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Abstract. We establish two general theorems on the local properties of the absolute summability of
factored Fourier series by applying a recently defined absolute summability, |A, αn|k summability, and the
class S

(
αn, φn

)
, which generalize some well known results and can be applied to improve many classical

absolute summability methods.

1. Introduction

Let A := (ank) be a lower triangular matrix and {sn} the partial sums of
∑

an. Let {αn} be a nonnegative

sequence, then the series
∑

an is said to be summable |A, αn|k , k ≥ 1, if (see [19])

∞∑
n=1

αn |An − An−1|
k < ∞,

where

An :=
n∑

v=1

anvsv.

In particular, if αn = nk−1 , then |A, αn|k −summability reduces to the |A|k-summability (see [17]). Let A

be the Cesàro matrices C := (cnv) of order α, that is,

cnv :=
Aα−1

n−v

Aα
n
, v = 0, 1, · · · ,n,
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where

Aα
n :=

Γ (n + α + 1)
Γ (α + 1) Γ (n + 1)

, n = 0, 1, · · · .

When αn = nδk+k−1, k ≥ 1, δ ≥ 0, |A, αn|k −summability is usually called |C, α; δ|k-summability. Therefore, a

series
∑

an is said to be summable |C, α; δ|k , k ≥ 1, α > −1, if (see [9])

∞∑
n=1

nδk+k−1
∣∣∣σαn − σαn−1

∣∣∣k < ∞,
where

σαn :=
n∑

j=0

Aα−1
n− j

Aα
n

s j.

For any positive sequence
{
pn

}
such that Pn = p0 + p1 + · · · + pn → ∞, the corresponding Riesz matrix R

has the entries

rnv :=
pv

Pn
, v = 0, 1, · · · ,n, n = 0, 1, 2, · · · .

Taking αn =
(

Pn
pn

)δk+k−1
and αn = nδk+k−1, we get two special absolute summability,

∣∣∣N, pn; δ
∣∣∣
k summability

and
∣∣∣R, pn; δ

∣∣∣
k summability, of |R, αn|k summability, respectively. In particular, if npn � Pn, then

∣∣∣N, pn; δ
∣∣∣
k

summability and
∣∣∣R, pn; δ

∣∣∣
k summability are equivalent. See [2] and [3] for more details on

∣∣∣N, pn; δ
∣∣∣
k

summability and
∣∣∣R, pn; δ

∣∣∣
k summability.

One can find more examples of |A, αn|k −summability for different weight sequences {αn} and different

summability matrices A discussed in many papers, see [2], [3], [7], [10], and [16] for examples.

Let f be a function with period 2π, integrable (L) over (−π, π).Without loss of generality we may assume

that the constant term in the Fourier series of f (t) is zero, so that∫ π

−π
f (t) dt = 0

and

f (t) ∼
∞∑

n=1

(an cos nt + bn sin nt) ≡
∞∑

n=1

Cn (t) .

It is well known that (see [18]) the convergence of the Fourier series at t = x is a local property of the

generating function f (t) (i.e., it depends only on the behavior of f in a arbitrarily small neighborhood of x),

and hence the summability of the Fourier series at t = x by any regular linear summability method is also

a local property of the generating function f (t) .

In 1939, Bosanquet and Kestelman (see [8]) showed that even the summability |C, 1| of the Fourier series

at a point is not a local property of f .Mohanty ([11]) subsequently observed that the summability
∣∣∣R, log n, 1

∣∣∣
of the factored series∑

Cn (t) / log (n + 1) ,
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at any point is a local property of f ,whereas the summability |C, 1|of this series is not. Several generalizations

of Mohanty’s result have been made by many authors, for examples, see, Bhatt ([1]), Bor ([3]-[5]), Borwein

([6]), Sarigöl ([14], [15]), etc.

For any lower triangular matrix A, associated it with two lower triangular matrices A and Â defined by

anv =

n∑
r=v

anr, v = 0, 1, 2, · · · ,n and n = 0, 1, 2, · · · ,

and

ânv = anv − an−1,v, v = 0, 1, · · · ,n − 1; n = 1, 2, 3, · · · . ânn = ann = ann.

