A New Theorem on the Absolute Riesz Summability Factors

Hüseyin Bor ${ }^{\text {a }}$
${ }^{a}$ P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

Abstract

In [5], we proved a main theorem dealing with absolute Riesz summability factors of infinite series using a quasi- δ-power increasing sequence. In this paper, we generalize that theorem by using a general class of power increasing sequences instead of a quasi- δ-power increasing sequence. This theorem also includes some new and known results.

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be an almost increasing sequence if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [1]). We write $\mathcal{B} \mathcal{V}_{O}=$ $\mathcal{B} \mathcal{V} \cap C_{O}$, where $C_{O}=\left\{x=\left(x_{k}\right) \in \Omega: \lim _{k}\left|x_{k}\right|=0\right\}, \mathcal{B V}=\left\{x=\left(x_{k}\right) \in \Omega: \sum_{k}\left|x_{k}-x_{k+1}\right|<\infty\right\}$ and Ω being the space of all real-valued sequences. A positive sequence $X=\left(X_{n}\right)$ is said to be a quasi-f-power increasing sequence if there exists a constant $K=K(X, f) \geq 1$ such that $K f_{n} X_{n} \geq f_{m} X_{m}$ for all $n \geq m \geq 1$, where $f=\left(f_{n}\right)=\left\{n^{\delta}(\log n)^{\sigma}, \sigma \geq 0,0<\delta<1\right\}$ (see [10]). If we take $\sigma=0$, then we get a quasi- δ-power increasing sequence (see [9]). Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by u_{n} and t_{n} the nth $(C, 1)$ means of the sequence $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively. The series $\sum a_{n}$ is said to be summable $|C, 1|_{k}$, $k \geq 1$, if (see [7])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}-u_{n-1}\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k}<\infty \tag{1}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{2}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
V_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{3}
\end{equation*}
$$

[^0]defines the sequence $\left(V_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [8]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [2])
\[

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|V_{n}-V_{n-1}\right|^{k}<\infty \tag{4}
\end{equation*}
$$

\]

In the special case $p_{n}=1$ for all values of $n,\left|\bar{N}, p_{n}\right|_{k}$ summability reduces to $|C, 1|_{k}$ summability.

2.Known result

In [5], we have proved the following theorem dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series.
Theorem 2.1 Let $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}_{O}$ and let $\left(X_{n}\right)$ be a quasi- δ-power increasing sequence for some $\delta(0<\delta<1)$ and let there be sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{align*}
& \left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{5}\\
& \beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{6}\\
& \sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{7}\\
& \left|\lambda_{n}\right| X_{n}=O(1) \tag{8}
\end{align*}
$$

If

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{\left|t_{v}\right|^{k}}{v}=O\left(X_{n}\right) \text { as } n \rightarrow \infty \tag{9}
\end{equation*}
$$

and $\left(p_{n}\right)$ is a sequence such that

$$
\begin{align*}
& P_{n}=O\left(n p_{n}\right) \tag{10}\\
& P_{n} \Delta p_{n}=O\left(p_{n} p_{n+1}\right) \tag{11}
\end{align*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
It should be noted that if we take $\left(X_{n}\right)$ as an almost increasing sequence, then we get a result which was proved in [4]. Also it should be remarked that we can take $\left(\lambda_{n}\right) \in \mathcal{B V}$ instead of $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}_{O}$ and it is sufficient to prove Theorem 2.1.

3. The main result

The aim of this paper is to generalize Theorem 2.1 by using a quasi-f-power increasing sequence instead of a quasi- δ-power increasing sequence. Now we shall prove the following theorem.
Theorem 3.1 Let $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$ and let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence for some $\delta(0<\delta<1)$ and $\sigma \geq 0$. If the conditions (5)-(11) are satisfied, then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
It should be noted that if we take $\sigma=0$, then we get Theorem 2.1.
We require the following lemmas for the proof of our theorem.
Lemma 3. 2 ([3]) If the conditions (10) and (11) are satisfied, then $\Delta\left(P_{n} / p_{n} n^{2}\right)=O\left(1 / n^{2}\right)$.
Lemma 3. 3 ([6]) Except for the condition $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$ under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as expressed in the statement of the theorem, we have the following;

$$
\begin{align*}
& n X_{n} \beta_{n}=O(1) \tag{12}\\
& \sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{13}
\end{align*}
$$

4. Proof of Theorem 3.1 Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum_{n=1}^{\infty} \frac{a_{n} P_{n} \lambda_{n}}{n p_{n}}$. Then, by definition, we have

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=1}^{n} p_{v} \sum_{r=1}^{v} \frac{a_{r} P_{r} \lambda_{r}}{r p_{r}}=\frac{1}{P_{n}} \sum_{v=1}^{n}\left(P_{n}-P_{v-1}\right) \frac{a_{v} P_{v} \lambda_{v}}{v p_{v}} \tag{14}
\end{equation*}
$$

