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Stability of a Mixed Type Additive and Quartic Functional Equation
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Abstract. In this paper we obtain the general solution of a mixed additive and quartic functional equation.
We also prove the Hyers-Ulam stability of this functional equation in random normed spaces.

1. Introduction

The problem of stability of functional equations was originally raised by S. M. Ulam [20] in 1940: given

a group G, a metric group H with metric d(·, ·), and a ε > 0, does there exist a δ > 0 such that if a mapping

f : G −→ H satisfies d( f (xy), f (x) f (y)) ≤ δ for all x, y ∈ G, then a homomorphism 1 : G −→ H exists with

d( f (x), 1(x)) ≤ ε for all x ∈ G? For Banach spaces the Ulam problem was first solved by D. H. Hyers [11] in

1941, which states that if δ > 0 and f : X −→ Y is a mapping with Banach spaces X and Y, so that

‖ f (x + y) − f (x) − f (y)‖ ≤ δ (1)

for all x, y ∈ X, then there exists a unique additive mapping T : X −→ Y such that ‖ f (x) − T(x)‖ ≤ δ for

all x, y ∈ X. Due to this fact, the additive functional equation f (x + y) = f (x) + f (y) is said to have the

Hyers-Ulam stability property on X. This result was generalized by Aoki [1] for additive mappings and

by Rassias [17] for linear mappings by considering an unbounded Cauchy difference. This terminology is

also applied to other functional equations which has been studied by many authors (see, for example, [3],

[5], [6], [8], [12] and [15]).

Rassias [16] investigated stability properties of the following quartic functional equation

f (x + 2y) + f (x − 2y) + 6 f (x) = 4 f (x + y) + 4 f (x − y) + 24 f (y).

This equation is equivalent to the following

f (x + 2y) + f (x − 2y) = 10 f (x) + 24 f (y) − f (2x) + 4 f (x + y) + 4 f (x − y). (2)
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In [7], Chung and Sahoo determined the general solution of (2) without assuming any regularity

conditions on the unknown function. Indeed, they proved that the function f : R → R is a solution of (2)

if and only if f (x) = Q(x, x, x, x) where the function Q : R4
→ R is symmetric and additive in each variable.

The fact that every solution of (2) is even implies that it can be written as follows:

f (2x + y) + f (2x − y) = 24 f (x) − 6 f (y) + 4 f (x + y) + 4 f (x − y). (3)

Lee et al. [13] obtained the general solution of (3) and proved the Hyers-Ulam stability of this equation.

In [9], Eshaghi Gordji introduced and obtained the general solution of the following mixed type additive

and quartic functional equation

f (2x + y) + f (2x − y) = 4{( f (x + y) + f (x − y)} −
3
7

( f (2y) − 2 f (y)) + 2 f (2x) − 8 f (x). (4)

He also established the Hyers-Ulam Rassias stability of the above functional equation in real normed

spaces. The stability of (4) in non-Archimedean orthogonality spaces is stadied in [14] (see also [4]).

In this paper, we present a new form of the functional equation (4) as follows:

f (x + 2y) − 4 f (x + y) − 4 f (x − y) + f (x − 2y) =
12
7

( f (2y) − 2 f (y)) − 6 f (x) (5)

It is easily verified that the function f (x) = αx4 + βx is a solution of the functional equation (5). We find out

the general solution of (5) and investigate the Hyers-Ulam stability of this functional equation in random

normed spaces which our way is different from [10].

2. General Solution of (5)

Lemma 2.1. Let X andY be real vector spaces.

(i) If an odd mapping f : X −→ Y satisfies the functional equation (5), then f is additive;

(ii) If an even mapping f : X −→ Y satisfies the functional equation (5), then f is quartic.