Sarigöl ([15]) proved the following theorem:

Theorem A. Let A be a lower triangular matrix with nonnegative entries and {Xn} a sequence of numbers, satisfying

(i) an−1,v ≥ anv for n ≥ v + 1,

(ii) an0 = 1, n = 0, 1, · · · ,

(iii)
∑n−1

v=1 avvân,v+1 = O (ann) ,

(iv) ∆Xn = O
(

1
n

)
, Xn = (nann)−1 ,n = 1, 2, · · · ,X0 = 0.

If for number sequences {θn} and {λn} the following conditions:

(v)
∑
∞

v=1 (θvavv)k−1 Xk−1
v

1
vλ

k
v < ∞,

(vi)
∑
∞

v=1 (θvavv)k−1 Xk
v∆λv < ∞,

(vii)
∑
∞

n=v+1 (θnann)k−1
∣∣∣∆ân,v+1

∣∣∣ = O
(
(θvavv)k−1 avv

)
and

(viii)
∑
∞

n=v+1 (θnann)k−1 ân,v+1 = O
(
(θvavv)k−1

)
,

hold, then the summability of
∣∣∣A, θk−1

n

∣∣∣
k , k ≥ 1, of the series

∑
λnXnCn (t) at any point is a local property of f ,

where {λn} is a convex sequence such that
∑

n−1λn is convergent.

Theorem A generalized some well known results on the local property of summability of factored Fourier

series. Although, there are some matrices satisfying the conditions in Theorem A, a Cesàro’s matrix may

not satisfy all the conditions (i)-(iii). In fact, (ii) and (iii) do not hold for any α > 1 or α < 1. Furthermore,

Rhaly’s generalized Cesàro matrices and the p−Cesàro matrices do not satisfy the conditions of Theorem A

neither (see Section 3 for the definitions of Rhaly’s generalized Cesàro matrices and the p−Cesàro matrices).

In the present paper, we establish a new factor theorem which generalizes Theorem A, and can be

applied to many well known matrices, including the ones mentioned above. We need the following class

of matrices, S
(
αn, φn

)
, which is recently introduced by Yu and Zhou ([20]):

Definition 1.1. Let {αn} ,
{
φn

}
be sequences of positive numbers. We say that a lower triangular matrix A := (ank) ∈

S

(
αn, φn

)
, if it satisfies the following conditions

n−1∑
i=0

∣∣∣∆îani

∣∣∣ = O
(
φn

)
; (T1)
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∣∣∣ = O
(
φn

)
, i = 0, 1, · · · ,n; (T2)

∞∑
n=i+1

αnφ
k−1
n

∣∣∣∆îani

∣∣∣ = O
(
αiφ

k
i

)
; (T3)

∞∑
n=i+1

αnφ
k−1
n

∣∣∣̂an,i+1

∣∣∣ = O
(
αiφ

k−1
i

)
. (T4)

Our main results are the following:

Theorem 1.2. Let {αn} , and
{
φn

}
be sequences of positive numbers. Let {λn} ∈ BV be a sequence of complex

numbers1) such that λn+1 = O (|λn|) for n = 1, 2, · · · , and

(A)
∑
∞

n=0 αnφk
nXk

n

∣∣∣λk
n

∣∣∣ < ∞,
(B)

∑
∞

n=0 αnφk−1
n Xk

n |∆λn| < ∞.

If A ∈ S
(
αn, φn

)
satisfies

n∑
v=0

∣∣∣avvân,v+1

∣∣∣ = O
(
φn

)
, (1)

∆Xn = O
(
φn

)
, Xn =

φn

ann
, (2)

then the summability of |A, αn|k for k ≥ 1, of the series
∑

Cn (t)λnXn at any point is a local property of f .

Remark 1. The restrictions of {λn} in Theorem A are relaxed in Theorem 1.2 to the simple conditions that

{λn} ∈ BV and λn+1 = O (|λn|) , which obviously hold when {λn} is a convex sequence such that
∑

n−1λn is

convergent.

