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Abstract. The Atom-Bond Connectivity (ABC) index of a connected graph G is defined as ABC(G) =∑
uv∈E(G)

√
d(u)+d(v)−2

d(u)d(v) , where d(u) is the degree of vertex u in G. A connected graph G is called a cactus if

any two of its cycles have at most one common vertex. Denote by G 0(n, r) the set of cacti with n vertices
and r cycles and G 1(n, p) the set of cacti with n vertices and p pendent vertices. In this paper, we give
sharp bounds of the ABC index of cacti among G 0(n, r) and G 1(n, p) respectively, and characterize the
corresponding extremal cacti.

1. Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). For u ∈ V(G), the degree of u, denoted

by d(u). The Atom-Bond Connectivity (ABC) index of G is defined as [8]

ABC(G) =
∑

uv∈E(G)

√
d(u) + d(v) − 2

d(u)d(v)
. (1)

The ABC index was shown to be well correlated with the heats of formation of alkanes, and that it

thus can serve for predicting their thermodynamic properties [8]. Various properties of the ABC index

have been established, see chemical literature [20][21]. In addition to this, Estrada [7] elaborated a novel

quantum-theory-like justification for this topological index, showing that it provides a model for taking

into account 1,2-, 1,3-, and 1,4-interactions in the carbon-atom skeleton of saturated hydrocarbons, and

that it can be used for rationalizing steric effects in such compounds. These results triggered a number of

mathematical investigations of ABC index [1]- [6], [9]- [17], [22]- [25].
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Let G be a graph. The neighborhood of a vertex u ∈ V(G) will be denoted by N(u), ∆(G) = max{d(u)|u ∈

V(G)} and δ(G) = min{d(u)|u ∈ V(G)}. The graph that arises from G by deleting the vertex u ∈ V(G) will be

denoted by G−u. Similarly, the graph G+uv arises from G by adding an edge uv between two non-adjacent

vertices u and v of G. A pendent vertex of a graph is a vertex with degree 1. If all of blocks of G are either

edges or cycles, i.e., any two of its cycles have at most one common vertex, then G is called a cactus. We

use G 0(n, r) to denote the set of cacti with n vertices and r cycles and G 1(n, p) to denote the set of cacti

with n vertices and p pendent vertices. Obviously, G 0(n, 0) are trees, G 0(n, 1) are unicyclic graphs and

G 1(n,n − 1) is star. The star with n vertices, denoted by Sn, is the tree with n − 1 pendent vertices. Let

G(n, r) denote the cactus obtained by adding r independent edges to the star Sn (See Fig.1 (a)). Obviously,

G(n, r) is a cactus with n vertices, r cycle, and n − 2r − 1 pendent vertices. