Filomat 28:8 (2014), 1699–1710 DOI 10.2298/FIL1408699K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Weak and Strong Convergence of an Explicit Iteration Process for a Total Asymptotically Quasi-*I*-Nonexpansive Mapping in Banach Space

Hukmi KIZILTUNC^a, Yunus PURTAS^b

^a Department of Mathematics, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey ^bCelal Bayar Universty, Manisa, 45100, Turkey

Abstract. In this paper, we introduce a new class of Lipschitzian maps and prove some weak and strong convergence results for explicit iterative process using a more satisfactory definition of self mappings. Our results approximate common fixed point of a total asymptotically quasi-*I*-nonexpansive mapping T and a total asymptotically quasi-nonexpansive mapping I, defined on a nonempty closed convex subset of a Banach space.

1. Introduction

Let *E* be a real normed linear space, *K* a nonempty subset of *E* and *T* : $K \to K$ a mapping. Denote by F(T) the set of fixed points of *T*, that is, $F(T) = \{x \in K : Tx = x\}$ and we denote by D(T) the domain of a mapping *T*. Throughout this paper, we always assume that *E* is a real Banach space and $F(T) \neq \emptyset$. Now, we recall the well-known concept and results. A mapping $T : K \to K$ is called asymptotically nonexpansive if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $k_n \to 1$ such that

 $\left\|T^n x - T^n y\right\| \le k_n \left\|x - y\right\|$

for all $x, y \in K$ and $n \ge 1$. A mapping $T : K \to K$ is said asymptotically quasi-nonexpansive if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

 $\left\|T^n x - p\right\| \le k_n \left\|x - p\right\|$

for all $x \in K$, $p \in F(T)$ and $n \ge 1$. Let $T : K \to K$, $I : K \to K$ be two mappings of nonempty subset K of a real normed linear space E. Then T is said asymptotically I-nonexpansive if there exists a sequence $\{k_n\} \subset [1, \infty)$

²⁰¹⁰ Mathematics Subject Classification. 47H09, 47H10, 46B20

Keywords. Total asymptotically quasi-I-nonexpansive self-mappings, total uniformly *L*-Lipschitzian maps, explicit iterations, weak and strong convergence, common fixed point, uniformly convex Banach space.

Received: 27 July 2013; Accepted: 03 August 2014

Communicated by Naseer Shahzad

Email addresses: hukmu@atauni.edu.tr (Hukmi KIZILTUNC), yunus.purtas@cbu.edu.tr (Yunus PURTAS)

with $\lim_{n\to\infty} k_n = 1$ such that

$$\left\| T^n x - T^n y \right\| \le k_n \left\| I^n x - I^n y \right\|$$

for all $x, y \in K$ and $n \ge 1$. Let $T : K \to K$, $I : K \to K$ be two mappings of nonempty subset K of a real normed linear space E. Then T is said asymptotically quasi I-nonexpansive (see [11]) if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $\lim_{n \to \infty} k_n = 1$ such that

$$\left\|T^n x - p\right\| \le k_n \left\|I^n x - p\right\|$$

for all $x \in K$, $p \in F(T) \cap F(I)$ and $n \ge 1$.

Remark 1.1. If $F(T) \cap F(I) \neq \emptyset$ then an asymptotically I-nonexpansive mapping is asymptotically quasi I-nonexpansive. But, there exists a nonlinear continuous asymptotically quasi I-nonexpansive mappings which is not asymptotically I-nonexpansive.

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [3]. They proved that if *K* is a nonempty closed convex bounded subset of a real uniformly convex Banach space and $T : K \rightarrow K$ is an asymptotically nonexpansive mappings, then *T* has a fixed point. Liu [5] studied iterative sequences for asymptotically quasi-nonexpansive mappings. The weak and strong convergence of implicit iteration process to a common fixed point of a finite family of *I*-asymptotically nonexpansive mappings were studied by Temir [10]. Temir and Gul [11] defined *I*-asymptotically quasi-nonexpansive mapping in Hilbert space and they proved convergence theorem for *I*-asymptotically quasi-nonexpansive mapping defined in Hilbert space.

A mapping $T : K \to K$ is called a total asymptotically nonexpansive mapping (see [1]) if there exist nonnegative real sequences $\{\mu_n\}, \{l_n\}$ with $\mu_n, l_n \to 0$ as $n \to \infty$ and strictly increasing continuous function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\phi(0) = 0$ such that for all $x, y \in K$,

$$\|T^{n}x - T^{n}y\| \le \|x - y\| + \mu_{n}\phi(\|x - y\|) + l_{n}, \quad n \ge 1.$$
(1)

Let $T : K \to K$, $I : K \to K$ be two mappings of a nonempty subset K of a real normed space E. T is said to be total asymptotically I-nonexpansive mapping (see [6]) if there exist nonnegative real sequences { μ_n }, { l_n } with μ_n , $l_n \to 0$ as $n \to \infty$ and strictly increasing continuous function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\phi(0) = 0$ such that for all $x, y \in K$,

$$\left\|T^{n}x - T^{n}y\right\| \le \left\|I^{n}x - I^{n}y\right\| + \mu_{n}\phi(\left\|I^{n}x - I^{n}y\right\|) + l_{n}, \quad n \ge 1.$$
(2)

Note that if I = Id (*Id* is the indentity mapping), then (2) reduces to (1). One can see that if $\phi(\xi) = \xi$, then (1) reduces to $||T^nx - T^ny|| \le (1 + \mu_n) ||x - y|| + l_n$, $n \ge 1$. In addition, if $l_n = 0$ for all $n \ge 1$, then total asymptotically nonexpansive mappings coincide with asymptotically nonexpansive mappings.

Let *K* be a nonempty closed subset of a real Banach space *E*. Then a mapping $T : K \to K$ is called a uniformly *L*-Lipschitzian mapping if there exists a constant L > 0 such that

$$\left\|T^{n}x - T^{n}y\right\| \le L\left\|x - y\right\| \tag{3}$$

for all $x, y \in K$ and $n \ge 1$.

The class of a total asymptotically nonexpansive mappings was introduced by Alber et al. [1] to unify various definitions of asymptotically nonexpansive mappings. They constructed a scheme which convergences strongly to a fixed point of a total asymptotically nonexpansive mappings. Mukhamedov and Saburov [6] studied strong convergence of an explicit iteration process for a totally asymptotically *I*-nonexpansive mapping in Banach spaces.

Definition 1.2. [2] Let K be a nonempty closed subset of a real normed linear space E. A mapping $T : K \to K$ is said to be total asymptotically quasi-nonexpansive if $F(T) \neq \emptyset$ and there exist nonnegative real sequences $\{\mu_n\}, \{l_n\}$ with $\mu_n, l_n \to 0$ as $n \to \infty$ and strictly increasing continuous function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\phi(0) = 0$ such that for all $x \in K, p \in F(T)$,

$$\|T^{n}x - p\| \le \|x - p\| + \mu_{n}\phi(\|x - p\|) + l_{n}, \quad n \ge 1.$$
(4)

Definition 1.3. Let $T : K \to K$, $I : K \to K$ be two mappings of a nonempty closed subset K of a real normed space E. T is said to be total asymptotically quasi-I-nonexpansive if $F(T) \neq \emptyset$ and there exist nonnegative real sequences $\{\mu_n\}$, $\{l_n\}$ with $\mu_n, l_n \to 0$ as $n \to \infty$ and strictly increasing continuous function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\phi(0) = 0$ such that for all $x \in K$, $p \in F(T)$,

$$||T^{n}x - p|| \le ||I^{n}x - p|| + \mu_{n}\phi(||I^{n}x - p||) + l_{n}, \quad n \ge 1.$$
(5)

Note that if I = Id (*Id* is the indentity mapping), then (5) reduces to (4). One can see that if $\phi(\xi) = \xi$, then (4) reduces to $||T^nx - p|| \le (1 + \mu_n) ||x - p|| + l_n$, $n \ge 1$. In addition, if $l_n = 0$ for all $n \ge 1$, then total asymptotically quasi-nonexpansive mappings coincide with asymptotically quasi-nonexpansive mappings.

Definition 1.4. Let K be a nonempty closed subset of a real normed linear space E. A mapping $T : K \to K$ is said to be total uniformly L-Lipschitzian if there exist L > 0, noninegative real sequences $\{\mu_n\}, \{l_n\}$ with $\mu_n, l_n \to 0$ as $n \to \infty$ and strictly increasing continuous function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\phi(0) = 0$ such that for all $x, y \in K$,

$$\|T^{n}x - T^{n}y\| \le L \left[\|x - y\| + \mu_{n}\phi(\|x - y\|) + l_{n}\right], \quad n \ge 1.$$
(6)

One can see that if $\mu_n = 0$ and $l_n = 0$ for all $n \ge 1$, then (6) reduces to (3).

Example 1.5. Let us consider that \mathbb{R} , the set of real numbers, endowed with the usual topology. Let $K = [0, 1] \subset \mathbb{R}$. The mapping $T : K \to K$ is defined by

$$Tx = \begin{cases} \frac{1}{2}, & x \in \left[0, \frac{1}{2}\right] \\ \\ \frac{\sqrt{1-x^2}}{\sqrt{3}}, & x \in \left[\frac{1}{2}, 1\right] \end{cases}$$

for all $x \in K$. Let ϕ be a strictly increasing continuous function such that $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\phi(0) = 0$. Let $\{\mu_n\}_{n\geq 1}$ and $\{l_n\}_{n\geq 1}$ in \mathbb{R} be two sequences defined by $\mu_n = \frac{1}{n}$ and $l_n = \frac{1}{n+1}$, for all $n \geq 1$ ($\lim_{n\to\infty} \mu_n = \lim_{n\to\infty} \frac{1}{n} = 0$, $\lim_{n\to\infty} l_n = \frac{1}{n+1} = 0$). Note that $T^n x = \frac{1}{2}$ for all $x \in K$ and $n \geq 2$ and $F(T) = \{\frac{1}{2}\}$. Clearly, T is both uniformly continuous and total asymptotically nonexpansive mapping on K. Also, for all $x, y \in K$ and L > 0, we obtain

$$\left|T^{n}x - T^{n}y\right| \le L\left|x - y\right|. \tag{7}$$

for all $n \ge 1$.

In fact, if $x \in [0, \frac{1}{2}]$, then $|x - \frac{1}{2}| = |x - Tx|$. Similarly, if $x \in [\frac{1}{2}, 1]$, then $|x - \frac{1}{2}| = x - \frac{1}{2} \le x - \frac{\sqrt{1-x^2}}{\sqrt{3}} = |x - Tx|$. Hence, we get $d(x, F(T)) = |x - \frac{1}{2}| \le |x - Tx|$. But, T is not Lipschitzian. Indeed, suppose not, i.e., there exists L > 0 such that

$$\left|Tx - Ty\right| \le L \left|x - y\right|$$

for all $x, y \in K$. If we take $x = 1 - \frac{1}{2(1+L)^2} > \frac{1}{2}$ and y = 1, then

 $\frac{\sqrt{1-x^2}}{\sqrt{3}} \leq L \left| 1-x \right| \longleftrightarrow \frac{1}{3L^2} \leq \frac{1-x}{1+x} = \frac{1}{4L^2+8L+3}.$ This is a contradiction.

Also, since ϕ is strictly increasing continuous function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\phi(0) = 0$ and $\mu_n = \frac{1}{n}$, $l_n = \frac{1}{n+1}$, for all $n \ge 1$ and L > 0, it follows that we have

$$L\left(\frac{1}{n}\phi\left(\left|x-y\right|\right) + \frac{1}{n+1}\right) \ge 0 \tag{8}$$

for all $x, y \in K$. Due to (7) and (8), there exists L > 0 such that for all $x, y \in K$,

$$|T^n x - T^n y| \le L \left[|x - y| + \frac{1}{n} \phi \left(|x - y| \right) + \frac{1}{n+1} \right], \quad n \ge 1$$

Then, T is a total uniformly L-Lipschitzian mapping on K.

Mukhamedov and Saburov [6] studied strong convergence of an explicit iteration process for a totally asymptotically *I*-nonexpansive mapping in Banach spaces. This iteration scheme is defined as follows.

Let *K* be a nonemty closed convex subset of a real Banach space *E*. Consider $T : K \to K$ is a total asymptotically quasi *I*-nonexpansive mapping, where $I : K \to K$ is a total asymptotically quasi-nonexpansive mapping. Then for two given sequences $\{\alpha_n\}$, $\{\beta_n\}$ in [0, 1] we shall consider the following iteration scheme:

$$\begin{cases} x_0 \in K, \\ x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T^n y_n, \ n \ge 0, \\ y_n = (1 - \beta_n) x_n + \beta_n I^n x_n. \end{cases}$$
(9)

Inspired and motivated by this facts, we study the convergence theorems of the explicit iterative scheme involving a total asymptotically quasi-*I*-nonexpansive mapping in a nonempty closed convex subset of uniformly convex Banach spaces.

In this paper, we will prove the weak and strong convergences of the explicit iterative process (9) to a common fixed point of *T* and *I*.

1703

2. Preliminaries

Recall that a Banach space *E* is said to satisfy *Opial condition* [7] if, for each sequence $\{x_n\}$ in *E* such that $\{x_n\}$ converges weakly to *x* implies that

$$\lim_{n \to \infty} \inf \|x_n - x\| < \lim_{n \to \infty} \inf \|x_n - y\| \tag{10}$$

for all $y \in E$ with $y \neq x$. It is weel known that (see [4]) inequality (10) is equivalent to

 $\lim_{n\to\infty}\sup\|x_n-x\|<\lim_{n\to\infty}\sup\|x_n-y\|.$

Definition 2.1. Let K be a closed subset of a real Banach space E and let $T : K \to K$ be a mapping. T is said to be semiclosed (demiclosed) at zero, if for each bounded sequence $\{x_n\}$ in K, the conditions x_n converges weakly to $x \in K$ and Tx_n converges strongly to 0 imply Tx = 0.

Definition 2.2. Let K be a closed subset of a real Banach space X and let $T : K \to K$ be a mapping. T is said to be semicompact, if for any bounded sequence $\{x_n\}$ in K such that $||x_n - Tx_n|| \to 0$, $n \to \infty$, then there exists a subsequence $\{x_{n_k}\} \subset \{x_n\}$ such that $x_{n_k} \to x^* \in K$ strongly.

Lemma 2.3. [8] Let X be a uniformly convex Banach space and let b, c be two constant with 0 < b < c < 1. Suppose that $\{t_n\}$ is a sequence in [b, c] and $\{x_n\}$, $\{y_n\}$ are two sequence in X such that

 $\lim_{n \to \infty} \left\| t_n x_n + (1 - t_n) y_n \right\| = d, \quad \lim_{n \to \infty} \sup \|x_n\| \le d, \quad \limsup \|y_n\| \le d,$

holds some $d \ge 0$. Then $\lim_{n\to\infty} ||x_n - y_n|| = 0$.

Lemma 2.4. [9] Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ be three sequences of nonnegative real numbers with $\sum_{n=1}^{\infty} b_n < \infty$, $\sum_{n=1}^{\infty} c_n < \infty$. If the following conditions is satisfied:

 $a_{n+1} \leq (1+b_n)a_n + c_n, \quad n \geq 1,$

then the limit $\lim_{n\to\infty} a_n$ exists.

3. Main Results

In this section, we prove the convergence theorems of an explicit iterative scheme (9) for a total asymptotically quasi-*I*-nonexpansive mapping in Banach spaces. In order to prove our main results, the following lemmas are needed.

Lemma 3.1. Let *E* be real Banach space and *K* be a nonempty closed convex subset of *E*. Let $T : K \to K$ be a total asymptotically quasi-*I*-nonexpansive mapping with sequences $\{\mu_n\}, \{l_n\}$ and $I : K \to K$ be a total asymptotically quasi-nonexpansive mapping with sequences $\{\tilde{\mu}_n\}, \{\tilde{l}_n\}$ such that $F = F(T) \cap F(I) \neq \emptyset$. Suppose that there exist M_i , $N_i > 0, i = 1, 2$, such that $\phi(\xi) \leq M_2\xi$ for all $\xi \geq M_1$ and $\phi(\zeta) \leq N_2\zeta$ for all $\zeta \geq N_1$. Then for any $x, y \in K$ we have

$$\left\| I^{n} x - p \right\| \le (1 + N_{2} \tilde{\mu}_{n}) \left\| x - p \right\| + \varphi(N_{1}) \tilde{\mu}_{n} + l_{n}$$
(11)

H. Kiziltunc, Y. Purtas / Filomat 28:8 (2014), 1699–1710 1704

$$\|T^{n}x - p\| \leq (1 + M_{2}\mu_{n})(1 + N_{2}\tilde{\mu}_{n}) \|x - p\|$$

+ $(1 + M_{2}\mu_{n})(\varphi(N_{1})\tilde{\mu}_{n} + \tilde{l}_{n}) + \phi(M_{1})\mu_{n} + l_{n}.$ (12)

Proof. Since $\phi, \varphi : \mathbb{R}^+ \to \mathbb{R}^+$ are strictly increasing continuous functions, it follows that $\phi(\xi) \leq \phi(M_1)$, $\varphi(\zeta) \leq \varphi(N_1)$ whenever $\xi \leq M_1, \zeta \leq N_1$, respectively. By the hypothesis of lemma we get

$$\phi(\xi) \le \phi(M_1) + M_2\xi, \quad \varphi(\zeta) \le \varphi(N_1) + N_2\zeta, \tag{13}$$

for all $\xi, \zeta \ge 0$. Since $T : K \to K$, $I : K \to K$ are a total asymptotically quasi-*I*-nonexpansive mapping and a total asymptotically quasi-nonexpansive mapping, respectively, then from (13) we obtain

$$\|I^n x - p\| \le (1 + N_2 \tilde{\mu}_n) \|x - p\| + \varphi(N_1) \tilde{\mu}_n + \tilde{I}_n.$$

Similarly, from (11) and (13) we obtain

$$\begin{aligned} \|T^{n}x - p\| &\leq (1 + M_{2}\mu_{n}) \|I^{n}x - p\| + \phi(M_{1})\mu_{n} + l_{n} \\ &\leq (1 + M_{2}\mu_{n})(1 + N_{2}\tilde{\mu}_{n}) \|x - p\| \\ &+ (1 + M_{2}\mu_{n})(\phi(N_{1})\tilde{\mu}_{n} + \tilde{l}_{n}) + \phi(M_{1})\mu_{n} + l_{n}. \end{aligned}$$

This completes the proof. \Box

Lemma 3.2. Let *E* be real Banach space and *K* be a nonempty closed convex subset of *E*. Let $T : K \to K$ be a total asymptotically quasi-I-nonexpansive mapping with sequences $\{\mu_n\}$, $\{l_n\}$ and $I : K \to K$ be a total asymptotically quasi-nonexpansive mapping with sequences $\{\tilde{\mu}_n\}$, $\{\tilde{l}_n\}$ such that $F = F(T) \cap F(I) \neq \emptyset$. Also, let $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0, 1]. Suppose that $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} l_n < \infty$, $\sum_{n=1}^{\infty} \tilde{\mu}_n < \infty$, $\sum_{n=1}^$

Proof. Since $F = F(T) \cap F(I) \neq \emptyset$, for any given $p \in F$, it follows from (9) and (12) that

$$\left\|y_n - p\right\| \le \left(1 + N_2 \beta_n \tilde{\mu}_n\right) \left\|x_n - p\right\| + \beta_n \left(\varphi(N_1) \tilde{\mu}_n + \tilde{l}_n\right).$$
⁽¹⁴⁾

Using a similar method, from (9), (11) and (14), we have

$$\begin{aligned} \|x_{n+1} - p\| &\leq (1 - \alpha_n) \|x_n - p\| + \alpha_n \|T^n y_n - p\| \\ &\leq (1 - \alpha_n) \|x_n - p\| + \alpha_n (1 + M_2 \mu_n) (1 + N_2 \tilde{\mu}_n) \|y_n - p\| \\ &+ \alpha_n (1 + M_2 \mu_n) (\varphi(N_1) \tilde{\mu}_n + \tilde{l}_n) + \alpha_n (\phi(M_1) \mu_n + l_n) \\ &\leq \left\{ 1 + \alpha_n \left[(1 + M_2 \mu_n) (1 + N_2 \tilde{\mu}_n) (1 + N_2 \beta_n \tilde{\mu}_n) - 1 \right] \right\} \|x_n - p\| \\ &+ \alpha_n \left[(1 + M_2 \mu_n) (\varphi(N_1) \tilde{\mu}_n + \tilde{l}_n) (\beta_n (1 + N_2 \tilde{\mu}_n) + 1) \right. \end{aligned}$$
(15)

