3.1. We consider the case $1<p_{k} \leq H<\infty$ for every $k \in \mathbb{N}$. Let us take any $a=\left(a_{n}\right) \in \omega$. From (2) we can easily see that

$$
\begin{equation*}
a_{n} x_{n}=\sum_{k=0}^{n-1} \nabla_{u}(n, k) a_{n} Q_{k} y_{k}+\frac{a_{n} Q_{n} y_{n}}{r \cdot q_{n}} u_{k}^{-1}=\sum_{k=0}^{n} c_{n k} y_{k}=(C y)_{n} \tag{10}
\end{equation*}
$$

where $n \in \mathbb{N}$ and $C=\left(c_{n k}\right)$ is defined by

$$
c_{n k}= \begin{cases}\nabla_{u}(n, k) a_{n} Q_{k}, & \text { if } 0 \leq k \leq n-1, \\ \frac{a_{n} Q_{n}}{r \cdot q_{n}} u_{k}^{-1}, & \text { if } k=n, \\ 0, & \text { if } k>n,\end{cases}
$$

where $k, n \in \mathbf{N}$. Thus, we deduce from (10) with Lemma 3.2 that $a x=\left(a_{n} x_{n}\right) \in l_{1}$ whenever $x=\left(x_{n}\right) \in r_{B}^{q}(u, p)$ if and only if $C y \in l_{1}$ whenever $y \in l(p)$. This shows that $\left[r_{B}^{q}(u, p)\right]^{\alpha}=D_{1}(u, p)$.

Further, consider the equation

$$
\begin{equation*}
\sum_{k=0}^{n} a_{n} x_{n}=\sum_{k=0}^{n}\left(\frac{a_{k}}{r \cdot q_{k}} u_{k}^{-1}+\nabla_{u}(n, k) \sum_{i=k+1}^{n} a_{i}\right) Q_{k} y_{k}=(D y)_{n} \tag{11}
\end{equation*}
$$

where $n \in \mathbb{N}$ and $D=\left(d_{n k}\right)$ is defined by

$$
d_{n k}= \begin{cases}\left(\frac{a_{k}}{r \cdot q_{k}} u_{k}^{-1}+\nabla_{u}(n, k) \sum_{i=k+1}^{n} a_{i}\right) Q_{k,} & \text { if } 0 \leq k \leq n \\ 0, & \text { if } k>n\end{cases}
$$

for all $k, n \in \mathbb{N}$. Thus we deduce from (11) with Lemma 3.3 that $a x=\left(a_{n} x_{n}\right) \in \operatorname{cs}$ whenever $x=\left(x_{n}\right) \in r_{B}^{q}(u, p)$ if and only if $D y \in c$ whenever $y \in l(p)$. Therefore, we derive from (11) that

$$
\begin{equation*}
\sum_{k}\left|\left[\left(\frac{a_{k}}{r \cdot q_{k}} u_{k}^{-1}+\nabla_{u}(n, k) \sum_{i=k+1}^{n} a_{i}\right) u_{k}^{-1} Q_{k}\right] B^{-1}\right|^{p_{k}^{\prime}}<\infty, \tag{12}
\end{equation*}
$$

and $\lim _{n} d_{n k}$ exists and hence shows that $\left[r_{B}^{q}(u, p)\right]^{\beta}=D_{2}(u, p) \cap c s$.
As proved above, from Lemma 3.4 together with (12) that $a x=\left(a_{k} x_{k}\right) \in b s$ whenever $x=\left(x_{n}\right) \in r_{B}^{q}(u, p)$ if and only if $D y \in l_{\infty}$ whenever $y=\left(y_{k}\right) \in l(p)$. Therefore, we again obtain the condition (12) which means that $\left[r_{B}^{q}(u, p)\right]^{\gamma}=D_{2}(u, p)$ and this completes the proof.