Theorem 1.3. The result of Theorem 1.2 also holds when (1) and (2) are replaced by

n∑
v=0

∣∣∣̂an,v+1φv

∣∣∣ = O
(
φn

)
, (3)

∆Xn = O
(
n−1

)
, Xn =

1
nφn

,n = 1, 2, · · · ,X0 = 0, (4)

respectively.

Remark 2. If the matrix A satisfies the condition an0 = 1, n = 0, 1, · · · , then the indexes of the summations

in (A), (B), (1) and (3) only need to run from 1 instead of 0, which can be observed in the proofs of the

theorems.

Remark 3. Let φn := ann, αn = θk−1
n . If the matrix A satisfies the conditions in Theorem A, then we can

easily have that A ∈ S
(
αn, φn

)
. That is, Theorem A can be regarded as a corollary of Theorem 1.3.

1)We say a sequence of complex numbers {λn} ∈ BV, if
∑
∞

n=1 |∆λn| < ∞.
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We prove the theorems in Section 2. In Section 3, we show that some well known matrices such as

Cesàro’s matrices, Rhaly’s generalized Cesàro matrices, the p−Cesàro matrices, and Riesz’s matrices are

in S
(
αn, φn

)
for some certain sequences {αn} and

{
φn

}
, and then derive some new theorems on the local

property of some factored Fourier series, as applications of the above theorems.

2. Proofs of the Main Results

We prove Theorem 1.2 in this section. The proof of Theorem 1.3 is similar.

The behavior of the Fourier series, as far as convergence is concerned, at a particular value of x, depends

on the behavior of the function in the immediate neighborhood of this point only. Therefore, in order to

prove the theorem, it is sufficient to prove that if {sn} is bounded, then under the conditions of Theorem 1,∑
anλnXn is summable |A, αn|k , k ≥ 1. Let Tn be the n−th term of the A−transform of

∑n
i=0 λiaiXi. Then

Tn =

n∑
v=0

anv

v∑
i=0

aiλiXi =

n∑
i=0

aiλiXi

n∑
v=i

anv =

n∑
i=0

aniaiλiXi.

Thus,

Tn − Tn−1 =

n∑
i=0

aniaiλiXi −

n−1∑
i=0

an−1,iaiλiXi

=

n∑
i=0

âniaiλiXi =

n∑
i=0

âniλiXi (si − si−1)

=

n−1∑
i=0

(̂
aniλiXi − ân,i+1λi+1Xi+1

)
si + annλnsnXn

=

n−1∑
i=0

ân,i+1∆λiXisi +

n−1∑
i=0

ân,i+1λi+1∆Xisi +

n−1∑
i=0

(
∆îani

)
λiXisi

+ annλnXnsn

=: Tn1 + Tn2 + Tn3 + Tn4.

Therefore, it is sufficient to prove that

∞∑
n=1

αn |Tni|
k < ∞, for i = 1, 2, 3, 4. (5)

Applying Hölder’s inequality, we have

m+1∑
n=1

αn |Tn1|
k = O (1)

m+1∑
n=1

αn

n−1∑
i=0

∣∣∣̂an,i+1

∣∣∣ |Xi| |∆λi|


k

= O (1)
m+1∑
n=1

αn

n−1∑
i=0

∣∣∣̂an,i+1

∣∣∣ ∣∣∣Xk
i

∣∣∣ |∆λi|


n−1∑

i=0

∣∣∣̂an,i+1

∣∣∣ |∆λi|


k−1

.
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Since {λn} ∈ BV, we have

n−1∑
i=0

∣∣∣̂an,i+1

∣∣∣ |∆λi| = O
(
φn

)
,

by (T2). Hence

m+1∑
n=1

αn |Tn1|
k = O (1)

m+1∑
n=1

αnφ
k−1
n

n−1∑
i=0

∣∣∣̂an,i+1

∣∣∣ ∣∣∣Xk
i

∣∣∣ |∆λi|

= O (1)
m∑

i=0

∣∣∣Xk
i

∣∣∣ |∆λi|

m+1∑
n=i+1

αnφ
k−1
n

∣∣∣̂an,i+1

∣∣∣
= O (1)

m∑
i=0

αiφ
k−1
i

∣∣∣Xk
i

∣∣∣ |∆λi| = O (1) , (6)

by (T3), and (B) of Theorem 1.2.