Defining

$$\begin{aligned} a_n &= \|x_n - p\| \\ b_n &= \alpha_n \left[(1 + M_2 \mu_n) \left(1 + N_2 \tilde{\mu}_n \right) \left(1 + N_2 \beta_n \tilde{\mu}_n \right) - 1 \right] \\ c_n &= \alpha_n \left[(1 + M_2 \mu_n) \left(\varphi(N_1) \tilde{\mu}_n + \tilde{l}_n \right) \left(\beta_n \left(1 + N_2 \tilde{\mu}_n \right) + 1 \right) + \phi(M_1) \mu_n + l_n \right] \end{aligned}$$

in (15) we have $a_{n+1} \leq (1 + b_n)a_n + c_n$. Since $\sum_{n=1}^{\infty} b_n < \infty$, $\sum_{n=1}^{\infty} c_n < \infty$, Lemma 2.4 implies the existence of the limit $\lim_{n\to\infty} a_n$. This completes the proof. \Box

Theorem 3.3. Let *E* be real Banach space and *K* be a nonempty closed convex subset of *E*. Let $T : K \to K$ be a total uniformly L_1 -Lipschitzian asymptotically quasi-I-nonexpansive mapping with sequences $\{\mu_n\}, \{l_n\}$ and $I : K \to K$ be a total uniformly L_2 -Lipschitzian asymptotically quasi-nonexpansive mapping with sequences $\{\tilde{\mu}_n\}, \{\tilde{l}_n\}$ such that $F = F(T) \cap F(I) \neq \emptyset$. Suppose that $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} l_n < \infty$, $\sum_{n=1}^{\infty} \tilde{\mu}_n < \infty$, $\sum_{n=1}$

$$\lim_{n \to \infty} \inf d(x_n, F) = 0.$$
⁽¹⁶⁾

Proof. For any given $p \in F$, we have (see (15))

$$\|x_{n+1} - p\| \le (1+b_n) \|x_n - p\| + c_n, \quad n \ge 1.$$
(17)

It suffices to show that $\lim_{n\to\infty} \inf d(x_n, F) = 0$ implies that $\{x_n\}$ converges to a common fixed point of *T* and *I*.

Necessity. Since (17) holds for all $p \in F$, we obtain from it that

$$d(x_{n+1}, F) \le (1 + b_n) d(x_n, F) + c_n, \quad n \ge 1.$$

Lemma 2.4 implies that $\lim_{n\to\infty} d(x_n, F)$ exists. But, $\lim_{n\to\infty} \inf d(x_n, F) = 0$. Hence, $\lim_{n\to\infty} d(x_n, F) = 0$.

Sufficiency. Let us prove that the sequence $\{x_n\}$ converges to a common fixed point of *T* and *I*. Firstly, we show that $\{x_n\}$ is a Cauchy sequence in *E*. In fact, as $1 + t \le \exp(t)$ for all t > 0. For all integer $m \ge 1$, we obtain from inequality (17) that

$$||x_{n+m} - p|| \le \exp\left(\sum_{i=n}^{n+m-1} b_i\right) ||x_n - p|| + \left(\sum_{i=n}^{n+m-1} c_i\right) \exp\left(\sum_{i=n}^{n+m-1} b_i\right),$$

so that for all integers $m \ge 1$ and all $p \in F$,

$$\begin{aligned} \|x_{n+m} - x_n\| &\leq \|x_{n+m} - p\| + \|x_n - p\| \\ &\leq \left(1 + \exp\left(\sum_{i=n}^{\infty} b_i\right)\right) \|x_n - p\| + \exp\left(\sum_{i=n}^{\infty} b_i\right) \sum_{i=n}^{\infty} c_i \\ &\leq A\left(\|x_n - p\| + \sum_{i=n}^{\infty} c_i\right), \end{aligned}$$
(18)

1706

for all $p \in F$, where $0 < A - 1 = \exp(\sum_{i=n}^{\infty} b_i) < \infty$. Taking the infimum over $p \in F$ in (18) gives

$$||x_{n+m} - x_n|| \le A\left(d(x_n, F) + \sum_{i=n}^{\infty} c_i\right).$$
(19)

Now, since $\lim_{n\to\infty} d(x_n, F) = 0$ and $\sum_{i=1}^{\infty} c_i < \infty$, given $\varepsilon > 0$, there exists an integer $n_0 > 0$ such that for all $n > n_0$ we have $d(x_n, F) < \frac{\varepsilon}{2A}$ and $\sum_{i=n}^{\infty} c_i < \frac{\varepsilon}{2A}$. So, for all integers $n > n_0$ and $m \ge 1$, we obtain (19) that

$$\|x_{n+m} - x_n\| \le \varepsilon$$

which means that $\{x_n\}$ is a Cauchy sequence in *E*, and completeness of *E* yields the existence of $x^* \in E$ such that $x_n \to x^*$ strongly.