Theorem 3.5. Define the sequence $b^{(k)}(q)=\left\{b_{n}^{(k)}(q)\right\}$ of the elements of the space $r_{B}^{q}(u, p)$ for every fixed $k \in \mathbb{N}$ by

$$
b_{n}^{(k)}(q)=\left\{\begin{array}{cl}
\frac{Q_{k}}{r . q_{k}} u_{k}^{-1}+\nabla_{u}(n, k) Q_{k}, & \text { if } 0 \leq n \leq k \\
0, & \text { if } n>k
\end{array}\right.
$$

Then, the sequence $\left\{b^{(k)}(q)\right\}$ is a basis for the space $r_{B}^{q}(u, p)$ and for any $x \in r_{B}^{q}(u, p)$ has a unique representation of the form

$$
\begin{equation*}
x=\sum_{k} \lambda_{k}(q) b^{(k)}(q) \tag{13}
\end{equation*}
$$

where, $\lambda_{k}(q)=\left(R_{u}^{q} B x\right)_{k}$ for all $k \in \mathbb{N}$ and $0<p_{k} \leq H<\infty$.
Proof. It is clear that $\left\{b^{(k)}(q)\right\} \subset r_{B}^{q}(u, p)$, since

$$
\begin{equation*}
R_{u}^{q} B b^{(k)}(q)=e^{(k)} \in l(p) \text { for } k \in N \tag{14}
\end{equation*}
$$

and $0<p_{k} \leq H<\infty$, where $e^{(k)}$ is the sequence whose only non-zero term is 1 in $k^{\text {th }}$ place for each $k \in N$.
Let $x \in r_{B}^{q}(u, p)$ be given. For every non-negative integer m, we put

$$
\begin{equation*}
x^{[m]}=\sum_{k=0}^{m} \lambda_{k}(q) b^{(k)}(q) . \tag{15}
\end{equation*}
$$

Then, by applying $R_{u}^{q} B$ to (15) and using (14), we obtain

$$
R_{u}^{q} B x^{[m]}=\sum_{k=0}^{m} \lambda_{k}(q) R_{u}^{q} B b^{(k)}(q)=\sum_{k=0}^{m}\left(R_{u}^{q} B x\right)_{k} e^{(k)}
$$

and

$$
\left(R_{u}^{q} B\left(x-x^{[m]}\right)\right)_{i}= \begin{cases}0, & \text { if } 0 \leq i \leq m \\ \left(R_{u}^{q} B x\right)_{i}, & \text { if } i>m\end{cases}
$$

where $i, m \in \mathbb{N}$. Given $\varepsilon>0$, there exists an integer m_{0} such that

$$
\left(\sum_{i=m}^{\infty}\left|\left(R_{u}^{q} B x\right)_{i}\right|^{p_{k}}\right)^{\frac{1}{M}}<\frac{\varepsilon}{2}
$$

for all $m \geq m_{0}$. Hence,

$$
\begin{aligned}
h_{B}\left(x-x^{[m]}\right) & =\left(\sum_{i=m}^{\infty}\left|\left(R_{u}^{q} B x\right)_{i}\right|^{p_{k}}\right)^{\frac{1}{M}} \\
& \leq\left(\sum_{i=m_{0}}^{\infty}\left|\left(R_{u}^{q} B x\right)_{i}\right|^{p_{k}}\right)^{\frac{1}{M}} \\
& <\frac{\varepsilon}{2}<\varepsilon
\end{aligned}
$$

for all $m \geq m_{0}$, which proves that $x \in r_{B}^{q}(u, p)$ is represented as (14).
Let us show the uniqueness of the representation for $x \in r_{B}^{q}(u, p)$ given by (13). Suppose, on the contrary; that there exists a representation $x=\sum_{k} \mu_{k}(q) b^{k}(q)$. Since the linear transformation T from $r_{B}^{q}(u, p)$ to $l(p)$ used in the Theorem 3 is continuous we have