Proof. (i) Letting x = y = 0 in (5), we have f (0) = 0. Once more, by putting x = 0 in (5), then by oddness of

f , we get

f (2y) = 2 f (y) (6)

for all y ∈ X. Hence (5) can be rewritten as

f (x + 2y) + f (x − 2y) = 4[ f (x + y) + f (x − y)] − 6 f (x) (7)

for all x, y ∈ X. Repalcing x by 2x in (7) and using (6), we have

2[ f (2x + y) + f (2x − y)] = f (x + y) + f (x − y) + 6 f (x) (8)
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for all x, y ∈ X. Interchanging x into y in (7), we get

f (2x + y) − f (2x − y) = 4[ f (x + y) − f (x − y)] − 6 f (y) (9)

for all x, y ∈ X. Replacing y by −y in (9), we have

f (2x − y) − f (2x + y) = 4[ f (x − y) − f (x + y)] + 6 f (y) (10)

for all x, y ∈ X. Plugging (8) into (10), we obtain

4 f (2x + y) = 9 f (x + y) − 7 f (x − y) + 6 f (x) − 12 f (y) (11)

for all x, y ∈ X. Replacing y by y − x in (11) and multiplying the result by 4
7 , we arrive at

4 f (2x − y) =
48
7

f (x − y) −
16
7

f (x + y) +
24
7

f (x) +
36
7

f (y) (12)

for all x, y ∈ X. Combining the equations (8), (11) and (12) to obtain

33 f (x + y) − 15 f (x − y) = 18 f (x) − 48 f (y) (13)

for all x, y ∈ X. Substituting x by 2x in (8), we have

2[ f (4x + y) + f (4x − y)] = f (2x + y) + f (2x − y) + 12 f (x) (14)

for all x, y ∈ X. Replacing y by y + 2x in (8), we get

4 f (4x + y) − 4 f (y) = 2 f (3x + y) − 2 f (x + y) + 12 f (x) (15)

for all x, y ∈ X. Putting −y instead of y in (15), we have

4 f (4x − y) + 4 f (y) = 2 f (3x − y) − 2 f (x − y) + 12 f (x) (16)

for all x, y ∈ X. Adding (15) to (16), we deduce that

4[ f (4x + y) + f (4x − y)]

= 2[ f (3x + y) + f (3x − y)] − 2[ f (x + y) + f (x − y)] + 24 f (x) (17)

for all x, y ∈ X. Replacing y by x − y and x + y in (8), respectively, and combining the results to obtain

4[ f (3x + y) + f (3x − y)]

= −4[ f (x + y) + f (x − y)] + 2[ f (2x + y) + f (2x − y)] + 24 f (x) (18)

for all x, y ∈ X. Now, the relations (8) and (18) imply that

4[ f (3x + y) + f (3x − y)] = −3[ f (x + y) + f (x − y)] + 30 f (x) (19)

for all x, y ∈ X. It follows from (14), (17) and (19) that

f (x + y) + f (x − y) = 2 f (x) (20)

for all x, y ∈ X. Substituting x, y by y, x in (20), respectively, we obtain

f (x + y) − f (x − y) = 2 f (y) (21)
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for all x, y ∈ X. The equalities (20) and (21) show that

f (x + y) = f (x) + f (y) (x, y ∈ X).

(ii) Similar to the part (i), we can show that f (0) = 0 and f (2y) = 16 f (y) for all y ∈ X. These results imply

that (5) is as

f (x + 2y) + f (x − 2y) = 4[ f (x + y) + f (x − y)] + 24 f (y) − 6 f (x) (22)

for all x, y ∈ X. Replacing x by 2x in (22), we get

f (2x + y) + f (2x − y) = 4[ f (x + y) + f (x − y)] +
3
2

f (2x) − 6 f (y) (23)

for all x, y ∈ X. Since f (2x) = 16 f (x), the equation (23) is equivalent to the following equation

f (2x + y) + f (2x − y) = 4[ f (x + y) + f (x − y)] + 24 f (x) − 6 f (y) (x, y ∈ X).

Therefore f satisfies (3) and so f is a quartic mapping.

Throughout this paper, we use the abbreviation for the given mapping f : X −→ Y as follows:

D f (x, y) := f (x + 2y) − 4 f (x + y) − 4 f (x − y) + f (x − 2y) −
12
7

( f (2y) − 2 f (y)) + 6 f (x)

for all x, y ∈ X.

