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Abstract. For each vector norm ‖x‖ν, a matrix A ∈ Cm×n has its operator norm ‖A‖µν = max
x,O

‖Ax‖µ
‖x‖ν

. If A is
nonsingular, we can define the condition number of A ∈ Cn×n as P(A) = ‖A‖νν‖A−1

‖νν. If A is singular, the
condition number of matrix A ∈ Cm×n may be defined as P†(A) = ‖A‖µν‖A†‖νµ. Let U be the set of the whole
self-dual norms. It is shown that for a singular matrix A ∈ Cm×n, there is no finite upper bound of P†(A),
while ‖.‖ varies on U. On the other hand, it is shown that inf

‖.‖∈U
‖A‖µν‖A†‖νµ =

σ1(A)
σr(A) , where σ1(A) and σr(A)

are the largest and smallest nonzero singular values of A, respectively.

1. Introduction

Throughout this paper Cm×n denotes the set of all m × n matrices over the complex field C and Cm×n
r

denotes the set of all m × n complex matrices with rank r. Om×n is the m × n matrix of all zero entries (if

no confusion occurs, we will drop the subscript). For a matrix A ∈ Cm×n, A∗ and r(A) denote the conjugate

transpose and the rank of the matrix A, respectively. Furthermore, let ‖.‖µν be a operator norm on Cm×n,

‖.‖νµ be a operator norm on Cn×m, ‖.‖µ be a vector norm on Cm and ‖.‖ν be a vector norm on Cn.

Let A ∈ Cm×n, then the unique matrix X ∈ Cn×m satisfying the following four Penrose equations [8]:

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA,

is called the Moore-Penrose inverse of A and is denoted by A†.

For any A ∈ Cn×n and k = Ind(A) = min{p : r(Ap+1) = r(Ap)}, there exists a matrix X ∈ Cn×n satisfying [4]:

XAX = X, XA = AX, Ak+1X = Ak,
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then X is called the Drazin inverse of A and denoted by AD . The reader can refer to [1, 4, 8, 10] for basic

results on these generalized inverses.

Let ‖x‖ν be a vector norm defined on the linear space Cn. Then for a matrix A ∈ Cm×n, we define its

operator norm as [9]:

‖A‖µν = max
x,O

‖Ax‖µ
‖x‖ν

, (1)

where x ∈ Cn. If A ∈ Cn×n is nonsingular, we can define the condition number of A as:

P(A) = ‖A‖νν‖A−1
‖νν. (2)

Obviously, ‖A‖νν ≥ ρ(A), P(A) ≥ ρ(A)ρ(A−1), where ρ(A) denotes the spectral radius of A.

Condition number is a basic concept in numerical algebra and is important in some other fields of

numerical analysis, see [3, 5, 7, 9]. The normwise relative condition number measures the sensitivity of

matrix inversion and the solution of linear systems. It has attracted considerable attentions and many

interesting results have been obtained, see [2, 3, 6, 11, 12].

Let V be the set of the whole norms defined on Cn. In 1984, Huang [6] has shown that for a nonsingular

matrix A ∈ Cn×n, there is no finite upper bound of P(A) while ‖.‖ν varies on V and there is a further relation

between P(A) and ρ(A)ρ(A−1):

inf
‖.‖ν∈V

‖A‖νν‖A−1
‖νν = ρ(A)ρ(A−1). (3)

Let A ∈ Cn×n be singular and have Drazin inverse. In 2005, Cui [11] defined another condition number

of A as:

PD(A) = ‖A‖νν‖AD
‖νν, (4)

and shown that

inf
‖.‖ν∈V

‖A‖νν‖AD
‖νν = ρ(A)ρ(AD). (5)

The Moore-Penrose inverse plays an important role on the theoretical research and numerical computa-

tions in the areas of optimization, statistics, ill-posed problem and matrix analysis, see [1, 10]. Actually, for

a singular matrix A ∈ Cm×n, A† ∈ Cn×m is existence and unique. Obviously, when A ∈ Cn×n is nonsingular,

A† = A−1. Then for a matrix A ∈ Cm×n, we can define a new condition number:

P†(A) = ‖A‖µν‖A†‖νµ. (6)

Definition 1.1 Let y ∈ Cn and ‖.‖ν is a norm defined on Cn. Then we call ‖.‖ν a self-dual norm on Cn, if

‖y‖ν = max
x∈Cn
‖x‖ν=1

|y∗x|.
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Let U = {‖.‖µν, µ, ν} be the set of the whole self-dual norms on Cm×n, where ‖.‖µ is a self-dual norm

on Cm and ‖.‖ν is a self-dual norm on Cn, the next lemma shows that U is not an empty set. In fact, some

well-known operator norms such as ‖.‖2, ‖.‖∞ and ‖.‖F are self-dual norm.

