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Available at: http://www.pmf.ni.ac.rs/filomat

Properties (S) and (gS) for Bounded Linear Operators

M. H. M. Rashida

aM. H.M. Rashid
Department of Mathematics& Statistics

Faculty of Science P.O.Box(7)
Mu’tah University

Al-Karak-Jordan

Abstract. An operator T acting on a Banach space X obeys property (R) if π0
a(T ) = E0(T ), where

π0
a(T ) is the set of all left poles of T of finite rank and E0(T ) is the set of all isolated eigenvalues of T of

finite multiplicity. In this paper we introduce and study two new properties (S) and (gS) in connection
with Weyl type theorems. Among other things, we prove that if T is a bounded linear operator acting on
a Banach space, then T satisfies property (R) if and only if T satisfies property (S) and π0(T ) = π0

a(T ),
where π0(T ) is the set of poles of finite rank. Also we show if T satisfies Weyl theorem, then T satisfies
property (S). Analogous results for property (gS) are given. Moreover, these properties are also studied
in the frame of polaroid operator.

1. Introduction and Preliminary

Throughout this paper, X denotes an infinite-dimensional complex Banach space, L (X ) the algebra

of all bounded linear operators on X . For T ∈ L (X ), let T ∗, σ(T ), σp(T ), σs(T ) and σa(T ) denote

respectively the adjoint, the spectrum, the point spectrum, the surjectivity spectrum and the approximate

point spectrum of T . Let C denote the set of complex numbers. Here and elsewhere in this paper, for K ⊂ C,

isoK is the set of isolated points of K. For an operator T ∈ L (X ) we shall denote by α(T ) the dimension

of the kernel ker(T ), and by β(T ) the codimension of the range <(T ). Recall that the operator T ∈ L (X )

is said to be upper semi-Fredholm, T ∈ SF+(X ), if the range of T ∈ L (X ) is closed and α(T ) <∞, while

T ∈ L (X ) is said to be lower semi-Fredholm, T ∈ SF−(X ), if β(T ) <∞. An operator T ∈ L (X ) is said

to be semi-Fredholm if T ∈ SF+(X ) ∪ SF−(X ) and Fredholm if T ∈ F (X ) = SF+(X ) ∩ SF−(X ). If T

is semi-Fredholm then the index of T is defined by ind (T) = α(T)− β(T).

A bounded linear operator T acting on a Banach space X is Weyl, T ∈ W (X ), if it is Fredholm
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of index zero. Define SF−+ (X ) = {T ∈ SF+(X ) : ind (T ) ≤ 0} and SF+
− (X ) = {T ∈ SF−(X ) :

ind (T ) ≥ 0}. The classes of operators defined above generate the following spectra: The Weyl spectrum

σw(T ) is defined by σw(T ) = {λ ∈ C : T − λI is not Weyl}, the Weyl essential approximate spectrum is

given by σSF−
+

(T ) = {λ ∈ C : T − λ /∈ SF−+ (X)}, while the Weyl essential surjective spectrum is given

by σSF+
−

(T ) = {λ ∈ C : T − λ /∈ SF+
− (X)}. According to Coburn [17], Weyl’s theorem holds for T if

∆(T ) = σ(T ) \ σw(T ) = E0(T ), where E0(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λ) < ∞}. According to

Rakočević [25], an operator T ∈ L (X ) is said to satisfy a-Weyl’s theorem if σa(T ) \ σSF−
+

(T ) = E0
a(T ),

where E0
a(T ) = {λ ∈ isoσa(T) : 0 < α(T− λI) <∞}. It is known [25] that an operator satisfying a-Weyl’s

theorem satisfies Weyl’s theorem, but the converse does not hold in general.

Recall that the ascent, a(T ), of an operator T ∈ L (X ) is the smallest non negative integer p such that

ker(T p) =ker(T p+1) and if such integer does not exist we put a(T ) = ∞. Analogously the descent, d(T ),

of an operator T ∈ L (X ) is the smallest non negative integer q such that R(T q) = R(T q+1) and if such

integer does not exist we put d(T ) =∞.

The class of all upper semi-Browder operators is defined by B+(X ) = {T ∈ SF+(X ) : a(T ) <∞} and

the class of Browder operators is defined by B(X ) = {T ∈ F (X ) : a(T ) <∞ and d(T ) <∞}. The Browder

spectrum of T ∈ L (X ) is defined by σb(T ) := {λ ∈ C : T − λ /∈ B(X )} and the upper Browder spectrum

is defined by σub(T ) := {λ ∈ C : T − λ /∈ B+(X )}.
For T ∈ B(X) and a nonnegative integer n define T[n] to be the restriction of T to <(Tn) viewed as

a map from <(Tn) into <(Tn) (in particular, T[0] = T ). If for some integer n the range space <(Tn) is

closed and T[n] is an upper (a lower) semi- Fredholm operator, then T is called an upper (a lower) semi-

B-Fredholm operator. In this case the index of T is defined as the index of the semi-Fredholm operator

T[n], see [7]. Moreover, if T[n] is a Fredholm operator, then T is called a B-Fredholm operator. A semi-B-

Fredholm operator is an upper or a lower semi-B-Fredholm operator. An operator T is said to be a B-Weyl

operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum σBW (T ) of T is defined by

σBW (T ) = {λ ∈ C : T − λ is not a B-Weyl operator}.
An operator T ∈ L (X ) is called Drazin invertible if it has a finite ascent and descent. The Drazin

spectrum σD(T ) of an operator T is defined by σD(T ) = {λ ∈ C : T − λ is not a Drazin invertible}. Define

also the set LD(X ) by LD(X ) = {T ∈ L (X ) : a(T ) < ∞ and<(T a(T )+1) is closed} and σLD(T ) =

{λ ∈ C : T − λ /∈ LD(X )}. Following [11], an operator T ∈ L (X ) is said to be left Drazin invertible if

T ∈ LD(X ). We say that λ ∈ σa(T ) is a left pole of T if T − λ ∈ LD(X ), and that λ ∈ σa(T ) is a left pole

of T of finite rank if λ is a left pole of T and α(T − λ) <∞. Let πa(T ) denotes the set of all left poles of T

and let π0
a(T ) denotes the set of all left poles of T of finite rank. From Theorem 2.8 of [11] it follows that

if T ∈ L (X ) is left Drazin invertible, then T is an upper semi-B-Fredholm operator of index less than or

equal to 0.

Let π(T ) be the set of all poles of the resolvent of T and let π0(T ) be the set of all poles of the resolvent

of T of finite rank, that is π0(T ) = {λ ∈ π(T ) : α(T − λ) <∞}. According to [21], a complex number λ is

a pole of the resolvent of T if and only if 0 < max{a(T − λ), d(T − λ)} <∞. Moreover, if this is true then
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a(T −λ) = d(T −λ). According also to [21], the space <((T −λ)a(T−λ)+1) is closed for each λ ∈ π(T ). Hence

we have always π(T ) ⊂ πa(T ) and π0(T ) ⊂ π0
a(T ). We say that Browders theorem holds for T ∈ L (X )

if ∆(T ) = π0(T ), or equivalently σb(T ) = σw(T ) and that a-Browders theorem holds for T ∈ L (X ) if

∆a(T ) = π0
a(T ), or equivalently σSF−

+
(T ) = σub(T ). Following [10], we say that generalized Weyl’s theorem

holds for T ∈ L (X ) if ∆g(T ) = σ(T ) \ σBW (T ) = E(T ), where E(T ) = {λ ∈ isoσ(T ) : α(T − λ) > 0}
is the set of all isolated eigenvalues of T, and that generalized Browder’s theorem holds for T ∈ L (X )

if ∆g(T ) = π(T ). It is proved in Theorem 2.1 of [5] that generalized Browder’s theorem is equivalent

to Browder’s theorem. In [11, Theorem 3.9], it is shown that an operator satisfying generalized Weyl’s

theorem satisfies also Weyl’s theorem, but the converse does not hold in general. Nonetheless and under the

assumption E(T ) = π(T ), it is proved in Theorem 2.9 of [13] that generalized Weyl’s theorem is equivalent

to Weyl’s theorem.

Let SBF+(X ) be the class of all upper semi-B-Fredholm operators, SBF−+ (X )

= {T ∈ SBF+(X ) : ind (T ) ≤ 0}. The upper B-Weyl spectrum of T is defined by σSBF−
+

(T ) = {λ ∈
C : T − λ /∈ SBF−+ (X )}, while the lower B-Weyl spectrum of T is defined by σSBF+

−
(T ) = {λ ∈ C :

T − λ /∈ SBF+
− (X )}. We say that generalized a-Weyl’s theorem holds for T ∈ L (X ) if ∆g

a(T ) = σa(T ) \
σSBF−

+
(T ) = Ea(T ), where Ea(T ) = {λ ∈ isoσa(T ) : α(T − λ) > 0} is the set of all eigenvalues of T which

are isolated in σa(T ) and that T ∈ L (X ) obeys generalized a-Browders theorem if ∆g
a(T ) = πa(T ). It

is proved in [5, Theorem 2.2] that generalized a-Browder’s theorem is equivalent to a-Browder’s theorem,

and it is known from [11, Theorem 3.11] that an operator satisfying generalized a-Weyl’s theorem satisfies

a-Weyl’s theorem, but the converse does not hold in general and under the assumption Ea(T ) = πa(T ) it is

proved in [13, Theorem 2.10] that generalized a-Weyl’s theorem is equivalent to a-Weyl’s theorem.

Following [24], we say that T ∈ L (X ) possesses property (w) if ∆a(T ) = E0(T ). The property (w) has

been studied in [1]. In Theorem 2.8 of [2], it is shown that property (w) implies Weyl’s theorem, but the

converse is not true in general. We say that T ∈ L (X ) possesses property (gw) if ∆g
a(T ) = E(T ). Property

(gw) has been introduced and studied in [6, 27]. Property (gw) extends property (w) to the context of

B-Fredholm theory, and it is proved in [6] that an operator possessing property (gw) possesses property

(w) but the converse is not true in general. According to [14], an operator T ∈ L (X ) is said to possess

property (gb) if ∆g
a(T ) = π(T ), and is said to possess property (b) if ∆a(T ) = π0(T ). It is shown in Theorem

2.3 of [14] that an operator possessing property (gb) possesses property (b) but the converse is not true in

general, see also [26]. Following [4], we say an operator T ∈ L (X ) is said to be satisfies property (R) if

π0
a(T ) = E0(T ). In Theorem 2.4 of [4], it is shown that T satisfies property (w) if and only if T satisfies

a-Browder’s theorem and T satisfies property (R).

Following [20] we say that T ∈ L (X ) has the single-valued extension property (SVEP) at point λ ∈ C

if for every open neighborhood Uλ of λ, the only analytic function f : Uλ −→X which satisfies the equation

(T − µ)f(µ) = 0 is the constant function f ≡ 0. It is well-known that T ∈ L (X ) has SVEP at every

point of the resolvent ρ(T ) := C \ σ(T ). Moreover, from the identity Theorem for analytic function it easily

follows that T ∈ L (X ) has SVEP at every point of the boundary ∂σ(T ) of the spectrum. In particular, T
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has SVEP at every isolated point of σ(T ), see [23]. In [22, Proposition 1.8], Laursen proved that if T is of

finite ascent, then T has SVEP.

In this paper we shall consider properties which are related to Weyl type theorem for bounded linear

operators T ∈ L (X ), defined on a complex Banach space X . These properties, that we call property

(S), means that the isolated points of the spectrum σ(T ) of T which are eigenvalues of finite multiplicity

are exactly those points λ of the spectrum for which T − λ is Browder (see Definition 2.1) and we call

property (gS), means that the isolated points of the spectrum σ(T ) of T which are eigenvalues are exactly

those points λ of the spectrum for which T − λ is Drazin invertible (see Definition 2.1). Properties (S)

and (gS) are related to Weyl’s theorem and generalized Weyl’s theorem, respectively. We shall characterize

properties (S) and (gS) in several ways and we shall also describe the relationships of it with the other

variants of Weyl type theorems. Our main tool is localized version of the single valued extension property.

Also, we consider the properties (S) and (gS) in the frame of polaroid type operators. In the last part, as a

conclusion, we give a diagram summarizing the different relations between Weyl type theorems, extending

a similar diagram given in [28].

2. Properties (S) and (gS)

For T ∈ L (X ), let ∆b(T ) = σ(T ) \ σb(T ), ∆g
b(T ) = σ(T ) \ σD(T ).

Definition 2.1. Let T ∈ L (X ). T is said to be satisfy property (S) if ∆b(T ) = E0(T ) and is said to be

satisfy property (gS) if ∆g
b(T ) = E(T ).

Theorem 2.2. Let T ∈ L (X ). If T satisfies property (gS), then T satisfies property (S).

Proof. Suppose that T satisfies property (gS), then ∆g
b(T ) = E(T ). If λ ∈ ∆b(T ), then λ ∈ ∆g

b(T ) = E(T ).

Since T − λ is a Browder operator, then 0 < α(T − λ) <∞. So λ ∈ E0(T ). To show the opposite inclusion,

let λ ∈ E0(T ) be arbitrary. Then λ is an eigenvalue of T isolated in σ(T ). Since T satisfies property (gS),

it follows that λ ∈ ∆g
b(T ) = E(T ) and T − λ is a Drazin invertible operator. Hence λ ∈ π(T ) and so

a(T − λ) = d(T − λ) <∞. As α(T − λ) <∞, then λ ∈ π0(T ) = ∆b(T ).

The converse of Theorem 2.2 does not hold in general as shown by the following example.

Example 2.3. Let Q be defined for each x = {ξi} ∈ `1(N) by

Q(ξ1, ξ2, · · · ) = (0, α1ξ2, α2ξ3, · · · , αk−1ξk, · · · ),

where {αi} is a sequence of complex numbers such that 0 < |αi| ≤ 1 and

∞∑
i=1

|αi| <∞.

Define T on X = `1(N) ⊕ `1(N) by T = Q ⊕ 0. Then σ(T ) = σa(T ) = {0} , E(T ) = {0} , E0(T ) = ∅.
It follows from Example 3.12 of [11] that <(Tn) is not closed for all n ∈ N. This implies that σb(T ) =

σSBF−
+

(T ) = σLD(T ) = {0} , π(T ) = ∅ and ∅ = πa(T ). We then have ∆g
b(T ) = ∅ 6= E(T ) = {0} and

∆b(T ) = E0(T ). Hence T satisfies property (S), but T does not satisfies property (gS).



M. H. M. Rashid / Filomat 28:8 (2014), 1641–1652 1645

Theorem 2.4. Let T ∈ L (X ). Then the following assertions hold.

(i) T satisfies Weyl’s theorem if and only if T satisfies property (S) and σb(T ) = σw(T ).

(ii) T satisfies generalized Weyl’s theorem if and only if T satisfies property (gS) and σBW (T ) = σD(T ).

Proof. (i). Assume that T satisfies Weyl’s theorem, then T satisfies Browder’s theorem and E0(T ) =

π0(T ) = ∆b(T ), i.e., T satisfies property (S). Since T satisfies Browder’s theorem, then σw(T ) = σb(T ).

Conversely, if T satisfies property (S) and σw(T ) = σb(T ). Then

E0(T ) = σ(T ) \ σb(T ) = σ(T ) \ σw(T ).

That is, T satisfies Weyl’s theorem.

(ii). Assume that T satisfies generalized Weyl’s theorem, then it follows from Corollary 2.1 of [5] that T

satisfies generalized Browder’s theorem and E(T ) = π(T ). Hence ∆g
b(T ) = E(T ), i.e, T satisfies property

(gS). Moreover, since T satisfies generalized Browder’s theorem, we have σBW (T ) = σD(T ).

Conversely, if T satisfies property (gS) and σBW (T ) = σD(T ). Then

E(T ) = σ(T ) \ σD(T ) = σ(T ) \ σBW (T ).

That is, T satisfies generalized Weyl’s theorem.

Theorem 2.5. Let T ∈ L (X ). Then the following are equivalent.

(i) T satisfies property (gS);

(ii) σBW (T ) ⊆ σ(T ) \ E(T ).

Proof. (i)⇒(ii). Assume that T satisfies property (gS), then ∆g
b(T ) = π(T ) = E(T ). Let λ ∈ E(T ), then

T − λ is a B-Fredholm of index 0. Therefore, λ /∈ σBW (T ) and so σBW (T ) ⊆ σ(T ) \ E(T ).

(ii)⇒(i). Suppose that σBW (T ) ⊆ σ(T )\E(T ) and let λ ∈ E(T ). Then λ is isolated in σ(T ) and λ /∈ σBW (T ).

So T − λ is a B-Fredholm of index 0. It follows from Theorem 4.2 of [9] that T − λ is Drazin invertible and

so λ ∈ π(T ). As we have always π(T ) ⊆ E(T ). Hence, π(T ) = E(T ) and so T satisfies property (gS).

Theorem 2.6. Let T ∈ L (X ). Then the following assertions hold.

(i) If T satisfies property (w), then T satisfies property (S).

(ii) If T satisfies property (gw), then T satisfies property (gS).

Proof. (i). It follows from Theorem 2.8 of [2] that T satisfies Weyl’s theorem, so the result follows now

from part(i) of Theorem 2.4.

(ii). It follows from Theorem 2.4 of [6] that T satisfies generalized Weyl’s theorem, so the result follows

now from part(ii) of Theorem 2.4.

The converse of Theorem 2.6 doe not not hold in general as shown by the following example.



M. H. M. Rashid / Filomat 28:8 (2014), 1641–1652 1646

Example 2.7. Let R ∈ `2(N) be the unilateral right shift and

U(x1, x2, · · · ) := (0, x2, x3, · · · ) for all (xn) ∈ `2(N).

If T := R ⊕ U then σ(T ) = σw(T ) = σD(T ) = σBW (T ) = σb(T ) = D(0, 1), where D(0, 1) is the unit disc

of C. Hence isoσ(T ) = ∅, then E0(T ) = E(T ) = ∅. Then T satisfies property S, since ∆b(T ) = E0(T ) and

T satisfies property (gS), Since ∆g
b(T ) = E(T ). Moreover, σa(T ) = C(0, 1) ∪ {0} , where C(0, 1) is the unit

circle of C. Hence σSF−
+

(T ) = σLD(T ) = σSBF−
+

(T ) = C(0, 1). Then T does not satisfy property (w), since

∆a(T ) = {0}. Also, T does not satisfies property (gw), since ∆g
a(T ) = {0} .

Definition 2.8. Let T ∈ L (X ). T is said to be satisfy property (gR) if σa(T ) \ σLD(T ) = E(T ), or

equivalently πa(T ) = E(T ).

Theorem 2.9. Let T ∈ L (X ). If T satisfies property (gR), then T satisfies property (R).

Proof. Suppose that T satisfies property (gR), then σa(T ) \ σLD(T ) = E(T ). If λ ∈ σ(T ) \ σub(T ), then

λ ∈ σa(T ) \ σLD(T ) = E(T ). Since T − λ ∈ B+(X ), so λ ∈ π0
a(T ), then α(T − λ) < ∞. As λ ∈ E(T ),

then λ ∈ isoσ(T) and α(T − λ) > 0. Therefore, λ ∈ E0(T ). To show the opposite inclusion, let λ ∈ E0(T )

be arbitrary. Then λ is an eigenvalue of T isolated in σ(T ). Since T satisfies property (gR), it follows that

λ ∈ σa(T ) \ σLD(T ) and T − λ is left Drazin invertible. As α(T − λ) is finite, we conclude that λ ∈ π0
a(T )

and so λ ∈ σ(T ) \ σub(T ).

Theorem 2.10. Let T ∈ L (X ). Then

(i) T satisfies property (R) if and only if T satisfies property (S) and π0(T ) = π0
a(T ).

(ii T satisfies property (gR) if and only if T satisfies property (gS) and π(T ) = πa(T ).

Proof. (i). Suppose that T satisfies property (R), then π0
a(T ) = E0(T ). To show that T satisfies property

(S) it suffices to show that E0(T ) = π0(T ). If λ ∈ E0(T ), then λ ∈ σa(T ). Since 0 < α(T −λ) <∞ we know

that both T and T ∗ has SVEP at λ. From the equality E0(T ) = σa(T ) \σub(T ) we see that λ /∈ σub(T ) and

hence T −λ ∈ B+(X ). The SVEP for T and T ∗ by Remark 1.2 of [2] that a(T −λ) = d(T −λ) <∞. From

Theorem 3.4 of [1] we then obtain that α(T − λ) = β(T − λ) < ∞, so λ ∈ π0(T ). Hence E0(T ) ⊆ π0(T ),

and since the other inclusion holds for every T ∈ L (X ) we conclude that π0(T ) = E0(T ).

Conversely assume that T satisfies property (S) and π0(T ) = π0
a(T ). Then E0(T ) = π0

a(T ). That is, T

satisfies property (R).

(ii). Suppose that T satisfies property (gR), then πa(T ) = E(T ). To show that T satisfies property (gS) it

suffices to show that E(T ) = π(T ). Observe first that the inclusion π(T ) ⊆ E(T ) holds for all T ∈ L (X ).

To show the opposite inclusion, suppose that T satisfies property (gR) and let λ ∈ E(T ) = πa(T ). Then

a(T − λ) <∞, and since λ ∈ isoσ(T ), then it follows from Theorem 2.8 of [11] that λ /∈ σSBF−
+

(T ). Since

a(T − λ) is finite and λ ∈ isoσ(T ), then T ∗ has SVEP at λ and so λ /∈ σBW (T ). Since λ ∈ isoσ(T ), then

λ /∈ σD(T ). Therefore, λ ∈ π(T ).
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The following example shows the property (gS) does not imply property (gR).

Example 2.11. Let R be the unilateral right shift defined on `2(N). Define T on the Banach space X =

`2(N) ⊕ `2(N) by T = 0 ⊕ R. Then σ(T ) = σb(T ) = σw(T ) = σBW (T ) = σD(T ) = D(0, 1), where D(0, 1)

is the closed unit disc of C, σa(T ) = C(0, 1) ∪ {0}. Hence isoσ(T ) = ∅, σSF−
+

(T ) = σub(T ) = C(0, 1) ∪
{0} , σSBF−

+
(T ) = C(0, 1) = σLD(T ), where C(0, 1) is the unit circle of C, πa(T ) = {0} , π0

a(T ) = ∅,
π(T ) = ∅, E(T ) = π0(T ) = ∅ = E0

a(T ) = E0(T ) and Ea(T ) = {0}. Hence ∆g
b(T ) = E(T ), ∆b(T ) = E0(T ).

So T satisfies property (gS) and hence property (S). But T do not satisfy property (gR), since πa(T ) 6= E(T ).

Following [28], an operator T ∈ L (X ) is said to be satisfies property (Bgw) if ∆g
a(T ) = E0(T ).

Theorem 2.12. Let T ∈ L (X ). If T satisfies property (Bgw), then T satisfies property (S).

Proof. We conclude from Theorem 2.12 of [28] that T satisfies property (w) and hence T satisfies property

(S) by Theorem 2.6.

As a consequence of [4, Theorem 2.4] and [28, Theorem 2.12], we have

Theorem 2.13. Let T ∈ L (X ). If T satisfies property (Bgw), then T satisfies property (R).

The converse of Theorem 2.12 and Theorem 2.13 are not true in general, see Example 2.5 of [4].

Theorem 2.14. Let T ∈ L (X ). If T ∗ has SVEP at every λ /∈ σSF−
+

(T ). Then property (w), property (b),

property (R), property (S), Weyl’s theorem and a-Weyl’s theorem are equivalent for T .

Proof. We conclude from [1, Corollary 2.5], [1, Corollary 3.53] and Theorem 2.19 of [4] that

σ(T ) = σa(T ), σw(T ) = σb(T ) = σSF−
+

(T ) = σub(T ),

and

π0(T ) = E0(T ), π0
a(T ) = E0

a(T ), E0(T ) = π0
a(T ).

Hence

E0
a(T ) = ∆a(T ) = ∆(T )

= σa(T ) \ σub(T ) = ∆b(T ) = E0(T ).

Therefore, Then property (w), property (b), property (R), property (S), Weyl’s theorem and a-Weyl’s

theorem are equivalent for T .

Theorem 2.15. Let T ∈ L (X ). If T has SVEP at every λ /∈ σSF+
−

(T ). Then property (w), property (b),

property (R), property (S), Weyl’s theorem and a-Weyl’s theorem are equivalent for T ∗.
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Proof. We conclude from [1, Corollary 2.5], [1, Corollary 3.53] and Theorem 2.20 of [4] that

σ(T ∗) = σ(T ) = σs(T ) = σa(T ∗),

σw(T ∗) = σw(T ) = σb(T
∗) = σb(T ) = σSF−

+
(T ∗) = σSF+

−
(T ) = σlb(T ) = σub(T

∗),

and

π0(T ) = π0(T ∗) = E0(T ∗) = E0(T ), π0
a(T ∗) = E0

a(T ∗), E0(T ∗) = π0
a(T ∗).

Hence

E0
a(T ∗) = ∆a(T ∗) = ∆(T ∗) = ∆(T )

= σa(T ∗) \ σub(T ∗) = ∆b(T
∗) = E0(T ∗).

Therefore, Then property (w), property (b), property (R), property (S), Weyl’s theorem and a-Weyl’s

theorem are equivalent for T ∗.

Theorem 2.16. Suppose that T ∗ has SVEP at every λ /∈ σSBF−
+

(T ). Then the following assertions are

equivalent:

(i) E(T ) = π(T );

(ii) Ea(T ) = πa(T );

(iii) E(T ) = πa(T ).

Consequently, property (gR), property (gw), property (gS), generalized a-Weyl’s theorem and generalized

Weyl’s theorem are equivalent for T .

Proof. Suppose that T ∗ has SVEP at every λ /∈ σSBF−
+

(T ). We prove first the equality σSBF−
+

(T ) = σBW (T ).

If λ /∈ σSBF−
+

(T ) then T − λ is an upper semi-B-Fredholm operator and ind(T − λ) ≤ 0. As T ∗ has SVEP,

then it follows from Corollary 2.8 of [12] that T − λ is a B-Weyl operator and so λ /∈ σBW (T ). Therefore,

σSBF−
+

(T ) ⊆ σBW (T ). Since the other inclusion is always verified, we have the equality. Now we prove

that σD(T ) = σBW (T ). Since σSBF−
+

(T ) ⊆ σSF−
+

(T ) is always verified. Then T ∗ has SVEP at every

λ /∈ σSF−
+

(T ). This implies that T satisfies Browder’s theorem. As we know from Theorem 2.1 of [5] that

Browder’s theorem is equivalent to generalized Browder’s theorem, we have σBW (T ) = σD(T ). On the other

hand, as T ∗ has SVEP at every λ /∈ σSF−
+

(T ), then σ(T ) = σa(T ). From this we deduce that E(T ) = Ea(T )

and

πa(T ) = σa(T ) \ σSBF−
+

(T ) = σ(T ) \ σD(T ) = π(T ),

from which the equivalence of (i), (ii) and (iii) easily follows. To show the last statement observed that

the SVEP of T ∗ at the points λ /∈ σSBF−
+

(T ) entails that generalized a-Browder’s theorem (and hence

generalized Browder’s theorem) holds for T , see [15, Corollary 2.7]. By Corollary 2.1 of [5] and Theorem

2.4 then property (gR), property (gw), property (gS), generalized a-Weyl’s theorem and generalized Weyl’s

theorem are equivalent for T .
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Dually, we have

Theorem 2.17. Suppose that T has SVEP at every λ /∈ σSBF+
−

(T ). Then the following assertions are

equivalent:

(i) E(T ∗) = π(T ∗);

(ii) Ea(T ∗) = πa(T ∗);

(iii) E(T ∗) = πa(T ∗).

Consequently, property (gR), property (gw), property (gS), generalized a-Weyl’s theorem and generalized

Weyl;s theorem are equivalent for T ∗.

Proof. Suppose that T has SVEP at every λ /∈ σSBF+
−

(T ). We prove first the equality σSBF+
−

(T ∗) =

σBW (T ∗). If λ /∈ σSBF+
−

(T ) then T − λ is a lower semi-B-Fredholm operator and ind(T − λ) ≥ 0. As T

has SVEP, then it follows from Theorem 2.5 of [12] that T − λ is a B-Weyl operator and so λ /∈ σBW (T ).

As σBW (T ) = σBW (T ∗). Then λ /∈ σBW (T ∗). So σBW (T ∗) ⊆ σSBF+
−

(T ). As σSBF+
−

(T ) = σSBF−
+

(T ∗),

then σBW (T ∗) ⊆ σSBF−
+

(T ∗). Since the other inclusion is always verified, it then follows that σBW (T ∗) =

σSBF−
+

(T ∗). Now we show that σBW (T ∗) = σD(T ∗). Since we have always σSBF+
−

(T ) ⊆ σSF+
−

(T ), then

T has SVEP at every λ ∈ σSF+
−

(T ). Hence T ∗ satisfies generalized Browder’s theorem. So σD(T ∗) =

σBW (T ∗). Finally, we have σBW (T ∗) = σSBF−
+

(T ∗) = σD(T ∗) and σ(T ∗) = σa(T ∗),from which we obtain

E(T ∗) = Ea(T ∗) and π(T ∗) = πa(T ∗). The SVEP at every λ ∈ σSBF+
−

(T ) ensure by Corollary 2.7 of [15]

that generalized a-Browder’s theorem holds for T ∗, and hence, by Corollary 2.1 of [5] and Theorem 2.4,

property (gR), property (gw), property (gS), generalized a-Weyl’s theorem and generalized Weyl’s theorem

are equivalent for T ∗.

An operator T ∈ L (X ) is said to be polaroid if every isolated point of σ(T ) is a pole of the resolvent

(T −λ)−1, or equivalently 0 < a(T −λ) = d(T −λ) <∞. An operator T ∈ L (X ) is said to be a-polaroid if

every isolated point of σa(T ) is a pole of the resolvent (T−λ)−1, or equivalently 0 < a(T−λ) = d(T−λ) <∞.
Clearly,

T a-polaroid⇒ T polaroid. (1)

and the opposite implication is not generally true.

Theorem 2.18. Suppose that T ∈ L (X ) is polaroid. Then the following assertions hold:

(i) T satisfies property (S).

(ii) T satisfies property (gS).

Proof. (i) Note first that if T is polaroid then π0(T ) = E0(T ). In fact, if λ ∈ E0(T ) then λ is isolated in

σ(T ) and hence 0 < a(T −λ) = d(T −λ) <∞. Moreover, α(T −λ) <∞, so by Theorem 3.4 of [1] it follows

that β(T − λ) is also finite, thus λ ∈ π0(T ). This shows that E0(T ) ⊆ π0(T ), since the other inclusion is
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always verified, we have E0(T ) = π0(T ). Therefore, T satisfies property (S).

(ii) Note first that if T is polaroid then π(T ) = E(T ). In fact, if λ ∈ E(T ) then λ is isolated in σ(T ) and

hence 0 < a(T − λ) = d(T − λ) < ∞. Hence λ ∈ π(T ). This shows that E(T ) ⊆ π(T ), since the other

inclusion is always verified, we have E(T ) = π(T ). Therefore, T satisfies property (gS).

Recall from [16] that T ∈ L (X ) is said to satisfy property (ab) if ∆(T ) = π0
a(T ), T is said to satisfy

property (aw) if ∆(T ) = E0
a(T ), T is said to satisfy property (gab) if ∆g(T ) = πa(T ), and T is said to

satisfy property (gaw) if ∆g(T ) = Ea(T ).

Theorem 2.19. Suppose that T ∈ L (X ) is a-polaroid and T satisfies Browder’s theorem. Then

(i) Property (S), property (ab), property (aw) and Weyl’s theorem are equivalent for T .

(ii) Property (gS), property (gab), property (gaw) and generalized Weyl’s theorem are equivalent for T .

Proof. (i) If T is a-polaroid, it follows from proof of Theorem 2.21 of [2] that π0(T ) = E0
a(T ). Since

π0(T ) ⊆ π0
a(T ) ⊆ E0

a(T ) by Lemma 2.1 of [2], we have

π0(T ) = E0(T ) = E0
a(T ) = π0

a(T ).

Now, if T satisfies Browder’s theorem, we then have σw(T ) = σb(T ) and so ∆b(T ) = ∆(T ). Therefore,

E0
a(T ) = ∆(T ) = π0

a(T ) = ∆b(T ) = E0(T ).

That is, property (S), property (ab), property (aw) and Weyl’s theorem are equivalent for T .

(ii) Note first that if T is a-polaroid then π(T ) = Ea(T ). In fact, if λ ∈ Ea(T ) then λ is isolated in σa(T )

and hence 0 < a(T − λ) = d(T − λ) < ∞. Hence λ ∈ π(T ). This shows that Ea(T ) ⊆ π(T ), since we have

always π(T ) ⊆ E(T ) ⊆ Ea(T ) and π(T ) ⊆ πa(T ). Therefore,

Ea(T ) = π(T ) = E(T ) = πa(T ).

Now, since Browder’s theorem is equivalent to generalized Browder’s theorem by Theorem 2.1 of [5], then

T satisfies generalized Browder’s theorem. Hence σBW (T ) = σD(T ) and so, ∆g(T ) = ∆g
b(T ). Therefore,

Ea(T ) = ∆g(T ) = πa(T ) = ∆g
b(T ) = E(T ).

That is, property (gS), property (gab), property (gaw) and generalized Weyl’s theorem are equivalent for

T .

Let Hnc(σ(T )) denote the set of all analytic functions, defined on an open neighborhood of σ(T ), such that

f is non-constant on each of the components of its domain. Define, by the classical calculus, f(T ) for every

f ∈ Hnc(σ(T )).

Theorem 2.20. Suppose that T ∈ L (X ) is polaroid. Then

(i) f(T ) satisfies property (S) for all f ∈ Hnc(σ(T )).
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(ii) f(T ) satisfies property (gS) for all f ∈ Hnc(σ(T )).

Proof. It follows from Lemma 3.11 of [3] that f(T ) is polaroid. Hence the result follows now from Theorem

2.18.

3. Conclusion

In this last part, we give a summary of the known Weyl type theorems as in [11], including the properties

introduced in [4, 6, 14, 24, 28], and in this paper. We use the abbreviations gaW, aW, gW,W, (gw), (w), (Bw),

(Bgw), (R), (S) and (gS) to signify that an operator T ∈ L (X ) obeys generalized a-Weyl’s theorem, a-

Weyl’s theorem, generalized Weyl’s theorem, Weyl’s theorem, property (gw), property (w), property (Bw),

property (Bgw), property (R), property (S) and property (gS). Similarly, the abbreviations gaB, aB, gB,B,

(gb), (b), (Bb) and (Bgb) have analogous meaning with respect to Browder’s theorem .

The following table summarizes the meaning of various theorems and properties.
gaW σa(T ) \ σSBF−

+
(T ) = Ea(T ) gaB σa(T ) \ σSBF−

+
(T ) = πa(T )

gW σ(T ) \ σBW (T ) = E(T ) gB σ(T ) \ σBW (T ) = π(T )
aW σa(T ) \ σSF−

+
(T ) = E0

a(T ) aB σa(T ) \ σSF−
+

(T ) = π0
a(T )

W σ(T ) \ σW (T ) = E0(T ) B σ(T ) \ σW (T ) = π0(T )
(gw) σa(T ) \ σSBF−

+
(T ) = E(T ) (gb) σa(T ) \ σSBF−

+
(T ) = π(T )

(w) σa(T ) \ σSF−
+

(T ) = E0(T ) (b) σa(T ) \ σSF−
+

(T ) = π0(T )

(Bw) σ(T ) \ σBW (T ) = E0(T ) (Bb) σ(T ) \ σBW (T ) = π0(T )
(Bgw) σa(T ) \ σSBF−

+
(T ) = E0(T ) (Bgb) σa(T ) \ σSBF−

+
(T ) = π0(T )

(gR) σa(T ) \ σLD(T ) = E(T ) (R) σa(T ) \ σub(T ) = E0(T )
(gS) σ(T ) \ σD(T ) = E(T ) (S) σ(T ) \ σb(T ) = E0(T )

In the following diagram, which extends the similar diagram presented in [28], arrows signify implications

between various Weyl type theorems, Browder type theorems, property (gw), property (gb), property (Bw),

property (Bgw), property (Bb), property (Bgb), property (R), property (gR), property (S) and property

(gS). The numbers near the arrows are references to the results in the present paper (numbers without

brackets) or to the bibliography therein (the numbers in square brackets).

gW

2.4

��

gb
[14] //

OO

[14]

gB oo
[5] //

OO

[11]

B oo
[19]

aB
[19] // B oo

[8]
W

gS oo
2.6

2.2

��

gw
[6] //

[6]

��

gW oo
[11]

gaW
[11] // gaB oo

[28]
Bgw

[28]

��

[28] // Bgb

[28]

��
S oo

2.6
w

[14] // W
��
[11]

oo
[25]

aW
��
[11]

[11]
// aB
��
[5]

OO

oo
[14]

gb
[14]
// gaBOO

[5]

��
W oo

[28]

2.4

OO

Bgw
[28]
//

[28]

OO

Bw

[28]

OO

[28]
// Bb oo

[28]
Bgb

[28]
// b
��
[14]

[14]
// aB

S oo
2.10

R
��
2.12

oo
2.9

gR
2.10

// gS
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