3. Stability of (5)

In this section, we state the usual terminology, notations and conventions of the theory of random

normed spaces, as in [18] and [19]. The set of all probability distribution functions is denoted by

∆+ := {F : R ∪ {−∞,∞} −→ [0, 1]|F is left-continuous

and nondecreasing on R; where F(0) = 0 and F(+∞) = 1}.

Let us define D+ := {F ∈ ∆+
| l−F(+∞) = 1}, where l−F(x) denotes the left limit of the function f at the

point x. The set ∆+ is partially ordered by the usual pointwise ordering of functions, that is, F ≤ G if and

only if F(t) ≤ G(t) for all t ∈ R. The maximal element for ∆+ in this order is the distribution function ε0

given by

ε0(t) =

0, if t ≤ 0
1, if t > 0.

Definition 3.1. ([18]) A mapping τ : [0, 1] × [0, 1] −→ [0, 1] is said to be a continuous triangular norm (briefly, a

continuous t-norm) if τ satisfies the following conditions:

(i) τ is commutative and associative;

(ii) τ is continuous;

(iii) τ(a, 1) = a for all a ∈ [0, 1];
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(iv) τ(a, b) ≤ τ(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are τP(a, b) = ab, τM(a, b)=min{a,b} and τL(a, b)=max{a + b − 1, 0}.

Definition 3.2. ([19]) A random normed space (briefly, RN-space) is a triple (X, µ, τ), where X is a vector space, τ

is a continuous t-norm, and µ is a mapping from X into D+ such that the following conditions hold:

(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;

(RN2) µαx(t) = µx(t/|α|) for all x ∈ X, α , 0 and all t ≥ 0;

(RN3) µx+y(t + s) ≥ τ(µx(t), µy(s)) for all x, y ∈ X and all t, s ≥ 0.

Let (X, ‖ · ‖) be a normed space. Define the mapping µ : X −→ D+ via µx(t) = t
t+‖x‖ for all x ∈ X and all

t ≥ 0. Then (X, µ, τM) is a random normed space.

Definition 3.3. Let (X, µ, τ) be an RN-space.

(1) A sequence {xn} inX is said to be convergent to a point x ∈ X if, for every t > 0 and ε > 0, there exists a positive

integer N such that µxn−x(t) > 1 − ε whenever n ≥ N;

(2) A sequence {xn} in X is called a Cauchy sequence if, for every t > 0 and ε > 0, there exists a positive integer N

such that µxn−xm (t) > 1 − ε whenever n ≥ m ≥ N;

(3) An RN-space (X, µ, τ) is said to be complete if and only if every Cauchy sequence in X is convergent to a point

in X.

Theorem 3.4. ([18]) If (X, µ, τ) is an RN-space and {xn} is a sequence such that xn → x, then limn→∞ µxn (t) = µx(t).

For a t-norm τ and a given sequence {an} in [0, 1], we define τn
j=1a j recursively by τ1

j=1a j = a1 and

τn
j=1a j = τ(τn−1

j=1 a j, an) for all n ≥ 2. We now prove the stability of the functional equation (5) in the setting of

random normed spaces.

Theorem 3.5. Let X be a linear space, (Z,Λ, τM) be an RN-space and (Y, µ, τM) be a complete RN-space. Suppose

that ψ : X ×X −→ Z is a mapping such that for some 0 < α < 16,

Λψ(0,2x)(t) ≥ Λαψ(0,x)(t) (x ∈ X, t > 0) (24)

and

lim
n→∞

Λψ(2nx,2n y)(16nt) = 1 (x, y ∈ X, t > 0). (25)

If f : X −→ Y is an even mapping with f (0) = 0 and

µD f (x,y)(t) ≥ Λψ(x,y)(t) (26)

for all x, y ∈ X and all t > 0, then there exists a unique quartic mapping Q : X −→ Y such that

µ f (x)−Q(x)(t) ≥ Λψ(0,x)

(
2(16 − α)