Lemma 1.1 Let y = (y1, y2, · · · , ym)∗ ∈ Cm and ‖y‖2 =
√∑m

i=1 |yi|
2. Then ‖.‖2 is a self-dual norm on Cm.

Proof. According to the Definition 1.1, we only need to show

‖y‖2 = max
x∈Cm
‖x‖2=1

|y∗x|. (7)

Let x = (x1, x2, · · · , xm)∗ ∈ Cm and ‖x‖2 =
√∑m

i=1 |xi|
2 = 1. Then

|y∗x| = |(y∗1, y
∗

2, · · · , y
∗

m)


x1
x2
...

xm

 | = |y∗1x1 + y∗2x2 + · · · + y∗mxm|

≤ |y∗1x1| + |y∗2x2| + · · · + |y∗mxm| ≤ |y∗1||x1| + |y∗2||x2| + · · · + |y∗m||xm|

≤

√√
m∑

i=1

|yi|
2

√√
m∑

i=1

|xi|
2. (8)

Since x varies on Cm, it follows that

max
x∈Cm
‖x‖2=1

|y∗x| ≤ ‖y‖2. (9)

On the other hand, taking x′ =
y
‖y‖2

, we have x′ ∈ Cm and ‖x′‖2 = 1. Then

|y∗x| = |
y∗y
‖y‖2
| =
|y∗y|
‖y‖2

= ‖y‖2. (10)

Combining (7), (8), (9) with (10), we proved lemma 1.1. �

Let U = {‖.‖µν, µ, ν} be the set of the whole self-dual norms and A ∈ Cm×n. In this article we will show

that there is no finite upper bound of P†(A) while ‖.‖µ, ‖.‖ν vary on U and

inf
‖.‖µ∈U, ‖.‖ν∈U

‖A‖µν‖A†‖νµ =
σ1(A)
σr(A)

, (11)

where σ1(A) and σr(A) are the largest and smallest nonzero singular values of A, respectively.

In order to get the main result of this paper, we need the following lemma, which will be used in this

paper.

Lemma 1.2 [1, 10] Let A ∈ Cm×n
r , then there exist unitary matrices P ∈ Cm×m and Q ∈ Cn×n such that

A = P
(
Σ O
O O

)
Q∗, (12)

where Σ = dia1(σ1, σ2, · · · , σr), σi =
√
λi , λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the nonzero eigenvalues of A∗A, and

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the nonzero singular values of A. The Moore-Penrose inverse of A is

A† = Q
(
Σ−1 O
O O

)
P∗, (13)

where Σ−1 = dia1( 1
σ1
, 1
σ2
, · · · , 1

σr
).
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2. Main Results

Let U = {‖.‖µν, µ, ν} be the set of the whole self-dual norms and A ∈ Cm×n, we define a condition number

P†(A) = ‖A‖µν‖A†‖νµ of A, while ‖.‖ varies on U. In this section, we will show that there is no finite upper

bound of P†(A) and

inf
‖.‖µ∈U, ‖.‖ν∈U

‖A‖µν‖A†‖νµ =
σ1(A)
σr(A)

.

Theorem 2.1 Let A = [ai j] ∈ Cm×n
r be a nonzero matrix. Then there is no finite upper bound of P†(A),

while ‖.‖ varies on U.

Proof. Let x = (x1, x2, · · · , xn)∗ ∈ Cn and ‖x‖2 =
√∑n

i=1 |xi|
2, then the corresponding norm of the matrix is

‖A‖2. According to the definition of the norm of matrices [9], we have

‖A‖2 ≥
1
r
‖A‖F =

1
r

√√√ m∑
i

n∑
j

|ai j|
2. (14)

Suppose ai j , 0, then we take

Qs =



1
. . .