Then, for $n \geq 1$ we have that

$$
\begin{aligned}
T_{n}-T_{n-1} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} P_{v} a_{v} \lambda_{v}}{v p_{v}} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} P_{v} a_{v} v \lambda_{v}}{v^{2} p_{v}} .
\end{aligned}
$$

Using Abel's transformation, we get that

$$
\begin{aligned}
T_{n}-T_{n-1} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \Delta\left(\frac{P_{v-1} P_{v} \lambda_{v}}{v^{2} p_{v}}\right) \sum_{r=1}^{v} r a_{r}+\frac{\lambda_{n}}{n^{2}} \sum_{v=1}^{n} v a_{v} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}}(v+1) t_{v} p_{v} \frac{\lambda_{v}}{v^{2}} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v}(v+1) \frac{t_{v}}{v^{2} p_{v}}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} \lambda_{v+1}(v+1) t_{v} \Delta\left(P_{v} / v^{2} p_{v}\right) \\
& +\lambda_{n} t_{n}(n+1) / n^{2} \\
& =T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4} .
\end{aligned}
$$

To complete the proof of Theorem 3.1, by Minkowski's inequality it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{p_{n}}{p_{n}}\right)^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{15}
\end{equation*}
$$

When $k>1$, we can apply Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, and so we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 1}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}} p_{v}\left|t_{v} \| \lambda_{v}\right| \frac{1}{v}\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \frac{1}{v^{k}} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \frac{1}{v^{k}} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right| p_{v}\left|t_{v}\right|^{k} \frac{1}{P_{v}} \frac{1}{v^{k}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left|\lambda_{v} \| t_{v}\right|^{k} \frac{1}{v^{k}} \\
& =O(1) \sum_{v=1}^{m} v^{k-1} \frac{1}{v^{k}}\left|\lambda_{v} \| t_{v}\right|^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right| \frac{\left|t_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v} \frac{\left|t_{r}\right|^{k}}{r} \\
& +O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1)\left|\lambda_{m}\right| X_{m}=O(1)
\end{aligned}
$$

as $m \rightarrow \infty$, by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3.
Now, by using (10), we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{p_{v}}{p_{v}}\left|\Delta \lambda_{v}\right| p_{v}\left|t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{p_{v}}{p_{v}}\right)^{k}\left(\beta_{v}\right)^{k}\left|t_{v}\right|^{k} p_{v} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{p_{v}}{p_{v}}\right)^{k}\left(\beta_{v}\right)^{k}\left|t_{v}\right|^{k} p_{v} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{p_{v}}{p_{v}}\right)^{k-1}\left(\beta_{v}\right)^{k}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{p_{v}}{p_{v}}\right)^{k-1}\left(v \beta_{v}\right)^{k-1} v \beta_{v} \frac{1}{v^{k}}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} v^{k-1} v \beta_{v} \frac{1}{v^{k}}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} v \beta_{v} \frac{\left|t_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \frac{\left|t_{r}\right|^{k}}{r}+O(1) m \beta_{m} \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m-1}\left|(v+1) \Delta \beta_{v}-\beta_{v}\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) a s m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3. 3. The other parts of the proof can be done similar as in [5] by using Lemma 3. 2 and Lemma 3. 3 and therefore we omitted it. If we take $p_{n}=1$ for all values of n, then we get a new result dealing with $|C, 1|_{k}$ summability factors of infinite series.

References

[1] N. K. Bari and S. B. Stečkin, Best approximation and differential properties of two conjugate functions, Trudy. Moskov. Mat. Obšč. 5 (1956) 483-522 (in Russian)
[2] H. Bor, On two summability methods, Math. Proc. Camb. Philos Soc. 97 (1985) 147-149
[3] H. Bor, Absolute summability factors for infinite series, Indian J. Pure Appl. Math. 19 (1988) 664-671
[4] H. Bor, A note on absolute Riesz summability factors, Math. Inequal. Appl. 10 (2007) 619-625
[5] H. Bor, A theorem on the absolute summability factors, Math. Notes 86 (2009) 463-468
[6] H. Bor, A new application of generalized power increasing sequences, Filomat 26 (2012) 631-635
[7] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957) 113-141
[8] G. H. Hardy, Divergent Series, Oxford Univ. Press, Oxford, (1949)
[9] L. Leindler, A new application of quasi power increasing sequences, Publ. Math. Debrecen 58 (2001) 791-796
[10] W. T. Sulaiman, Extension on absolute summability factors of infinite series, J. Math. Anal. Appl. 322 (2006) 1224-1230

[^0]: 2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99 46A45
 Keywords. Sequence spaces; absolute summability; power increasing sequences; infinite series; Hölder inequality; Minkowski inequality

 Received: 10 July 2013; Accepted: 10 September 2013
 Communicated by Dragan S. Djordjević
 Email address: hbor33@gmail.com (Hüseyin Bor)