Now, we show that x^* is a common fixed point of T and I. Suppose that $x^* \notin F$. Since F is closed subset of E, one has $d(x^*, F) > 0$. However, for all $p \in F$, we have

$$||x^* - p|| \le ||x_n - x^*|| + ||x_n - p||.$$

This implies that

$$d(x^*, F) \le ||x_n - x^*|| + d(x_n, F),$$

so, we obtain $d(x^*, F) = 0$ as $n \to \infty$, which contradicts $d(x^*, F) > 0$. Hence, x^* is a common fixed point of *T* and *I*. This comletes the proof. \Box

Lemma 3.4. Let *E* be a real uniformly Banach space and *K* be a nonempty closed convex subset of *E*. Let $T : K \to K$ be a total uniformly L_1 -Lipschitzian asymptotically quasi-I-nonexpansive mapping with sequences $\{\mu_n\}, \{l_n\}$ and $I : K \to K$ be a total uniformly L_2 -Lipschitzian asymptotically quasi-nonexpansive mapping with sequences $\{\tilde{\mu}_n\}, \{\tilde{l}_n\}$ such that $F = F(T) \cap F(I) \neq \emptyset$. Suppose that $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} l_n < \infty$, $\sum_{n=1}^{\infty} \tilde{\mu}_n < \infty$, $\sum_{n=1}^{\infty} \tilde{l}_n < \infty$

$$\lim_{n \to \infty} ||x_n - Tx_n|| = 0, \tag{20}$$

$$\lim_{n \to \infty} \|x_n - Ix_n\| = 0.$$
⁽²¹⁾

Proof. By Lemma 3.2, $\lim_{n\to\infty} ||x_n - p||$ exists. Assume that, for any $p \in F = F(T) \cap F(I)$, $\lim_{n\to\infty} ||x_n - p|| = r$. If r = 0, the conclusion is obvious. Suppose r > 0.

First, we will prove that

$$\lim_{n \to \infty} ||x_n - T^n x_n|| = 0, \quad \lim_{n \to \infty} ||x_n - I^n x_n|| = 0.$$
(22)

It follows from (9) that

$$\|x_{n+1} - p\| = \|(1 - \alpha_n)(x_n - p) + \alpha_n(T^n y_n - p)\| \to r,$$
(23)

as $n \to \infty$. By means of $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} l_n < \infty$, $\sum_{n=1}^{\infty} \tilde{\mu}_n < \infty$, $\sum_{n=1}^{\infty} \tilde{l}_n < \infty$, from (12) and (14) we get

$$\lim_{n \to \infty} \sup \left\| T^n y_n - p \right\| \le \lim_{n \to \infty} \sup \left\| y_n - p \right\| \le \lim_{n \to \infty} \sup \left\| x_n - p \right\| = r.$$
(24)

Hence, using (23), (24) and Lemma 2.3, we obtain

$$\lim_{n \to \infty} \left\| x_n - T^n y_n \right\| = 0.$$
⁽²⁵⁾

From (9) and (25) we have

 $\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$ (26)

From (25) and (26) we get

$$\lim_{n \to \infty} \left\| x_{n+1} - T^n y_n \right\| \le \lim_{n \to \infty} \left\| x_{n+1} - x_n \right\| + \lim_{n \to \infty} \left\| x_n - T^n y_n \right\| = 0.$$
(27)

On the other hand, from (12) and (14) we have

$$\begin{aligned} \left\| x_{n} - p \right\| &\leq \left\| x_{n} - T^{n} y_{n} \right\| + (1 + M_{2} \mu_{n}) \left(1 + N_{2} \tilde{\mu}_{n} \right) \left\| y_{n} - p \right\| \\ &+ (1 + M_{2} \mu_{n}) \left(\varphi(N_{1}) \tilde{\mu}_{n} + \tilde{l}_{n} \right) + \phi(M_{1}) \mu_{n} + l_{n} \end{aligned} \\ &\leq \left\| x_{n} - T^{n} y_{n} \right\| + (1 + M_{2} \mu_{n}) \left(1 + N_{2} \tilde{\mu}_{n} \right) \left(1 + N_{2} \beta_{n} \tilde{\mu}_{n} \right) \left\| x_{n} - p \right\| \\ &+ (1 + M_{2} \mu_{n}) \left(\varphi(N_{1}) \tilde{\mu}_{n} + \tilde{l}_{n} \right) \left(\beta_{n} \left(1 + N_{2} \tilde{\mu}_{n} \right) + 1 \right) + \phi(M_{1}) \mu_{n} \\ &+ l_{n}. \end{aligned}$$

$$(28)$$

From (28) we obtain

$$\lim_{n \to \infty} \|x_n - p\| \leq \lim_{n \to \infty} \|x_n - T^n y_n\| + \lim_{n \to \infty} \|y_n - p\|$$

$$\leq \lim_{n \to \infty} \|x_n - T^n y_n\| + \lim_{n \to \infty} \|x_n - p\|.$$
(29)

Then (29) with the squeeze theorem, imply that

$$\lim_{n\to\infty} \|y_n-p\|=r.$$

From (9) we can see that

$$\|y_n - p\| = \|(1 - \beta_n)(x_n - p) + \beta_n (I^n x_n - p)\| \to r, \quad n \to \infty.$$
(30)