1
s

1
. . .

1


, Q′s =



1
. . .

1
1
s

1
. . .

1


,

where Qs = [qi j] ∈ Cn×n, Q′s = [q′i j] ∈ Cm×m and s = q j j , o, 1
s = q′ii , o. With the notice of the non-singularity

of Qs and Q′s, we can define two norm ‖.‖ν(Qs) and ‖.‖µ(Q′s) with a parameter s:

‖x‖ν(Qs) = ‖Qsx‖2 and ‖y‖µ(Q′s) = ‖Q′sy‖2,

where x ∈ Cn and y ∈ Cm.

By the formula (1), we have

‖A‖µ(Q′s)ν(Qs) = max
x,O

‖Ax‖µ(Q′s)

‖x‖ν(Qs)
= max

x,O

‖Q′sAx‖2
‖Qsx‖2

= max
y=Qsx,O

‖Q′sAQ−1
s y‖2

‖y‖2
= ‖Q′sAQ−1

s ‖2, (15)

and

Q′sAQ−1
s = dia1(1, 1, · · · , 1,

1
s
, 1, · · · , 1)A dia1(1, 1, · · · , 1,

1
s
, 1, · · · , 1)

=


a11 · · ·

1
s a1 j · · · a1n

· · · · · · · · · · · · · · ·
1
s ai1 · · ·

1
s2 ai j · · ·

1
s ain

· · · · · · · · · · · · · · ·

am1 · · ·
1
s amj · · · amn

 . (16)

From (14), (15) and (16), we have

‖A‖µ(Q′s)ν(Qs) = ‖Q′sAQ−1
s ‖2 ≥

1
r
‖Q′sAQ−1

s ‖F ≥
1
r
|
1
s2 ai j|. (17)
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According to the formula (17), we get the conclusion that when |s| → 0, ‖A‖µ(Q′s)ν(Qs) has no finite upper

bound.

On the other hand, for any norm, the following statement holds [9],

1
σ2

r
= ρ((A†)∗A†) ≤ ‖(A†)∗A†‖µµ ≤ ‖(A†)∗‖µν‖A†‖νµ, (18)

where σr is the smallest nonzero singular value of A.

From the formula (1), we have

‖A†‖νµ = max
x∈Cm
‖x‖µ=1

‖A†x‖ν, (19)

where ‖.‖µ on Cm and ‖.‖ν on Cn are the self-dual norms of the set U.

According to the formula (1) and Definition 1.1, we have

‖A†‖νµ = max
x∈Cm
‖x‖µ=1

‖A†x‖ν = max
x∈Cm
‖x‖µ=1

max
y∈Cn
‖y‖ν=1

|x∗(A†)∗y|, (20)

and

‖(A†)∗‖µν = max
y∈Cn
‖y‖ν=1

‖(A†)∗y‖µ = max
y∈Cn
‖y‖ν=1

max
x∈Cm
‖x‖µ=1

|y∗A†x| = ‖A†‖νµ. (21)

Combining (18), (19), (20) with (21), we have

1
σr
≤ ‖A†‖νµ. (22)

By (17) and (22), we have the conclusion that

P†(A) = ‖A‖µν‖A†‖νµ

has no finite upper bound, while ‖.‖ varies on the self-dual norms set U. �

Theorem 2.2 Let A = [ai j] ∈ Cm×n
r be a nonzero matrix. Then the condition number of A: P†(A) =

‖A‖µν‖A†‖νµ ≥
σ1(A)
σr(A) , while ‖.‖ varies on U.

Proof. From [9], we know that σ2
1 is the spectral radius of A∗A (i.e, σ2

1 = ρ(A∗A)). Thus

σ2
1 = ρ(A∗A) ≤ ‖A∗A‖νν ≤ ‖A∗‖νµ‖A‖µν. (23)

By (1), we have

‖A‖µν = max
x∈Cn
‖x‖ν=1

‖Ax‖µ.