$$
\begin{aligned}
\left(R_{u}^{q} B x\right)_{n} & =\sum_{k} \mu_{k}(q)\left(R_{u}^{q} B b^{k}(q)\right)_{n} \\
& =\sum_{k} \mu_{k}(q) e_{n}^{(k)}=\mu_{n}(q)
\end{aligned}
$$

for $n \in N$, which contradicts the fact that $\left(R_{u}^{q} B\right)_{n}=\lambda_{n}(q)$ for all $n \in \mathbb{N}$. Hence, the representation (13) is unique. This completes the proof.
4. Matrix Mappings on the Space $r_{B}^{q}(u, p)$

In this section, we characterize the matrix mappings from the space $r_{B}^{q}(u, p)$ to the space l_{∞}.
Theorem 4.1. (i) Let $1<p_{k} \leq H<\infty$ for every $k \in N$. Then $\left.A \in\left(r_{B}^{q}(u, p)\right): l_{\infty}\right)$ if and only if there exists an integer $B>1$ such that

$$
\begin{equation*}
C(B)=\sup _{n} \sum_{k}\left|\left[\left(\frac{a_{n k}}{r \cdot u_{k} q_{k}}+\nabla_{u}(n, k) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}\right] B^{-1}\right|^{p_{k}^{\prime}}<\infty \tag{16}
\end{equation*}
$$

and $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in c s$ for each $n \in \mathbb{N}$.
(ii) Let $0<p_{k} \leq 1$ for every $k \in \mathbb{N}$. Then $A \in\left(r_{B}^{q}(u, p): l_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{k}\left|\left[\left(\frac{a_{n k}}{r \cdot u_{k} q_{k}}+\nabla_{u}(n, k) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}\right] B^{-1}\right|^{p_{k}}<\infty \tag{17}
\end{equation*}
$$

and $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in c s$ for each $n \in \mathbb{N}$.
Proof. We will prove (i) and (ii) can be proved in a similar fashion. So, let $A \in\left(r_{B}^{q}(u, p): l_{\infty}\right)$ and $1<p_{k} \leq H<\infty$ for every $k \in \mathbb{N}$. Then $A x$ exists for $x \in r_{B}^{q}(u, p)$ and implies that $\left\{a_{n k}\right\}_{k \in N} \in\left\{r_{B}^{q}(u, p)\right\}^{\beta}$ for each $n \in \mathbb{N}$. Hence necessity of (16) holds.

Conversely, suppose that the necessities (16) hold and $x \in r_{B}^{q}(u, p)$, since $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{r_{B}^{q}(u, p)\right\}^{\beta}$ for every fixed $n \in \mathbb{N}$, so the A-transform of x exists. Consider the following equality obtained by using the relation (11) that

$$
\begin{equation*}
\sum_{k=0}^{m} a_{n k} x_{k}=\sum_{k}^{m}\left[\left(\frac{a_{n k}}{r \cdot u_{k} q_{k}}+\nabla_{u}(n, k) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}\right] y_{k} . \tag{18}
\end{equation*}
$$

Taking into account the assumptions we derive from (18) as $m \rightarrow \infty$ that

$$
\begin{equation*}
\sum_{k} a_{n k} x_{k}=\sum_{k}\left[\left(\frac{a_{n k}}{r \cdot u_{k} q_{k}}+\nabla_{u}(n, k) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}\right] y_{k} . \tag{19}
\end{equation*}
$$

Now, by combining (19) and the following inequality which holds for any $B>0$ and any complex numbers a, b

$$
|a b| \leq B\left(\left|a B^{-1}\right|^{p^{\prime}}+|b|^{p}\right)
$$

with $p^{-1}+p^{\prime-1}=1[10,16]$, one can easily see that

$$
\begin{aligned}
\sup _{n \in N}\left|\sum_{k} a_{n k} x_{k}\right| & \leq \sup _{n \in N} \sum_{k}\left|\left[\left(\frac{a_{n k}}{r \cdot u_{k} q_{k}}+\nabla_{u}(n, k) \sum_{i=k+1}^{n} a_{n i}\right)\right] Q_{k}\right|\left|y_{k}\right| \\
& \leq B\left[C(B)+h_{1}^{B}(y)\right]<\infty .
\end{aligned}
$$

This shows that $A x \in l_{\infty}$ whenever $x \in r_{B}^{q}(u, p)$.
This completes the proof.