It follows from (2) that ∆Xi = O (aiiXi) .Then by Hölder’s inequality, (1) and condition (A) of the Theorem

1.2, we have

m+1∑
n=1

αn |Tn2|
k = O (1)

m+1∑
n=1

αn

n−1∑
i=0

∣∣∣̂an,i+1λi+1∆Xi

∣∣∣
k

= O (1)
m+1∑
n=1

αn

n−1∑
i=0

∣∣∣̂an,i+1λiaiiXi

∣∣∣
k

= O (1)
m+1∑
n=1

αn

n−1∑
i=0

∣∣∣̂an,i+1aii

∣∣∣ ∣∣∣λk
i

∣∣∣ ∣∣∣Xk
i

∣∣∣
n−1∑

i=0

∣∣∣̂an,i+1aii

∣∣∣
k−1

= O (1)
m+1∑
n=1

αnφ
k−1
n

n−1∑
i=0

∣∣∣̂an,i+1aii

∣∣∣ ∣∣∣λk
i

∣∣∣ ∣∣∣Xk
i

∣∣∣
= O (1)

m∑
i=0

∣∣∣λk
i

∣∣∣ ∣∣∣Xk
i

∣∣∣ |aii|

m+1∑
n=i+1

αnφ
k−1
n

∣∣∣̂an,i+1

∣∣∣
= O (1)

m∑
i=0

αnφ
k−1
n

∣∣∣λk
i

∣∣∣ ∣∣∣Xk
i

∣∣∣ |aii|

= O (1)
m∑

i=0

αnφ
k
n

∣∣∣λk
i

∣∣∣ ∣∣∣Xk
i

∣∣∣ = O (1) ,

where we also used the fact that ânn = ann = O
(
φn

)
, which follows from (T2).
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By (T1), (T3) and condition (A), we have

m+1∑
n=1

αn |Tn3|
k = O (1)

m+1∑
n=1

αn

n−1∑
i=0

∣∣∣∆ân,i+1λiXi

∣∣∣
k

= O(1)
m+1∑
n=1

αn

n−1∑
i=0

∣∣∣∆ân,i+1

∣∣∣ ∣∣∣λk
i

∣∣∣ ∣∣∣Xk
i

∣∣∣
n−1∑

i=0

∣∣∣∆ân,i+1

∣∣∣
k−1

= O (1)
m+1∑
n=1

αnφ
k−1
n

n−1∑
i=0

∣∣∣∆ân,i+1

∣∣∣ ∣∣∣λk
i

∣∣∣ ∣∣∣Xk
i

∣∣∣
= O (1)

m∑
i=0

∣∣∣λk
i

∣∣∣ ∣∣∣Xk
i

∣∣∣ m+1∑
n=i+1

αnφ
k−1
n

∣∣∣∆ân,i+1

∣∣∣
= O (1)

m∑
i=0

αiφ
k
i

∣∣∣λk
i

∣∣∣ ∣∣∣Xk
i

∣∣∣ = O (1) . (7)

By using ann = O
(
φn

)
again, we have

m+1∑
n=1

αn |Tn4|
k = O (1)

m+1∑
n=1

αn |annλnXn|
k

= O(1)
m+1∑
n=1

αnφ
k
n

∣∣∣λk
n

∣∣∣ ∣∣∣Xk
n

∣∣∣
= O (1) . (8)

Combining (6)-(8), we have (5). This proves Theorem 1.2.

3. Applications of the Theorems

3.1. Cesàro’s Matrices

We will use the following formula often in the proofs (see [21]) for proof, for example):

Aα
n =

nα

Γ (α + 1)

(
1 + O

(1
n

))
. (9)

In this subsection, we set

φ0 := 1, φn :=
{

n−1, α > 1
1

Aα
n

= cnn, 0 < α ≤ 1, n = 1, 2, · · · .

