Filomat 28:8 (2014), 1629–1640 DOI 10.2298/FIL1408629B

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Stability of a Mixed Type Additive and Quartic Functional Equation

Abasalt Bodaghi^a

^aYoung Researchers and Elite Club, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran

Abstract. In this paper we obtain the general solution of a mixed additive and quartic functional equation. We also prove the Hyers-Ulam stability of this functional equation in random normed spaces.

1. Introduction

The problem of stability of functional equations was originally raised by S. M. Ulam [20] in 1940: given a group *G*, a metric group *H* with metric $d(\cdot, \cdot)$, and a $\epsilon > 0$, does there exist a $\delta > 0$ such that if a mapping $f : G \longrightarrow H$ satisfies $d(f(xy), f(x)f(y)) \le \delta$ for all $x, y \in G$, then a homomorphism $g : G \longrightarrow H$ exists with $d(f(x), g(x)) \le \epsilon$ for all $x \in G$? For Banach spaces the Ulam problem was first solved by D. H. Hyers [11] in 1941, which states that if $\delta > 0$ and $f : X \longrightarrow Y$ is a mapping with Banach spaces X and Y, so that

$$\|f(x+y) - f(x) - f(y)\| \le \delta$$
(1)

for all $x, y \in X$, then there exists a unique additive mapping $T : X \longrightarrow Y$ such that $||f(x) - T(x)|| \le \delta$ for all $x, y \in X$. Due to this fact, the additive functional equation f(x + y) = f(x) + f(y) is said to have the Hyers-Ulam stability property on X. This result was generalized by Aoki [1] for additive mappings and by Rassias [17] for linear mappings by considering an unbounded Cauchy difference. This terminology is also applied to other functional equations which has been studied by many authors (see, for example, [3], [5], [6], [8], [12] and [15]).

Rassias [16] investigated stability properties of the following quartic functional equation

$$f(x+2y) + f(x-2y) + 6f(x) = 4f(x+y) + 4f(x-y) + 24f(y).$$

This equation is equivalent to the following

$$f(x+2y) + f(x-2y) = 10f(x) + 24f(y) - f(2x) + 4f(x+y) + 4f(x-y).$$
(2)

²⁰¹⁰ Mathematics Subject Classification. 39B52, 39B72, 39B82, 46B03.

Keywords. Additive functional equation; Banach space; Hyers-Ulam stability; Quartic functional equation; Random normed space. Received: 23 July 2013; Accepted: 10 August 2014

Communicated by Dragan Djordjevic

Email address: abasalt.bodaghi@gmail.com (Abasalt Bodaghi)

In [7], Chung and Sahoo determined the general solution of (2) without assuming any regularity conditions on the unknown function. Indeed, they proved that the function $f : \mathbb{R} \to \mathbb{R}$ is a solution of (2) if and only if f(x) = Q(x, x, x, x) where the function $Q : \mathbb{R}^4 \to \mathbb{R}$ is symmetric and additive in each variable. The fact that every solution of (2) is even implies that it can be written as follows:

$$f(2x + y) + f(2x - y) = 24f(x) - 6f(y) + 4f(x + y) + 4f(x - y).$$
(3)

Lee et al. [13] obtained the general solution of (3) and proved the Hyers-Ulam stability of this equation.

In [9], Eshaghi Gordji introduced and obtained the general solution of the following mixed type additive and quartic functional equation

$$f(2x+y) + f(2x-y) = 4\{(f(x+y) + f(x-y))\} - \frac{3}{7}(f(2y) - 2f(y)) + 2f(2x) - 8f(x).$$
(4)

He also established the Hyers-Ulam Rassias stability of the above functional equation in real normed spaces. The stability of (4) in non-Archimedean orthogonality spaces is stadied in [14] (see also [4]).

In this paper, we present a new form of the functional equation (4) as follows:

$$f(x+2y) - 4f(x+y) - 4f(x-y) + f(x-2y) = \frac{12}{7}(f(2y) - 2f(y)) - 6f(x)$$
(5)

It is easily verified that the function $f(x) = \alpha x^4 + \beta x$ is a solution of the functional equation (5). We find out the general solution of (5) and investigate the Hyers-Ulam stability of this functional equation in random normed spaces which our way is different from [10].

2. General Solution of (5)

Lemma 2.1. Let X and \mathcal{Y} be real vector spaces.

- (i) If an odd mapping $f: X \longrightarrow \mathcal{Y}$ satisfies the functional equation (5), then f is additive;
- (ii) If an even mapping $f: X \longrightarrow \mathcal{Y}$ satisfies the functional equation (5), then f is quartic.

Proof. (i) Letting x = y = 0 in (5), we have f(0) = 0. Once more, by putting x = 0 in (5), then by oddness of f, we get

$$f(2y) = 2f(y) \tag{6}$$

for all $y \in X$. Hence (5) can be rewritten as

$$f(x+2y) + f(x-2y) = 4[f(x+y) + f(x-y)] - 6f(x)$$
(7)

for all $x, y \in X$. Repalcing x by 2x in (7) and using (6), we have

$$2[f(2x+y) + f(2x-y)] = f(x+y) + f(x-y) + 6f(x)$$
(8)

for all $x, y \in X$. Interchanging x into y in (7), we get

$$f(2x + y) - f(2x - y) = 4[f(x + y) - f(x - y)] - 6f(y)$$
(9)

for all $x, y \in X$. Replacing y by -y in (9), we have

$$f(2x - y) - f(2x + y) = 4[f(x - y) - f(x + y)] + 6f(y)$$
(10)

for all $x, y \in X$. Plugging (8) into (10), we obtain

$$4f(2x+y) = 9f(x+y) - 7f(x-y) + 6f(x) - 12f(y)$$
(11)

for all $x, y \in X$. Replacing y by y - x in (11) and multiplying the result by $\frac{4}{7}$, we arrive at

$$4f(2x - y) = \frac{48}{7}f(x - y) - \frac{16}{7}f(x + y) + \frac{24}{7}f(x) + \frac{36}{7}f(y)$$
(12)

for all $x, y \in X$. Combining the equations (8), (11) and (12) to obtain

$$33f(x+y) - 15f(x-y) = 18f(x) - 48f(y)$$
(13)

for all $x, y \in X$. Substituting x by 2x in (8), we have

$$2[f(4x + y) + f(4x - y)] = f(2x + y) + f(2x - y) + 12f(x)$$
(14)

for all $x, y \in X$. Replacing y by y + 2x in (8), we get

$$4f(4x+y) - 4f(y) = 2f(3x+y) - 2f(x+y) + 12f(x)$$
(15)

for all $x, y \in X$. Putting -y instead of y in (15), we have

$$4f(4x - y) + 4f(y) = 2f(3x - y) - 2f(x - y) + 12f(x)$$
(16)

for all $x, y \in X$. Adding (15) to (16), we deduce that

4[f(4x+y)+f(4x-y)]

$$= 2[f(3x + y) + f(3x - y)] - 2[f(x + y) + f(x - y)] + 24f(x)$$
(17)

for all $x, y \in X$. Replacing y by x - y and x + y in (8), respectively, and combining the results to obtain

4[f(3x+y)+f(3x-y)]

$$= -4[f(x+y) + f(x-y)] + 2[f(2x+y) + f(2x-y)] + 24f(x)$$
(18)

for all $x, y \in X$. Now, the relations (8) and (18) imply that

$$4[f(3x+y) + f(3x-y)] = -3[f(x+y) + f(x-y)] + 30f(x)$$
⁽¹⁹⁾

for all $x, y \in X$. It follows from (14), (17) and (19) that

$$f(x+y) + f(x-y) = 2f(x)$$
(20)

for all $x, y \in X$. Substituting x, y by y, x in (20), respectively, we obtain

$$f(x+y) - f(x-y) = 2f(y)$$
(21)

for all $x, y \in X$. The equalities (20) and (21) show that

$$f(x + y) = f(x) + f(y) \qquad (x, y \in \mathcal{X}).$$

(ii) Similar to the part (i), we can show that f(0) = 0 and f(2y) = 16f(y) for all $y \in X$. These results imply that (5) is as

$$f(x+2y) + f(x-2y) = 4[f(x+y) + f(x-y)] + 24f(y) - 6f(x)$$
(22)

for all $x, y \in X$. Replacing x by 2x in (22), we get

$$f(2x + y) + f(2x - y) = 4[f(x + y) + f(x - y)] + \frac{3}{2}f(2x) - 6f(y)$$
(23)

for all $x, y \in X$. Since f(2x) = 16f(x), the equation (23) is equivalent to the following equation

$$f(2x + y) + f(2x - y) = 4[f(x + y) + f(x - y)] + 24f(x) - 6f(y) \quad (x, y \in X).$$

Therefore *f* satisfies (3) and so *f* is a quartic mapping. \Box

Throughout this paper, we use the abbreviation for the given mapping $f : X \longrightarrow \mathcal{Y}$ as follows:

$$\mathcal{D}f(x,y) := f(x+2y) - 4f(x+y) - 4f(x-y) + f(x-2y) - \frac{12}{7}(f(2y) - 2f(y)) + 6f(x)$$

for all $x, y \in X$.

3. Stability of (5)

In this section, we state the usual terminology, notations and conventions of the theory of random normed spaces, as in [18] and [19]. The set of all probability distribution functions is denoted by

 $\Delta^+ := \{F : \mathbb{R} \cup \{-\infty, \infty\} \longrightarrow [0, 1] | F \text{ is left-continuous}$

and nondecreasing on \mathbb{R} ; where F(0) = 0 and $F(+\infty) = 1$.

Let us define $D^+ := \{F \in \Delta^+ | l^- F(+\infty) = 1\}$, where $l^- F(x)$ denotes the left limit of the function f at the point x. The set Δ^+ is partially ordered by the usual pointwise ordering of functions, that is, $F \leq G$ if and only if $F(t) \leq G(t)$ for all $t \in \mathbb{R}$. The maximal element for Δ^+ in this order is the distribution function ϵ_0 given by

$$\epsilon_0(t) = \begin{cases} 0, & \text{if } t \le 0\\ 1, & \text{if } t > 0. \end{cases}$$

Definition 3.1. ([18]) A mapping $\tau : [0,1] \times [0,1] \longrightarrow [0,1]$ is said to be a continuous triangular norm (briefly, a continuous t-norm) if τ satisfies the following conditions:

- (*i*) τ *is commutative and associative;*
- (*ii*) τ *is continuous;*
- (*iii*) $\tau(a, 1) = a$ for all $a \in [0, 1]$;

(*iv*) $\tau(a, b) \leq \tau(c, d)$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in [0, 1]$.

Typical examples of continuous *t*-norms are $\tau_P(a, b) = ab$, $\tau_M(a, b) = \min\{a, b\}$ and $\tau_L(a, b) = \max\{a + b - 1, 0\}$.

Definition 3.2. ([19]) A random normed space (briefly, RN-space) is a triple (X, μ, τ) , where X is a vector space, τ is a continuous t-norm, and μ is a mapping from X into D⁺ such that the following conditions hold:

(RN1) $\mu_x(t) = \epsilon_0(t)$ for all t > 0 if and only if x = 0;

(*RN2*) $\mu_{\alpha x}(t) = \mu_x(t/|\alpha|)$ for all $x \in X$, $\alpha \neq 0$ and all $t \ge 0$;

(RN3) $\mu_{x+y}(t+s) \ge \tau(\mu_x(t), \mu_y(s))$ for all $x, y \in X$ and all $t, s \ge 0$.

Let $(X, \|\cdot\|)$ be a normed space. Define the mapping $\mu : X \longrightarrow D^+$ via $\mu_x(t) = \frac{t}{t+\|x\|}$ for all $x \in X$ and all $t \ge 0$. Then (X, μ, τ_M) is a random normed space.

Definition 3.3. Let (X, μ, τ) be an RN-space.

- (1) A sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ if, for every t > 0 and $\epsilon > 0$, there exists a positive integer N such that $\mu_{x_n-x}(t) > 1 \epsilon$ whenever $n \ge N$;
- (2) A sequence $\{x_n\}$ in X is called a Cauchy sequence if, for every t > 0 and $\epsilon > 0$, there exists a positive integer N such that $\mu_{x_n-x_m}(t) > 1 \epsilon$ whenever $n \ge m \ge N$;
- (3) An RN-space (X, μ, τ) is said to be complete if and only if every Cauchy sequence in X is convergent to a point in X.

Theorem 3.4. ([18]) If (X, μ, τ) is an RN-space and $\{x_n\}$ is a sequence such that $x_n \to x$, then $\lim_{n\to\infty} \mu_{x_n}(t) = \mu_x(t)$.

For a *t*-norm τ and a given sequence $\{a_n\}$ in [0,1], we define $\tau_{j=1}^n a_j$ recursively by $\tau_{j=1}^1 a_j = a_1$ and $\tau_{j=1}^n a_j = \tau(\tau_{j=1}^{n-1} a_j, a_n)$ for all $n \ge 2$. We now prove the stability of the functional equation (5) in the setting of random normed spaces.

Theorem 3.5. Let X be a linear space, (Z, Λ, τ_M) be an RN-space and (Y, μ, τ_M) be a complete RN-space. Suppose that $\psi : X \times X \longrightarrow Z$ is a mapping such that for some $0 < \alpha < 16$,

$$\Lambda_{\psi(0,2x)}(t) \ge \Lambda_{\alpha\psi(0,x)}(t) \qquad (x \in \mathcal{X}, t > 0)$$
(24)

and

$$\lim_{n \to \infty} \Lambda_{\psi(2^n x, 2^n y)}(16^n t) = 1 \qquad (x, y \in X, t > 0).$$
(25)

If $f: X \longrightarrow \mathcal{Y}$ is an even mapping with f(0) = 0 and

$$\mu_{\mathcal{D}f(x,y)}(t) \ge \Lambda_{\psi(x,y)}(t) \tag{26}$$

for all $x, y \in X$ and all t > 0, then there exists a unique quartic mapping $Q: X \longrightarrow \mathcal{Y}$ such that

$$\mu_{f(x)-Q(x)}(t) \ge \Lambda_{\psi(0,x)}\left(\frac{2(16-\alpha)}{7}t\right)$$
(27)

for all $x \in X$ and all t > 0.

Proof. Replacing (x, y) by (0, x) in (26), then by eveness of f, we have

$$\mu_{\left(\frac{2}{7}f(2x)-\frac{32}{7}f(x)\right)}(t) \ge \Lambda_{\psi(0,x)}(t)$$

for all $x \in X$. Thus

$$\mu_{\left(\frac{1}{16}f(2x)-f(x)\right)}(t) \ge \Lambda_{\psi(0,x)}\left(\frac{32}{7}t\right)$$
(28)

for all $x \in X$. Substituting x by $2^n x$ in (28) and applying (24), we get

$$\mu_{\left(\frac{f(2^{n+1}x)}{16^{n+1}} - \frac{f(2^nx)}{16^n}\right)}(t) \ge \Lambda_{\psi(0,2^nx)}\left(\frac{32}{7}16^nt\right)$$
$$\ge \Lambda_{\alpha^n\psi(0,x)}\left(\frac{32}{7}16^nt\right)$$
$$\ge \Lambda_{\psi(0,x)}\left(\frac{32}{7}\left(\frac{16}{\alpha}\right)^nt\right)$$
(29)

for all $x \in X$ and all non-negative integers *n*. Using the inequality (29), we obtain

$$\begin{split} \mu_{\left(\frac{f(2^n x)}{16^n} - f(x)\right)} \left(\frac{7t}{32} \sum_{j=0}^{n-1} \left(\frac{\alpha}{16}\right)^j \right) &= \mu_{\left(\sum_{j=0}^{n-1} \left(\frac{f(2^{j+1} x)}{16^{j+1}} - \frac{f(2^j x)}{16^j}\right)\right)} \left(\frac{7}{32} \sum_{j=0}^{n-1} \left(\frac{\alpha}{16}\right)^j t\right) \\ &\geq (\tau_M)_{j=0}^{n-1} \left(\mu_{\left(\frac{f(2^{j+1} x)}{16^{j+1}} - \frac{f(2^j x)}{16^j}\right)} \left(\frac{7}{32} \left(\frac{\alpha}{16}\right)^j t\right) \right) \\ &= \mu_{\left(\frac{1}{16} f(2x) - f(x)\right)} \left(\frac{7}{32} t\right) \\ &\geq \Lambda_{\psi(0,x)}(t) \end{split}$$

for all $x \in X$ and all non-negative integers *n*. In other words,

$$\mu_{\left(\frac{f(2^{n}x)}{16^{n}} - f(x)\right)}(t) \ge \Lambda_{\psi(0,x)}\left(\frac{t}{\frac{7}{32}\sum_{j=0}^{n-1}\left(\frac{\alpha}{16}\right)^{j}}\right)$$
(30)

Intechanging *x* into $2^l x$ in (30), we have

$$\mu_{\left(\frac{f(2^{n+l_x})}{16^{n+l}} - \frac{f(2^{l_x})}{16^{l}}\right)}(t) \ge \Lambda_{\psi(0,x)}\left(\frac{t}{\left(\frac{7}{32}\sum_{j=l}^{l+n}\left(\frac{\alpha}{16}\right)^{j}\right)}\right)$$
(31)

for all $x \in X$ and all integers $n \ge l \ge 0$. Due to the convegence of $\sum_{j=l}^{\infty} \left(\frac{\alpha}{16}\right)^j$, we see that $\Lambda_{\psi(0,x)}\left(\frac{t}{\left(\frac{7}{32}\sum_{j=l}^{l+n}\left(\frac{\alpha}{16}\right)^j\right)}\right)$ goes to 1 as l and n tend to infinity, and so $\left\{\frac{f(2^n x)}{16^n}\right\}$ is a Cauchy sequence in $(\mathcal{Y}, \mu, \tau_M)$. The completeness of $(\mathcal{Y}, \mu, \tau_M)$ as a *RN*-space implies that the mentioned sequence is converges to some point $Q(x) \in \mathcal{Y}$. It follows from (30) that for each $\epsilon > 0$

$$\begin{split} \mu_{(Q(x)-f(x))}(t+\epsilon) &\geq \tau_M\left(\mu_{(Q(x)-\frac{f(2^nx)}{16^n})}(\epsilon), \mu_{(\frac{f(2^nx)}{16^n}-f(x))}(t)\right) \\ &\geq \tau_M\left(\mu_{(Q(x)-\frac{f(2^nx)}{16^n})}(\epsilon), \Lambda_{\psi(0,x)}\left(\frac{t}{\left(\frac{7}{32}\sum_{j=0}^{n-1}\left(\frac{\alpha}{16}\right)^j\right)}\right)\right) \end{split}$$

for all $x \in X$. Taking *n* to infinity in the above inequality, we deduce that

$$\mu_{(Q(x)-f(x))}(t+\epsilon) \ge \Lambda_{\psi(0,x)}\left(\frac{2(16-\alpha)}{7}t\right)$$
(32)

Taking $\epsilon \rightarrow 0$ in (32), we get (27). Also, the inequality (26) implies that

$$\mu_{\frac{1}{16^n}\mathcal{D}f(2^nx,2^ny)}(t) \ge \Lambda_{\psi(2^nx,2^ny)}(16^nt) \tag{33}$$

for all $x, y \in X$ and all t > 0. Letting *n* to infinity in (33), by (25), and the part (ii) of Lemma 2.1, we observe that the mapping Q is quartic. If $\mathcal{P} : X \longrightarrow \mathcal{Y}$ is another quartic mapping satisfies (27), then

$$\begin{split} \mu_{\left(\frac{\mathcal{P}(2^{n}x)}{16^{n}} - \frac{\mathcal{Q}(2^{n}x)}{16^{n}}\right)}(t) &\geq \min\left\{\mu_{\left(\frac{f(2^{n}x)}{16^{n}} - \frac{\mathcal{Q}(2^{n}x)}{16^{n}}\right)}\left(\frac{t}{2}\right), \mu_{\left(\frac{\mathcal{P}(2^{n}x)}{16^{n}} - \frac{f(2^{n}x)}{16^{n}}\right)}\left(\frac{t}{2}\right)\right\} \\ &\geq \Lambda_{(\psi(0,2^{n}x))}\left(16^{n}\frac{(16-\alpha)t}{7}\right) \\ &\geq \Lambda_{(\psi(0,x))}\left(\left(\frac{16}{\alpha}\right)^{n}\frac{(16-\alpha)t}{7}\right) \end{split}$$

for all $x \in X$. Therefore

$$\begin{aligned} \mu_{\mathcal{P}(x)-\mathcal{Q}(x)}(t) &= \lim_{n \to \infty} \mu_{\left(\frac{\mathcal{P}(2^n x)}{16^n} - \frac{\mathcal{Q}(2^n x)}{16^n}\right)}(t) \\ &\geq \lim_{n \to \infty} \Lambda_{(\psi(0,x))}\left(\left(\frac{16}{\alpha}\right)^n \frac{(16-\alpha)t}{7}\right) = 1 \end{aligned}$$

The above relations show that $Q(x) = \mathcal{P}(x)$ for all $x \in X$. This completes the proof. \Box

Corollary 3.6. Let X be a linear space, (Z, Λ, τ_M) be an RN-space and let $(\mathcal{Y}, \mu, \tau_M)$ be a complete RN-space. Let r, s be real numbers such that $r, s \in [0, 4)$ and $z_0 \in Z$. If $f : X \longrightarrow \mathcal{Y}$ is an even mapping such that

$$\mu_{\mathcal{D}f(x,y)}(t) \ge \Lambda_{(||x||^r + ||y||^s)z_0}(t) \tag{34}$$

for all $x, y \in X$ and all t > 0, then there exists a unique quartic mapping $Q: X \longrightarrow \mathcal{Y}$ satisfying

$$\mu_{f(x)-Q(x)}(t) \ge \Lambda_{\|x\|^{s} z_{0}}\left(\frac{2(16-2^{s})}{7}t\right)$$

for all $x \in X$ and all t > 0.

Proof. Putting x = y = 0 in (34), we observe that f(0) = 0. Now, by defining $\psi(x, y) := (||x||^r + ||y||^s)z_0$ and applying Theorem 3.5 when $\alpha = 2^s$, we get the desired result. \Box

Corollary 3.7. Let X be a linear space, (Z, Λ, τ_M) be an RN-space and let $(\mathcal{Y}, \mu, \tau_M)$ be a complete RN-space. Let $z_0 \in Z$ and $\delta > 0$. If $f : X \longrightarrow \mathcal{Y}$ is an even mapping with f(0) = 0 such that

$$\mu_{\mathcal{D}f(x,y)}(t) \geq \Lambda_{\delta z_0}(t)$$

for all $x, y \in X$ and all t > 0, then there exists a unique quartic mapping $Q: X \longrightarrow \mathcal{Y}$ satisfying

$$\mu_{f(x)-Q(x)}(t) \ge \Lambda_{\delta z_0}\left(\frac{1}{4}t\right)$$

for all $x \in X$ and all t > 0.

Proof. The result follows from Theorem 3.5 if $\alpha = 2$ and $\psi(x, y) := \delta z_0$. \Box

In the upcoming result, we prove the superstability of the functional equation (5) under some conditions. Recall that a functional equation is called *superstable* if any approximate solution to the functional equation is a its exact solution.

Corollary 3.8. Let X be a linear space, (Z, Λ, τ_M) be an RN-space and $(\mathcal{Y}, \mu, \tau_M)$ be a complete RN-space. Let r, s be non-negative real numbers such that $r + s \neq 4$ and $z_0 \in Z$. If $f : X \longrightarrow \mathcal{Y}$ is an even mapping such that

$$\mu_{\mathcal{D}f(x,y)}(t) \ge \Lambda_{\|x\|^r \|y\|^s z_0}(t)$$

for all $x, y \in X$ and all t > 0, then f is a quartic mapping.

Proof. Putting $\psi(x, y) := ||x||^r ||y||^s z_0$ in Theorem 3.5, we have $f(x) = \frac{f(2^n x)}{16^n}$ for all $n \in \mathbb{N}$. Now, by applying the same theorem, we obtain the desired result. \Box

We have the following result which is analogous to Theorem 3.5 when f is an odd mapping. The proof is similar but we bring it.

Theorem 3.9. Let X be a linear space, (Z, Λ, τ_M) be an RN-space and (Y, μ, τ_M) be a complete RN-space. Suppose that $\psi : X \times X \longrightarrow Z$ is a mapping such that for some $0 < \alpha < 2$,

$$\Lambda_{\psi(0,2x)}(t) \ge \Lambda_{\alpha\psi(0,x)}(t) \qquad (x \in \mathcal{X}, t > 0)$$
(35)

and

$$\lim_{n \to \infty} \Lambda_{\psi(2^n x, 2^n y)}(2^n t) = 1 \qquad (x, y \in \mathcal{X}, t > 0).$$
(36)

If $f: X \longrightarrow \mathcal{Y}$ is an odd mapping and

$$\mu_{\mathcal{D}f(x,y)}(t) \ge \Lambda_{\psi(x,y)}(t) \tag{37}$$

for all $x, y \in X$ and all t > 0, then there exists a unique additive mapping $A : X \longrightarrow \mathcal{Y}$ such that

$$\mu_{f(x)-A(x)}(t) \ge \Lambda_{\psi(0,x)}\left(\frac{12(2-\alpha)}{7}t\right)$$
(38)

for all $x \in X$ and all t > 0.

1636

Proof. Similar to the proof of Theorem 3.5, by replacing (x, y) with (0, x) in (37) and using the oddness of f, we get

$$\mu_{\left(\frac{1}{2}f(2x) - f(x)\right)}(t) \ge \Lambda_{\psi(0,x)}\left(\frac{24}{7}t\right)$$
(39)

for all $x \in X$. Replacing x by $2^n x$ in (39) and using (35), we obtain

$$\mu_{\left(\frac{f(2^{n+1}x)}{2^{n+1}} - \frac{f(2^nx)}{2^n}\right)}(t) \ge \Lambda_{\psi(0,2^nx)}\left(\frac{24}{7}2^nt\right)$$
$$\ge \Lambda_{\alpha^n\psi(0,x)}\left(\frac{24}{7}2^nt\right)$$
$$\ge \Lambda_{\psi(0,x)}\left(\frac{24}{7}\left(\frac{2}{\alpha}\right)^nt\right)$$
(40)

for all $x \in X$ and all non-negative integers *n*. Applying the inequality (40), we have

$$\begin{split} \mu_{\left(\frac{f(2^{n}x)}{2^{n}}-f(x)\right)} &\left(\frac{7t}{24} \sum_{j=0}^{n-1} \left(\frac{\alpha}{2}\right)^{j}\right) = \mu_{\left(\sum_{j=0}^{n-1} \left(\frac{f(2^{j+1}x)}{2^{j+1}} - \frac{f(2^{j}x)}{2^{j}}\right)\right)} \left(\frac{7}{24} \sum_{j=0}^{n-1} \left(\frac{\alpha}{2}\right)^{j} t\right) \\ &\geq (\tau_{M})_{j=0}^{n-1} \left(\mu_{\left(\frac{f(2^{j+1}x)}{2^{j+1}} - \frac{f(2^{j}x)}{2^{j}}\right)} \left(\frac{7}{24} \left(\frac{\alpha}{2}\right)^{j} t\right)\right) \\ &= \mu_{\left(\frac{1}{2}f(2x) - f(x)\right)} \left(\frac{7}{24} t\right) \\ &\geq \Lambda_{\psi(0,x)}(t) \end{split}$$

for all $x \in X$ and all non-negative integers *n*. Hence

,

$$\mu_{\left(\frac{f(2^n x)}{2^n} - f(x)\right)}(t) \ge \Lambda_{\psi(0,x)} \left(\frac{t}{\frac{7}{24} \sum_{j=0}^{n-1} \left(\frac{2}{\alpha}\right)^j}\right)$$
(41)

for all $x \in X$ and all non-negative integers *n*. Substituting *x* by $2^m x$ in (41), we obtain

$$\mu_{\left(\frac{f(2^{n+m}x)}{2^{n+m}} - \frac{f(2^{m}x)}{2^{m}}\right)}(t) \ge \Lambda_{\psi(0,x)}\left(\frac{t}{\left(\frac{7}{24}\sum_{j=m}^{m+n}\left(\frac{\alpha}{2}\right)^{j}\right)}\right)$$
(42)

for all $x \in X$ and all integers $n \ge m \ge 0$. Since the above series is convergent, the sequence $\left\{\frac{f(2^n x)}{2^n}\right\}$ is Cauchy in $(\mathcal{Y}, \mu, \tau_M)$. Now, the completeness of $(\mathcal{Y}, \mu, \tau_M)$ as a *RN*-space implies that the mentioned sequence is converges to some point $A(x) \in \mathcal{Y}$. It follows from (41) that

$$\begin{aligned} \mu_{(A(x)-f(x))}(t+\epsilon) &\geq \tau_M \left(\mu_{(A(x)-\frac{f(2^nx)}{2^n})}(\epsilon), \mu_{(\frac{f(2^nx)}{2^n}-f(x))}(t) \right) \\ &\geq \tau_M \left(\mu_{(A(x)-\frac{f(2^nx)}{2^n})}(\epsilon), \Lambda_{\psi(0,x)} \left(\frac{t}{\left(\frac{7}{24} \sum_{j=0}^{n-1} \left(\frac{\alpha}{2} \right)^j \right)} \right) \right) \end{aligned}$$

for all $x \in X$ in which $\epsilon > 0$. Taking *n* to infinity in the above inequality, we have

$$\mu_{\left(A(x)-f(x)\right)}(t+\epsilon) \ge \Lambda_{\psi(0,x)}\left(\frac{12(2-\alpha)}{7}t\right)$$
(43)

for all $x \in X$. Taking $\epsilon \to 0$ in (43), we see that the inequality (38) holds. Also, the inequality (37) implies that

$$\mu_{\frac{1}{2^n}\mathcal{D}f(2^nx,2^ny)}(t) \ge \Lambda_{\psi(2^nx,2^ny)}(2^nt) \tag{44}$$

for all $x, y \in X$ and all t > 0. Letting *n* to infinity in (44), by (36) and the part (i) of Lemma 2.1, we see that the mapping *A* is additive. Now, similar to the proof of Theorem 3.5, one can complete the rest of the proof. \Box

Corollary 3.10. Let X be a linear space, (Z, Λ, τ_M) be an RN-space and let $(\mathcal{Y}, \mu, \tau_M)$ be a complete RN-space. Let r, s be real numbers such that r, $s \in [0, 1)$ and $z_0 \in Z$. If $f : X \longrightarrow \mathcal{Y}$ is an odd mapping such that

$$\mu_{\mathcal{D}f(x,y)}(t) \ge \Lambda_{(\|x\|^r + \|y\|^s)z_0}(t)$$

for all $x, y \in X$ and all t > 0, then there exists a unique additive mapping $A : X \longrightarrow Y$ satisfying

$$\mu_{f(x)-Q(x)}(t) \ge \Lambda_{\|x\|^{s_{Z_0}}}\left(\frac{12(2-2^s)}{7}t\right)$$

for all $x \in X$ and all t > 0.

Proof. Defining $\psi(x, y) := (||x||^r + ||y||^s) z_0$ and using Theorem 3.9, we get the desired result. \Box

The following result analogous to Corollary 3.8 for additive functional equations. Since the proof is similar, it is omitted.

Corollary 3.11. Let X be a linear space, (Z, Λ, τ_M) be an RN-space and $(\mathcal{Y}, \mu, \tau_M)$ be a complete RN-space. Let r, s be non-negative real numbers such that $r + s \neq 1$ and $z_0 \in Z$. If $f : X \longrightarrow \mathcal{Y}$ is an odd mapping such that

$$\mu_{\mathcal{D}f(x,y)}(t) \ge \Lambda_{||x||^r ||y||^s z_0}(t)$$

for all $x, y \in X$ and all t > 0, then f is a additive mapping.

Theorem 3.12. Let X be a linear space, (Z, Λ, τ_M) be an RN-space and (Y, μ, τ_M) be a complete RN-space. Suppose that $\psi : X \times X \longrightarrow Z$ is a mapping such that $\psi(x, y) = \psi(-x, -y)$ for all $x, y \in X$ and for some $0 < \alpha < 2$,

$$\Lambda_{\psi(0,2x)}(t) \ge \Lambda_{\alpha\psi(0,x)}(t) \qquad (x \in \mathcal{X}, t > 0)$$
(45)

and

$$\lim \Lambda_{\psi(2^n x, 2^n y)}(2^n t) = 1 \qquad (x, y \in \mathcal{X}, t > 0).$$
(46)

If $f : X \longrightarrow \mathcal{Y}$ *is a mapping with* f(0) = 0 *and*

$$\mu_{\mathcal{D}f(x,y)}(t) \ge \Lambda_{\psi(x,y)}(t) \tag{47}$$

for all $x, y \in X$ and all t > 0, then there exists a unique additive mapping $A : X \longrightarrow Y$ and a unique quartic mapping $Q : X \longrightarrow Y$ such that

$$\mu_{f(x)-A(x)-Q(x)}(t) \ge \min\left\{\Lambda_{\psi(0,x)}\left(\frac{16-\alpha}{7}t\right), \Lambda_{\psi(0,x)}\left(\frac{6(2-\alpha)}{7}t\right)\right\}$$

$$(48)$$

for all $x \in X$ and all t > 0.

Proof. We decompose *f* into the even part and odd part by setting

$$f_{\rm e}(x) = \frac{f(x) + f(-x)}{2}, \qquad f_{\rm o}(x) = \frac{f(x) - f(-x)}{2}.$$

for all $x \in X$. Obviously, $f(x) = f_e(x) + f_o(x)$ for all $x \in X$. Then

$$\begin{split} \mu_{\mathcal{D}f_{e}(x,y)}(t) &= \mu_{\left(\frac{1}{2}\mathcal{D}f(x,y)+\frac{1}{2}\mathcal{D}f(-x,-y)\right)}(t) \geq \tau_{M}\left(\mu_{\frac{1}{2}\mathcal{D}f(x,y)}\left(\frac{t}{2}\right), \mu_{\frac{1}{2}\mathcal{D}f(-x,-y)}\left(\frac{t}{2}\right)\right) \\ &= \tau_{M}\left(\mu_{\mathcal{D}f(x,y)}(t), \mu_{\mathcal{D}f(-x,-y)}(t)\right) \\ &\geq \tau_{M}\left(\Lambda_{\psi(x,y)}(t), \Lambda_{\psi(-x,-y)}(t)\right) \\ &= \Lambda_{\psi(x,y)}(t). \end{split}$$

for all $x, y \in X$ and all t > 0. Similarly, one can show that $\mu_{\mathcal{D}f_e(x,y)}(t) \ge \Lambda_{\psi(x,y)}(t)$. By Theorems 3.5 and 3.9, there exists a unique quratic mapping $Q : X \longrightarrow \mathcal{Y}$ and a unique additive mapping $A : X \longrightarrow \mathcal{Y}$ such that

$$\mu_{f_{e}(x)-Q(x)}(t) \ge \Lambda_{\psi(0,x)}\left(\frac{2(16-\alpha)}{7}t\right) \text{ and } \mu_{f_{0}(x)-A(x)}(t) \ge \Lambda_{\psi(0,x)}\left(\frac{12(2-\alpha)}{7}t\right)$$
(49)

for all $x \in X$ and all t > 0. The relations in(49) implies that

$$\mu_{f(x)-A(x)-Q(x)}(t) \ge \tau_M \left(\mu_{f_c(x)-Q(x)}\left(\frac{t}{2}\right), \mu_{f_0(x)-A(x)}\left(\frac{t}{2}\right) \right)$$
(50)

$$\geq \tau_M \left(\Lambda_{\psi(0,x)} \left(\frac{16 - \alpha}{7} t \right), \Lambda_{\psi(0,x)} \left(\frac{6(2 - \alpha)}{7} t \right) \right)$$
(51)

$$= \min\left\{\Lambda_{\psi(0,x)}\left(\frac{16-\alpha}{7}t\right), \Lambda_{\psi(0,x)}\left(\frac{6(2-\alpha)}{7}t\right)\right\}$$
(52)

for all $x \in X$ and all t > 0. This finishes the proof. \Box

Corollary 3.13. Let X be a linear space, (Z, Λ, τ_M) be an RN-space and let $(\mathcal{Y}, \mu, \tau_M)$ be a complete RN-space. Let r, s be real numbers such that r, $s \in [0, 1)$ and $z_0 \in Z$. If $f : X \longrightarrow \mathcal{Y}$ is an mapping with f(0) = 0 such that

 $\mu_{\mathcal{D}f(x,y)}(t) \geq \Lambda_{(||x||^r + ||y||^s)z_0}(t)$

for all $x, y \in X$ and all t > 0, then there exists a unique additive mapping $A : X \longrightarrow Y$ and a unique quartic mapping $Q : X \longrightarrow Y$ satisfying

$$\mu_{f(x)-A(x)-Q(x)}(t) \ge \min\left\{\Lambda_{\|x\|^{s}z_{0}}\left(\frac{16-2^{s}}{7}t\right), \Lambda_{\|x\|^{s}z_{0}}\left(\frac{6(2-2^{s})}{7}t\right)\right\}$$

for all $x \in X$ and all t > 0.

Acknowledgment

The author expresses his sincere thanks to the reviewer for reminding some facts about the literature of the stability of functional equations.

1639

References

- [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950) 64-66.
- [2] E. Baktash, Y. J. Cho, M. Jalili, R. Saadati and S. M. Vaezpour, On the stability of cubic Mappings and quadratic mappings in random normed spaces, J. Inequal. Appl. 2008, Article ID 902187, 11 pages, doi:10.1155/2008/902187.
- [3] A. Bodaghi and I. A. Alias, Approximate ternary quadratic derivations on ternary Banach algebras and C*-ternary rings, Adv. Differene Equa., 2012, Article No. 11, (2012).
- [4] A. Bodaghi, I. A. Alias and M. H. Ghahramani, Ulam stability of a quartic functional equation, Abst. Appl. Anal. 2012, Art. ID 232630 (2012).
- [5] A. Bodaghi, I. A. Alias and M. H. Ghahramani, Approximately cubic functional equations and cubic multipliers, J. Inequal. Appl. 2011, Article No. 53, (2011).
- [6] L. Cădariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timişoara, Ser. Mat. Inform. 41 (2003), 25–48.
- [7] J. K. Chung and P. K. Sahoo, On the general solution of a quartic functional equation, Bull. Korean Math. Soc. 40 (2003), 565–576.
- [8] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg. 62 (1992) 59–64.
- [9] M. Eshaghi Gordji, Stability of a functional equation deriving from quartic and additive functions, Bull. Korean Math. Soc. 47, No. 3 (2010), 491–502.
- [10] M. Eshaghi Gordji and M. Bavand Savadkouhi, Stability of a mixed type additive, quadratic and cubic functional equation in random normed space, Filomat. 25, No. 3 (2011), 43–54.
- [11] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA. 27 (1941), 222–224.
- [12] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
- [13] S. Lee, S. Im and I. Hwang, Quartic functional equations, J. Math. Anal. Appl. 307 (2005) 387-394.
- [14] H. Lee, S. W. Kim, B. J. Son, D. H. Lee and S. Y. Kang, Additive-quartic functional equation in non-archimedean orthogonality spaces, Korean J. Math. 20, (2012) No. 1, 33-46.
- [15] C. Park and A. Bodaghi, On the stability of *-derivations on Banach *-algebras, Adv. Difference Equ. 2012, Article No. 138 (2012).
- [16] J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Matematicki Series III. 34 (2) (1999) 243-252.
- [17] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (2) (1978) 297-300.
- [18] B. Schweizer and A. Sklar, Probabilistic metric spaces, Elsevier, North Holand, New York, 1983.
- [19] A. N. Šerstnev, On the motion of a random normed space, Dokl. Akad. Nauk SSSR 149 (1963) 280-283.
- [20] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Ed., Wiley, New York, 1940.