References

[1] B. Altay and F. Başar, On the paranormed Riesz sequence space of nonabsolute type, Southeast Asian Bulletin of Mathematics 26 (2002) 701-715.
[2] B. Altay and F. Başar, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Mathematical Journal 55(1) (2003) 136-147.
[3] M. Başarir, New type of generalised difference sequence space, Filomat 24(4) (2010) 35-52.
[4] M. Başarir and M. Öztürk, On The Riesz difference sequence space, Rendiconti del Circolo Matematico di Palermo 57 (2008) 377-389.
[5] A. H. Ganie, N. A. Sheikh, Some new paranormed sequence spaces of non-absolute type and matrix transformations, Advanced and Development in Mathematical Sciences 1-2(3)(2012) 1-14.
[6] A.H. Ganie and N.A. Sheikh, On some new sequence space of non-absolute type and matrix transformations, Journal of the Egyptian Mathematical Society 21(2013) 34-40.
[7] K.-G. Gross-Erdmann, Matrix transformations between the sequence spaces of Maddox, Journal of Mathematical Analysis and Applications 180 (1993) 223-238.
[8] H. Kizmaz, On certain sequence, Canadian Mathematical Bulletin 24(2) (1981) 169-176.
[9] C.G. Lascarides and I.J. Maddox, Matrix transformations between some classes of sequences, Mathematical Proceedings of the Cambridge Philosophical Society 68 (1970) 99-104.
[10] I.J. Maddox, Elements of Functional Analysis , 2nded., The University Press, Cambridge, 1988.
[11] I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Mathematical Proceedings of the Cambridge Philosophical Society 64 (1968), 335-340.
[12] I.J. Maddox, Spaces of strongly summable sequences, Quarterly Journal of Mathematics-Oxford 18(2) (1967), 345-355.
[13] E. Malkowsky, M. Mursaleen and S. Suantai, The dual spaces of sets of difference sequences of order m and matrix transformations, Acta Mathematica Sinica, English Series 23(3) (2007) 521-532.
[14] M. Mursaleen and A.K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Mod., 52 (2010), 603-617.
[15] M. Mursaleen, Generalised difference sequence spaces, Journal of Mathematical Analysis and Applications 203 (1995) $738-745$.
[16] P.-N. Ng and P.-Y. Lee, Cesàro sequences spaces of non-absolute type, Commentationes Mathematicae. Prace Matematyczne 20(2) (1978) 429-433.
[17] G. M. Petersen, Regular matrix transformations. McGraw-Hill Publishing Co. Ltd., London-New York-Toronto, 1966.
[18] N.A. Sheikh and A.H. Ganie, A new paranormed sequence space and some matrix transformations, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 28(1)(2012) 47-58.
[19] N.A. Sheikh and A.H. Ganie, New paranormed sequence space and some matrix transformations, WSEAS Transactions on Mathematics 8(12) (2013) 852-859.

[^0]: 2010 Mathematics Subject Classification. Primary 40C05; Secondary 46A45, 46H05
 Keywords. Sequence space of non-absolute type; β-duals; matrix transformations.
 Received: 21 June 2013; Accepted: 04 February 2014
 Communicated by Dragan S. Djordjević
 Email addresses: mursaleenm@gmail.com (M. Mursaleen), ashamidg@rediffmail.address (Ab. Hamid Ganie), neyaznit@yahoo.co.in (Neyaz Ahmad Sheikh)