By (9), we see that

φn ∼

{
n−1, α > 1
n−α, 0 < α ≤ 1, n = 1, 2, · · · .

Recall that a nonnegative sequence {an} is said to be almost decreasing, if there is a positive constant K

such that

an ≥ Kam
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holds for all n ≤ m, and it is said to be quasi-β-power decreasing, if
{
nβan

}
is almost decreasing.

It should be noted that every decreasing sequence is an almost decreasing sequence, and every almost

decreasing sequence is a quasi-β-power decreasing sequence for any non-positive index β, but the converse

is not true.

Lemma 3.1. ([20])Let α > 0, and let {αn} be a sequence of positive numbers. If
{
αnφk−1

n n−1
}

is quasi-ε-power

decreasing for some ε > 0, then C ∈ S
(
αn, φn

)
.

A direct calculation leads to

ĉni =
1

Aα
n

n∑
j=i

Aα−1
n− j −

1
Aα

n−1

n−1∑
j=i

Aα−1
n−1− j

=
Aα

n−i

Aα
n
−

Aα
n−1−i

Aα
n−1

=
iAα−1

n−i

nAα
n
.

Thus, for 0 < α ≤ 1,

n∑
v=0

∣∣∣cvv̂cn,v+1

∣∣∣ = O
( 1

n1+α

) n∑
v=1

(v + 1) Aα−1
n−v−1

Aα
v

= O
( 1

n2

) n/2∑
v=1

v1−α + O
( 1

n2α

) n/2∑
v=1

vα−1

= O
(
φn

)
. (10)

Similarly, for α > 1,

n∑
v=1

1
v

∣∣∣̂cn,v+1

∣∣∣ = O
(
φn

)
. (11)

Now set

Xn ≡ 1 =

{ φn

cnn
, 0 < α ≤ 1,

(nφn)−1, α > 1.

Then Xn satisfies (2) and (4) for 0 < α ≤ 1 and α > 1 respectively. Now, applying Lemma 3.1, (10), (11),

Theorem 1.2 and Theorem 1.3, we have the following

Theorem 3.2. Let α > 0, {αn} be sequences of positive numbers. Let {λn} ∈ BV be a sequence of complex numbers

such that λn+1 = O (|λn|) for n = 1, 2, · · · , and

(a)
∑
∞

n=1 αnφk
n

∣∣∣λk
n

∣∣∣ < ∞,
(b)

∑
∞

n=1 αnφk−1
n |∆λn| < ∞.

If
{
αnφk−1

n n−1
}

is quasi-ε-power decreasing, then the summability of |C, αn|k for k ≥ 1, of the series
∑

Cn (t)λn at any

point is a local property of f .

As examples, we give two corollaries of Theorem 3.2.
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Corollary 3.3. Let {λn} ∈ BV be a sequence of complex numbers such that λn+1 = O (|λn|) for n = 1, 2, · · · , and

(c)
∑
∞

n=1 nδk−1 logγ n
∣∣∣λk

n

∣∣∣ < ∞,
(d)

∑
∞

n=1 nδk logγ n |∆λn| < ∞,

then the summability of
∣∣∣C,nδk+k−1 logγ n

∣∣∣
k , for α ≥ 1, γ ∈ R, k ≥ 1 and 0 ≤ δ < 1

k , of the series
∑

Cn (t)λn at any

point is a local property of f .

Proof. Let αn = nδk+k−1lo1γn, n = 1, 2, · · · , α0 = 1. Since α ≥ 1, then φn = n−1. It is then obvious that (c)

implies (a), and (d) implies (b). From the condition that 0 ≤ δ < 1
k , we see that there exists an ε > 0 such

that δk − 1 + ε < 0, and thus
{
nδk−1+ε logγ n

}
is quasi decreasing for γ ∈ R. In other words,

{
αnφk−1

n n−1
}

is

quasi-ε-power decreasing. Therefore, by Theorem 3.2, we have Corollary 3.3.

Corollary 3.4. Let {λn} ∈ BV be a sequence of complex numbers such that λn+1 = O (|λn|) for n = 1, 2, · · · , and

(c′)
∑
∞

n=1 nδk+(1−α)k−1 logγ n
∣∣∣λk

n

∣∣∣ < ∞,
(d′)

∑
∞

n=1 nδk+(1−α)(k−1) logγ nXn |∆λn| < ∞,

then the summability of
∣∣∣C,nδk+k−1 logγ n

∣∣∣
k , for 0 < α < 1, γ ∈ R, k ≥ 1 and 0 ≤ δ < 2−α+(1−α)k

k , of the series∑
Cn (t)λn at any point is a local property of f .

Proof. Note that φn = n−α for 0 < α < 1. Then the proof of Corollary 3.4 is similar to that of Corollary 3.3.

3.2. Rhaly’s Generalized Cesàro Matrices

Let D be the Rhaly generalized Cesàro matrix (see [12]), that is, D has entries of the form dnk =

tn−k/ (n + 1) , k = 0, 1, · · · ,n, n = 1, 2, · · · . When t = 1, the Rhaly generalized Cesàro matrix reduces to the

Cesàro matrix of order 1. We shall restrict our attention to 0 < t < 1. In this case, D does not satisfy condition

(ii) of Theorem A. It is routine to deduce that

d̂nv =

n∑
r=v

tn−r

n + 1
−

n−1∑
r=v

tn−1−r

n
=

1
1 − t

(
1 − tn−v+1

n + 1
−

1 − tn−v

n

)
. (12)

Set φ0 = 1, φn = n−1,n = 1, 2, · · · . By (12), we have

d̂nv =
1

1 − t

(
1 − tn−v+1

n + 1
−

1 − tn−v

n

)
= −

1 − tn−v
− ntn−v (1 − t)

(1 − t) n (n + 1)

= O
(

1
n (n + 1)

+
ntn−v

n (n + 1)

)
.

Thus
n∑

v=0

∣∣∣∣dvvd̂n,v+1

∣∣∣∣ = O
( 1

n2

) n∑
v=1

1
v

+ O
(1

n

) n∑
v=1

tn−v = O
(
φn

)
. (13)

Lemma 3.5. ([20])Let 0 < t < 1, and {αn} be a sequences of positive numbers. If
{
αnφk−1

n n−1
}

is quasi-ε−power

decreasing for some ε > 0, then D ∈ S
(
αn, φn

)
.
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Now set

Xn =
φn

dnn
=

n + 1
n

.

Then Xn = O (1) and ∆Xn = O
(
φn

)
. Therefore, by Lemma 3.5, (13) and Theorem 1.2, we have

Theorem 3.6. Let 0 < t < 1 and let {αn} be a sequence of positive numbers. Assume that {λn} ∈ BV is a sequence

of complex numbers such that λn+1 = O (|λn|) for n = 1, 2, · · · , and (A), (B) in Theorem 1.2 hold. If
{
αnφk−1

n n−1
}

is

quasi-ε-power decreasing for some ε > 0, then the summability of |D, αn|k for k ≥ 1, of the series
∑

Cn (t) n+1
n λn at

any point is a local property of f .

Obviously, we can also have a corollary of Theorem 3.6 that is similar to Corollary 3.3. We omit the

details here.

3.3. p−Cesàro Matrices

Let E be the p−Cesàro matrix (see [13]), that is, the entries of E has the form eni = 1/ (n + 1)p , i =

0, 1, · · · ,n, n = 1, 2, · · · . When p = 1, the p−Cesàro matrix reduces to the Cesàro matrix of order 1 again.

Also, E does not satisfy condition (ii) of Theorem A. We restrict our attention to the case when 1 < p ≤ 2.

Set φ0 = 1, φn = n−p,n = 1, 2, · · · . Then

êni = eni − en−1,i =
n − i + 1
(n + 1)p −

(n − i)
np , (14)

and

∆îeni = ên,i+1 − êni = eni − en−1,i =
1

(n + 1)p −
1
np . (15)

By (14), we have

êni = (n − i)
(

1
(n + 1)p −

1
np

)
+

1
(n + 1)p = O

(
φn

)
. (16)

Now set Xn =
φn

enn . Then direct calculations yield that

∆Xn = O
(
n−2

)
= O(φn), 1 < p ≤ 2,

and
n∑

v=1

∣∣∣evv̂en,v+1

∣∣∣ = O
(
φn

)
.