7
t
)

(27)

for all x ∈ X and all t > 0.
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Proof. Replacing (x, y) by (0, x) in (26), then by eveness of f , we have

µ( 2
7 f (2x)− 32

7 f (x))(t) ≥ Λψ(0,x) (t)

for all x ∈ X. Thus

µ( 1
16 f (2x)− f (x))(t) ≥ Λψ(0,x)

(32
7

t
)

(28)

for all x ∈ X. Substituting x by 2nx in (28) and applying (24), we get

µ(
f (2n+1x)
16n+1 −

f (2nx)
16n

)(t) ≥ Λψ(0,2nx)

(32
7

16nt
)

≥ Λαnψ(0,x)

(32
7

16nt
)

≥ Λψ(0,x)

(
32
7

(16
α

)n

t
)

(29)

for all x ∈ X and all non-negative integers n. Using the inequality (29), we obtain

µ( f (2nx)
16n − f (x)

)
 7t

32

n−1∑
j=0

(
α
16

) j
 = µ(∑n−1

j=0

(
f (2 j+1x)

16 j+1 −
f (2 jx)

16 j

))
 7

32

n−1∑
j=0

(
α
16

) j
t


≥ (τM)n−1

j=0

(
µ(

f (2 j+1x)

16 j+1 −
f (2 jx)

16 j

) ( 7
32

(
α
16

) j
t
))

= µ( 1
16 f (2x)− f (x))

( 7
32

t
)

≥ Λψ(0,x)(t)

for all x ∈ X and all non-negative integers n. In other words,

µ( f (2nx)
16n − f (x)

)(t) ≥ Λψ(0,x)

 t
7
32

∑n−1
j=0

(
α
16

) j

 (30)

Intechanging x into 2lx in (30), we have

µ(
f (2n+lx)

16n+l −
f (2lx)

16l

)(t) ≥ Λψ(0,x)

 t(
7

32

∑l+n
j=l

(
α
16

) j
)
 (31)

for all x ∈ X and all integers n ≥ l ≥ 0. Due to the convegence of
∑
∞

j=l

(
α
16

) j
, we see that Λψ(0,x)

 t(
7
32

∑l+n
j=l ( α

16 ) j
)


goes to 1 as l and n tend to infinity, and so
{ f (2nx)

16n

}
is a Cauchy sequence in (Y, µ, τM). The completeness

of (Y, µ, τM) as a RN-space implies that the mentioned sequence is converges to some point Q(x) ∈ Y. It

follows from (30) that for each ε > 0

µ(Q(x)− f (x))(t + ε) ≥ τM

(
µ(
Q(x)− f (2nx)

16n

)(ε), µ( f (2nx)
16n − f (x)

)(t))
≥ τM

µ(
Q(x)− f (2nx)

16n

)(ε),Λψ(0,x)

 t(
7
32

∑n−1
j=0

(
α
16

) j
)
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for all x ∈ X. Taking n to infinity in the above inequality, we deduce that

µ(Q(x)− f (x))(t + ε) ≥ Λψ(0,x)

(
2(16 − α)

7
t
)

(32)

Taking ε→ 0 in (32), we get (27). Also, the inequality (26) implies that

µ 1
16nD f (2nx,2n y)(t) ≥ Λψ(2nx,2n y)(16nt) (33)

for all x, y ∈ X and all t > 0. Letting n to infinity in (33), by (25), and the part (ii) of Lemma 2.1, we observe

that the mapping Q is quartic. If P : X −→ Y is another quartic mapping satisfies (27), then

µ(
P(2nx)

16n −
Q(2nx)

16n

)(t) ≥ min
{
µ( f (2nx)

16n −
Q(2nx)

16n

) ( t
2

)
, µ(

P(2nx)
16n −

f (2nx)
16n

) ( t
2

)}
≥ Λ(ψ(0,2nx))

(
16n (16 − α)t

7

)
≥ Λ(ψ(0,x))

((16
α

)n (16 − α)t
7

)

for all x ∈ X. Therefore

µP(x)−Q(x)(t) = lim
n→∞

µ(
P(2nx)

16n −
Q(2nx)

16n

)(t)
≥ lim

n→∞
Λ(ψ(0,x))

((16
α

)n (16 − α)t
7

)
= 1

The above relations show that Q(x) = P(x) for all x ∈ X. This completes the proof.