Since ‖.‖µ and ‖.‖ν are self-dual norms, then according to Definition 1.1, we have

‖A‖µν = max
x∈Cn
‖x‖ν=1

‖Ax‖µ = max
x∈Cn
‖x‖ν=1

max
y∈Cm
‖y‖µ=1

|x∗A∗y|. (24)

and

‖A∗‖νµ = max
y∈Cm
‖y‖µ=1

‖A∗y‖ν = max
y∈Cm
‖y‖µ=1

max
x∈Cn
‖x‖ν=1

|y∗Ax| = ‖A‖µν. (25)
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Combining (23), (24) with (25) yields σ2
1 ≤ ‖A‖

2
µν, that is

σ1 ≤ ‖A‖µν. (26)

By analogy with above proof, we have

1
σr
≤ ‖A†‖νµ. (27)

From the formulas (26) and (27), we obtain the conclusion that

P†(A) = ‖A‖µν‖A†‖νµ ≥
σ1(A)
σr(A)

,

holds while ‖.‖ varies on U. �

In the above part, we shown that for a singular matrix A there is no finite upper bound of P†(A), while

‖.‖ varies on U. In the following theorem we will show that

inf
‖.‖∈U

P†(A) =
σ1(A)
σr(A)

. (28)

Theorem 2.3 Let A = [ai j] ∈ Cm×n
r be a nonzero matrix. Then

inf
‖.‖∈U

P†(A) = inf
‖.‖µ∈U, ‖.‖ν∈U

‖A‖µν‖A†‖νµ =
σ1(A)
σr(A)

. (29)

Proof. Let P ∈ Cm×m, Q ∈ Cn×n be two unitary matrices, such that

P∗AQ =

(
Σ O
O O

)
, (30)

where Σ = dia1(σ1, σ2, · · · , σr) and σ1 ≥ · · · ≥ σr > 0. Then from Lemma 1.2, we have

A† = Q
(
Σ−1 O
O O

)
P∗,

where Σ−1 = dia1( 1
σ1
, 1
σ2
, · · · , 1

σr
).

Let Dε and D′ε be two diagonal matrices as follow:

Dε =


1

ε
. . .

εn−1

 , D′ε =


1 ε

ε ε2

. . .
. . .
εm−2 εm−1

εm−1


,

where ε is a positive real number.

Suppose x ∈ Cn and y ∈ Cm, we define

‖x‖ν(Dε) = ‖D−1
ε Q∗x‖∞ and ‖y‖µ(D′ε) = ‖D′ε

−1P∗y‖∞.

Corresponding, we have

‖A‖µ(D′ε)ν(Dε) = max
x,O

‖Ax‖µ(D′ε)

‖x‖ν(Dε)
= max

x,O

‖D′ε
−1P∗Ax‖∞

‖D−1
ε Q∗x‖∞

= max
z=D−1

ε Q∗x,O

‖D′ε
−1P∗AQDεz‖∞
‖z‖∞

= ‖D′ε
−1P∗AQDε‖∞ (31)
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and

‖A†‖ν(Dε)µ(D′ε) = ‖Dε
−1Q∗A†PD′ε‖∞. (32)

According to the above proof, we obtain

D′ε
−1P∗AQDε =


1 ε

ε ε2

. . .
. . .
εm−2 εm−1

εm−1



−1


σ1
. . .

σr
0

. . .
0




1

ε
. . .

εn−1

 =

(
H O
O O

)
, (33)

where H =



σ1 −εσ2 · · · · · · O(ε)

σ2 −εσ3
...

. . .
. . .

...
σr−1 −εσr

σr


. and

Dε
−1Q∗A†PD′ε =


1

ε−1

. . .
ε1−n





1
σ1

. . .
1
σr

0
. . .

0




1 ε

ε ε2

. . .
. . .
εm−2 εm−1

εm−1


=

(
T O
O O

)
, (34)

where T =


1
σ1

ε
σ1
1
σ2

ε
σ2

. . .
. . .
1
σr

ε
σr

 .

Combining the formulas (31), (32), (33) with (34), we have

lim
ε→0
‖A‖µ(D′ε)ν(Dε)‖A

†
‖ν(Dε)µ(D′ε) = lim

ε→0
(σ1 + O(ε))(

1
σr

+ ε
1
σr

) =
σ1

σr
. (35)

That is, there exists some self-dual norms such that

inf
‖.‖∈U

P†(A) = inf
‖.‖∈U
‖A‖µν‖A†‖νµ =

σ1(A)
σr(A)

. � (36)
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