Furthermore, from (11) we get

$$\lim_{n \to \infty} \sup \left\| I^n x_n - p \right\| \le \lim_{n \to \infty} \sup \left\| x_n - p \right\| = r.$$
(31)

Now, applying Lemma 2.3 to (30) we obtain

$$\lim_{n \to \infty} \|x_n - I^n x_n\| = 0.$$
(32)

From (26) and (32) we have

$$\lim_{n \to \infty} \|x_{n+1} - I^n x_n\| \le \lim_{n \to \infty} \|x_{n+1} - x_n\| + \lim_{n \to \infty} \|x_n - I^n x_n\| = 0.$$
(33)

It follows from (9) that

 $||y_n - x_n|| = \beta_n ||x_n - I^n x_n||.$ (34)

Hence, from (32) and (34) we obtain

$$\lim_{n \to \infty} \left\| y_n - x_n \right\| = 0. \tag{35}$$

Consider

$$\|x_n - T^n x_n\| \le \|x_n - T^n y_n\| + L_1 \|y_n - x_n\| + L_1 (\mu_n \phi (\|y_n - x_n\|) + l_n).$$
(36)

Then, from (25), (35) and (36) we obtain

 $\lim_{n \to \infty} \|x_n - T^n x_n\| = 0.$ (37)

From (26) and (35) we have

$$\lim_{n \to \infty} \left\| x_{n+1} - y_n \right\| \le \lim_{n \to \infty} \left\| x_{n+1} - x_n \right\| + \lim_{n \to \infty} \left\| y_n - x_n \right\| = 0.$$
(38)

Finally, from

$$||x_{n} - Tx_{n}|| \leq ||x_{n} - T^{n}x_{n}|| + L_{1} ||x_{n} - y_{n-1}|| + L_{1} (\mu_{n}\phi(||x_{n} - y_{n-1}||) + l_{n}) + L_{1} ||\mathcal{I}^{n-1}y_{n-1} - x_{n}|| + L_{1} (\mu_{n}\phi(||T^{n-1}y_{n-1} - x_{n}||) + l_{n}),$$
(39)

which with (27), (37) and (38) we get

$$\lim_{n \to \infty} \|x_n - Tx_n\| = 0.$$
⁽⁴⁰⁾

Similarly, we obtain

$$\|x_{n} - Ix_{n}\| \leq \|x_{n} - I^{n}x_{n}\| + L_{2} \|x_{n} - x_{n-1}\| + L_{2} \left(\tilde{\mu}_{n} \varphi \left(\|x_{n} - x_{n-1}\| \right) + \tilde{l}_{n} \right) + L_{2} \left\| I^{n-1}x_{n-1} - x_{n} \right\| + L_{2} \left(\tilde{\mu}_{n} \varphi \left(\|I^{n-1}x_{n-1} - x_{n}\| \right) + \tilde{l}_{n} \right),$$

$$(41)$$

which with (26), (32) and (33) implies

$$\lim_{n \to \infty} \|x_n - Ix_n\| = 0.$$
⁽⁴²⁾

This completes the proof. \Box

Theorem 3.5. Let *E* be a real uniformly Banach space satisfying Opial condition and let *K* be a nonempty closed convex subset of *E*. Let $C : E \to E$ be an identity maping. Let $T : K \to K$ be a total uniformly L_1 -Lipschitzian asymptotically quasi-I-nonexpansive mapping with sequences $\{\mu_n\}$, $\{l_n\}$ and $I : K \to K$ be a total uniformly L_2 -Lipschitzian asymptotically quasi-nonexpansive mapping with sequences $\{\tilde{\mu}_n\}$, $\{\tilde{l}_n\}$ such that $F = F(T) \cap F(I) \neq \emptyset$. Suppose that $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} l_n < \infty$, $\sum_{n=1}^{\infty} \tilde{\mu}_n < \infty$, $\sum_{n=1}^{\infty} \tilde{l}_n < \infty$ and there exist M_i , $N_i > 0$, i = 1, 2, such that $\phi(\xi) \leq M_2 \xi$ for all $\xi \geq M_1$ and $\phi(\zeta) \leq N_2 \zeta$ for all $\zeta \geq N_1$. Assume that $\{\alpha_n\}$, $\{\beta_n\}$ are two sequences in [t, 1 - t], where 0 < t < 1. If the mappings C - T and C - I are semiclosed at zero, then the explicit iterative sequence $\{x_n\}$ defined by (9) converges weakly to a common fixed point of T and I.

Proof. Let $p \in F = F(T) \cap F(I)$. By Lemma 3.2, we know that $\lim_{n\to\infty} ||x_n - p||$ exists and $\{x_n\}$ is bounded. Since *E* is uniformly convex, then every bounded subset of *E* is weakly compact. Since $\{x_n\}$ is a bounded sequence in *K*, then there exists a subsequence $\{x_{n_k}\} \subset \{x_n\}$ such that $\{x_{n_k}\}$ converges weakly to $q_1 \in K$. Thus, from (40) and (42) it follows that

$$\lim_{n_k \to \infty} \|x_{n_k} - Tx_{n_k}\| = 0, \quad \lim_{n_k \to \infty} \|x_{n_k} - Ix_{n_k}\| = 0.$$
(43)

Since the mappings C - T and C - I are semiclosed at zero, we find $Tq_1 = q_1$ and $Iq_1 = q_1$. Namely, $q_1 \in F = F(T) \cap F(I)$.