Corollary 3.6. Let X be a linear space, (Z,Λ, τM) be an RN-space and let (Y, µ, τM) be a complete RN-space. Let

r, s be real numbers such that r, s ∈ [0, 4) and z0 ∈ Z. If f : X −→ Y is an even mapping such that

µD f (x,y)(t) ≥ Λ(‖x‖r+‖y‖s)z0 (t) (34)

for all x, y ∈ X and all t > 0, then there exists a unique quartic mapping Q : X −→ Y satisfying

µ f (x)−Q(x)(t) ≥ Λ‖x‖sz0

(
2(16 − 2s)

7
t
)

for all x ∈ X and all t > 0.

Proof. Putting x = y = 0 in (34), we observe that f (0) = 0. Now, by defining ψ(x, y) := (‖x‖r + ‖y‖s)z0 and

applying Theorem 3.5 when α = 2s, we get the desired result.

Corollary 3.7. Let X be a linear space, (Z,Λ, τM) be an RN-space and let (Y, µ, τM) be a complete RN-space. Let

z0 ∈ Z and δ > 0. If f : X −→ Y is an even mapping with f (0) = 0 such that

µD f (x,y)(t) ≥ Λδz0 (t)
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for all x, y ∈ X and all t > 0, then there exists a unique quartic mapping Q : X −→ Y satisfying

µ f (x)−Q(x)(t) ≥ Λδz0

(1
4

t
)

for all x ∈ X and all t > 0.

Proof. The result follows from Theorem 3.5 if α = 2 and ψ(x, y) := δz0.

In the upcoming result, we prove the superstability of the functional equation (5) under some conditions.

Recall that a functional equation is called superstable if any approximate solution to the functional equation

is a its exact solution.

Corollary 3.8. Let X be a linear space, (Z,Λ, τM) be an RN-space and (Y, µ, τM) be a complete RN-space. Let r, s

be non-negative real numbers such that r + s , 4 and z0 ∈ Z. If f : X −→ Y is an even mapping such that

µD f (x,y)(t) ≥ Λ‖x‖r‖y‖sz0 (t)

for all x, y ∈ X and all t > 0, then f is a quartic mapping.

Proof. Putting ψ(x, y) := ‖x‖r‖y‖sz0 in Theorem 3.5, we have f (x) =
f (2nx)
16n for all n ∈ N. Now, by applying

the same theorem, we obtain the desired result.

We have the following result which is analogous to Theorem 3.5 when f is an odd mapping. The proof

is similar but we bring it.

Theorem 3.9. Let X be a linear space, (Z,Λ, τM) be an RN-space and (Y, µ, τM) be a complete RN-space. Suppose

that ψ : X ×X −→ Z is a mapping such that for some 0 < α < 2,

Λψ(0,2x)(t) ≥ Λαψ(0,x)(t) (x ∈ X, t > 0) (35)

and

lim
n→∞

Λψ(2nx,2n y)(2nt) = 1 (x, y ∈ X, t > 0). (36)

If f : X −→ Y is an odd mapping and

µD f (x,y)(t) ≥ Λψ(x,y)(t) (37)

for all x, y ∈ X and all t > 0, then there exists a unique additive mapping A : X −→ Y such that

µ f (x)−A(x)(t) ≥ Λψ(0,x)

(
12(2 − α)

7
t
)

(38)

for all x ∈ X and all t > 0.
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Proof. Similar to the proof of Theorem 3.5, by replacing (x, y) with (0, x) in (37) and using the oddness of f ,

we get

µ( 1
2 f (2x)− f (x))(t) ≥ Λψ(0,x)

(24
7

t
)

(39)

for all x ∈ X. Replacing x by 2nx in (39) and using (35), we obtain

µ(
f (2n+1x)