Lemma 3.7. ([20])Let p > 1 and {αn} be a sequence of positive numbers. If
{
αnφk−1

n n−1
}

is quasi-ε-power decreasing

for some ε > 0 such that p − 2 + ε > 0, then D ∈ S
(
αn, φn

)
.

Therefore, we have
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Theorem 3.8. Let 1 < p ≤ 2 and let {αn} be a sequence of positive numbers. Assume that {λn} ∈ BV is a sequence

of complex numbers such that λn+1 = O (|λn|) for n = 1, 2, · · · , and (A), (B) in Theorem 1.2 hold. If
{
αnφk−1

n n−1
}

is

quasi-ε-power decreasing for some ε > 0 such that p − 2 + ε > 0, then the summability of |E, αn|k for k ≥ 1, of the

series
∑

Cn (t) Xnλn at any point is a local property of f .

3.4. Riesz’s matrices

We firstly establish a general result, then apply it to the Riesz’s matrices.

Lemma 3.9. ([20]) Let A be a lower triangular matrix with nonnegative entries, and {αn} be a sequence of positive

numbers. If

(I) an0 = 1, n = 0, 1, · · · ,

(II) an−1,v ≥ anv for n ≥ v + 1,

(III) nann = O (1) ,

(IV)
∑
∞

n=v+1 αnn−k+1
∣∣∣∆vânv

∣∣∣ = O
(
αvavvv−k+1

)
,

(V)
∑
∞

n=v+1 αnn−k+1ân,v+1 = O
(
αvv−k+1

)
,

then A ∈ S
(
αn,n−1

)
.

Now, by setting φ0 = 1,X0 = 0, φn := n−1,Xn =
(
nφn

)−1
,n = 1, 2, · · · , and applying Theorem 2, we have

Theorem 3.10. Let {αn} be a sequence of positive numbers, and let A be a lower triangular matrix with nonnegative

entries satisfying conditions (I)-(V) of Lemma 3.9. Assume that {λn} ∈ BV is a sequence of complex numbers such

that λn+1 = O (|λn|) for n = 1, 2, · · · , and (A), (B) in Theorem 1.2 hold. If (3) and (4) hold, then the summability of

|A, αn|k for k ≥ 1, of the series
∑

Cn (t) Xnλn at any point is a local property of f .

We now show that under some necessary conditions, Riesz matrix R satisfies all the conditions in Lemma

3.9. For any positive sequence
{
pn

}
such that Pn = p0 + p1 + · · · + pn →∞, the corresponding Riesz matrix R

has the entries rnv := pv

Pn
, v = 0, 1, · · · ,n; n = 0, 1, 2, · · · . Now obviously, we have rn0 = 1 and rn−1,v ≥ rnv for

n ≥ v + 1. Direct calculations yield that (set P−1 = 0)

r̂nv =
Pv−1pn

PnPn−1
, (17)

and ∣∣∣∆v̂rnv

∣∣∣ =
pnpv

PnPn−1
. (18)

So if npn = O (Pn) and

m+1∑
n=v+1

αnn−k+1 pn

PnPn−1
= O

(
αvv−k+1P−1

v

)
, (19)

then R satisfies all conditions in Lemma 3.9.

Thus, we have (note that Xn :=
(
nφn

)−1
)
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Theorem 3.11. Let
{
pn

}
be a positive sequence satisfying Pn → ∞, npn = O(Pn) and (19). Assume that {λn} ∈ BV

is a sequence of complex numbers such that λn+1 = O (|λn|) for n = 1, 2, · · · , and (A), (B) in Theorem 1.2 hold. If (3)

and (4) hold, then the summability of |R, αn|k for k ≥ 1, of the series
∑

Cn (t) Xnλn at any point is a local property of f .
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