Finally, let us prove that $\{x_n\}$ converges weakly to q_1 . Actually, suppose the contrary, that is, there exists some subsequence $\{x_{n_j}\} \subset \{x_n\}$ such that $\{x_{n_j}\}$ converges weakly to $q_2 \in K$ and $q_1 \neq q_2$. Then by the same method as given above, we can also prove that $q_2 \in F = F(T) \cap F(I)$.

Since $q_1, q_2 \in F = F(T) \cap F(I)$, according to Lemma 3.2 $\lim_{n\to\infty} ||x_n - q_1||$ and $\lim_{n\to\infty} ||x_n - q_2||$ exist, we have

$$\lim_{n \to \infty} \|x_n - q_1\| = r_1, \quad \lim_{n \to \infty} \|x_n - q_2\| = r_2, \tag{44}$$

where $d_1, d_2 \ge 0$. Because of the Opial condition of *E*, we obtain

$$r_{1} = \lim_{n_{k} \to \infty} \sup \left\| x_{n_{j}} - q \right\| < \lim_{n_{k} \to \infty} \sup \left\| x_{n_{k}} - q_{1} \right\| = r_{2}$$

$$= \lim_{n_{j} \to \infty} \sup \left\| x_{n_{j}} - q_{1} \right\| < \lim_{n_{j} \to \infty} \sup \left\| x_{n_{j}} - q \right\|.$$
(45)

This is a contradiction. Hence $q_1 = q_2$. This implies that $\{x_n\}$ converges weakly to q. This completes the proof. \Box

Theorem 3.6. Let *E* be a real uniformly Banach space and *K* be a nonempty closed convex subset of *E*. Let $T : K \to K$ be a total uniformly L_1 -Lipschitzian asymptotically quasi-I-nonexpansive mapping with sequences $\{\mu_n\}$, $\{l_n\}$ and $I : K \to K$ be a total uniformly L_2 -Lipschitzian asymptotically quasi-nonexpansive mapping with sequences $\{\tilde{\mu}_n\}$, $\{\tilde{l}_n\}$ such that $F = F(T) \cap F(I) \neq \emptyset$. Suppose that $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} l_n < \infty$, $\sum_{n=1}^{\infty} \tilde{\mu}_n < \infty$, $\sum_{n=1}^{\infty} \tilde{\mu}_$ *Proof.* Without any loss of generality, we may assume that *T* is semicompact. This with (40) means that there exists a subsequence $\{x_{n_k}\} \subset \{x_n\}$ such that $x_{n_k} \to x^*$ strongly and $x^* \in K$. Since *T*, *I* are continuous, then from (40) and (42) we find

$$\|x^* - Tx^*\| = \lim_{n_k \to \infty} \|x_{n_k} - Tx_{n_k}\| = 0, \quad \|x^* - Ix^*\| = \lim_{n_k \to \infty} \|x_{n_k} - Ix_{n_k}\| = 0.$$
(46)

This shows that $x^* \in F = F(T) \cap F(I)$. According to Lemma 3.2 the limit $\lim_{n\to\infty} ||x_n - x^*||$ exists. Then

$$\lim_{n \to \infty} \|x_n - x^*\| = \lim_{n_k \to \infty} \|x_{n_k} - x^*\| = 0,$$

which means that $\{x_n\}$ converges to $x^* \in F$. This completes the proof. \Box

References

- Y. I. Alber, C. E. Chidume, H. Zegeye, Approximating fixed points of total asymptotically nonexpansive mappings, Hindawi Publishing Corporation Fixed Point Theory and Aplications, Article ID 10673 (2006) 1-20.
- [2] C. E. Chidume and E. U. Ofoedu, Aproximation of common fixed points for finite families of total asymptotically nonexpansive mappings, Journal of Mathematical Analysis and Applications 333 (2007) 128-141.
- [3] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proceedings of the American Mathematical Society 35 (1972) 171-174.
- [4] E. Lami Dozo, Multivalued nonexpansive mappings and Opial's condition, Proceedings of the American Mathematical Society 38 (1973) 286-292.
- [5] Q. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, Journal of Mathematical Analysis and Applications 259 (2001) 1-7.
- [6] F. Mukhamedov and M. Saburov, Strong Convergence of an Explicit Iteration Process for a Totally Asymptotically I-Nonexpansive Mapping in Banach Spaces, Applied Mathematics Letters, 23 (2010) 1473-1478.
- [7] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bulletin of American Mathematical Society 73 (1967) 591-597.
- [8] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bulletin of the Australian Mathematical Society 43 (1991) 153-159.
- [9] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, Journal of Mathematical Analysis and Applications 178 (1993) 301-308.
- [10] S. Temir, On the convergence theorems of implicit iteration process for a finite faily of asymptotically nonexpansive mappings, Journal of Computational and Applied Mathematics 225 (2009) 398-405.
- [11] S. Temir and O. Gul, Convergence theorem for *I* -asymptotically quasi-nonexpansive mapping in Hilbert space, Journal of Mathematical Analysis and Applications 329 (2007) 759-765.