2n+1 −
f (2nx)

2n

)(t) ≥ Λψ(0,2nx)

(24
7

2nt
)

≥ Λαnψ(0,x)

(24
7

2nt
)

≥ Λψ(0,x)

(
24
7

( 2
α

)n

t
)

(40)

for all x ∈ X and all non-negative integers n. Applying the inequality (40), we have

µ( f (2nx)
2n − f (x)

)
 7t

24

n−1∑
j=0

(
α
2

) j
 = µ(∑n−1

j=0

(
f (2 j+1x)

2 j+1 −
f (2 jx)

2 j

))
 7

24

n−1∑
j=0

(
α
2

) j
t


≥ (τM)n−1

j=0

(
µ(

f (2 j+1x)

2 j+1 −
f (2 jx)

2 j

) ( 7
24

(
α
2

) j
t
))

= µ( 1
2 f (2x)− f (x))

( 7
24

t
)

≥ Λψ(0,x)(t)

for all x ∈ X and all non-negative integers n. Hence

µ( f (2nx)
2n − f (x)

)(t) ≥ Λψ(0,x)

 t
7
24

∑n−1
j=0

(
2
α

) j

 (41)

for all x ∈ X and all non-negative integers n. Substituting x by 2mx in (41), we obtain

µ(
f (2n+mx)

2n+m −
f (2mx)

2m

)(t) ≥ Λψ(0,x)

 t(
7
24

∑m+n
j=m

(
α
2

) j
)
 (42)

for all x ∈ X and all integers n ≥ m ≥ 0. Since the above series is convergent, the sequence
{ f (2nx)

2n

}
is Cauchy

in (Y, µ, τM). Now, the completeness of (Y, µ, τM) as a RN-space implies that the mentioned sequence is

converges to some point A(x) ∈ Y. It follows from (41) that

µ(A(x)− f (x))(t + ε) ≥ τM

(
µ(

A(x)− f (2nx)
2n

)(ε), µ( f (2nx)
2n − f (x)

)(t))
≥ τM

µ(
A(x)− f (2nx)

2n

)(ε),Λψ(0,x)

 t(
7
24

∑n−1
j=0

(
α
2

) j
)



for all x ∈ X in which ε > 0. Taking n to infinity in the above inequality, we have

µ(A(x)− f (x))(t + ε) ≥ Λψ(0,x)

(
12(2 − α)

7
t
)

(43)
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for all x ∈ X. Taking ε → 0 in (43), we see that the inequality (38) holds. Also, the inequality (37) implies

that

µ 1
2nD f (2nx,2n y)(t) ≥ Λψ(2nx,2n y)(2nt) (44)

for all x, y ∈ X and all t > 0. Letting n to infinity in (44), by (36) and the part (i) of Lemma 2.1, we see that the

mapping A is additive. Now, similar to the proof of Theorem 3.5, one can complete the rest of the proof.

Corollary 3.10. Let X be a linear space, (Z,Λ, τM) be an RN-space and let (Y, µ, τM) be a complete RN-space. Let

r, s be real numbers such that r, s ∈ [0, 1) and z0 ∈ Z. If f : X −→ Y is an odd mapping such that

µD f (x,y)(t) ≥ Λ(‖x‖r+‖y‖s)z0 (t)

for all x, y ∈ X and all t > 0, then there exists a unique additive mapping A : X −→ Y satisfying

µ f (x)−Q(x)(t) ≥ Λ‖x‖sz0

(
12(2 − 2s)

7
t
)

for all x ∈ X and all t > 0.

Proof. Defining ψ(x, y) := (‖x‖r + ‖y‖s)z0 and using Theorem 3.9, we get the desired result.

The following result analogous to Corollary 3.8 for additive functional equations. Since the proof is

similar, it is omitted.

Corollary 3.11. Let X be a linear space, (Z,Λ, τM) be an RN-space and (Y, µ, τM) be a complete RN-space. Let r, s

be non-negative real numbers such that r + s , 1 and z0 ∈ Z. If f : X −→ Y is an odd mapping such that

µD f (x,y)(t) ≥ Λ‖x‖r‖y‖sz0 (t)

for all x, y ∈ X and all t > 0, then f is a additive mapping.

Theorem 3.12. LetX be a linear space, (Z,Λ, τM) be an RN-space and (Y, µ, τM) be a complete RN-space. Suppose

that ψ : X ×X −→ Z is a mapping such that ψ(x, y) = ψ(−x,−y) for all x, y ∈ X and for some 0 < α < 2,

Λψ(0,2x)(t) ≥ Λαψ(0,x)(t) (x ∈ X, t > 0) (45)

and

lim
n→∞

Λψ(2nx,2n y)(2nt) = 1 (x, y ∈ X, t > 0). (46)

If f : X −→ Y is a mapping with f (0) = 0 and

µD f (x,y)(t) ≥ Λψ(x,y)(t) (47)

for all x, y ∈ X and all t > 0, then there exists a unique additive mapping A : X −→ Y and a unique quartic mapping

Q : X −→ Y such that

µ f (x)−A(x)−Q(x)(t) ≥ min
{

Λψ(0,x)

(16 − α
7

t
)
,Λψ(0,x)

(
6(2 − α)

7
t
)}

(48)

for all x ∈ X and all t > 0.
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Proof. We decompose f into the even part and odd part by setting

fe(x) =
f (x) + f (−x)

2
, fo(x) =

f (x) − f (−x)
2

.

for all x ∈ X. Obviously, f (x) = fe(x) + fo(x) for all x ∈ X. Then

µD fe(x,y)(t) = µ( 1
2D f (x,y)+ 1

2D f (−x,−y))(t) ≥ τM

(
µ 1

2D f (x,y)

( t
2

)
, µ 1

2D f (−x,−y)

( t
2

))
= τM

(
µD f (x,y)(t), µD f (−x,−y)(t)

)
≥ τM

(
Λψ(x,y)(t),Λψ(−x,−y)(t)

)
= Λψ(x,y)(t).

for all x, y ∈ X and all t > 0. Similarly, one can show that µD fe(x,y)(t) ≥ Λψ(x,y)(t). By Theorems 3.5 and 3.9,

there exists a unique quratic mapping Q : X −→ Y and a unique additive mapping A : X −→ Y such that

µ fe(x)−Q(x)(t) ≥ Λψ(0,x)

(
2(16 − α)

7
t
)

and µ f0(x)−A(x)(t) ≥ Λψ(0,x)

(
12(2 − α)

7
t
)

(49)

for all x ∈ X and all t > 0. The relations in(49) implies that

µ f (x)−A(x)−Q(x)(t) ≥ τM

(
µ fe(x)−Q(x)

( t
2

)
, µ f0(x)−A(x)

( t
2

))
(50)

≥ τM

(
Λψ(0,x)

(16 − α
7

t
)
,Λψ(0,x)

(
6(2 − α)

7
t
))

(51)

= min
{

Λψ(0,x)

(16 − α
7

t
)
,Λψ(0,x)

(
6(2 − α)

7
t
)}

(52)

for all x ∈ X and all t > 0. This finishes the proof.

Corollary 3.13. Let X be a linear space, (Z,Λ, τM) be an RN-space and let (Y, µ, τM) be a complete RN-space. Let

r, s be real numbers such that r, s ∈ [0, 1) and z0 ∈ Z. If f : X −→ Y is an mapping with f (0) = 0 such that

µD f (x,y)(t) ≥ Λ(‖x‖r+‖y‖s)z0 (t)

for all x, y ∈ X and all t > 0, then there exists a unique additive mapping A : X −→ Y and a unique quartic mapping

Q : X −→ Y satisfying

µ f (x)−A(x)−Q(x)(t) ≥ min
{

Λ‖x‖sz0

(16 − 2s

7
t
)
,Λ‖x‖sz0

(
6(2 − 2s)

7
t
)}

for all x ∈ X and all t > 0.
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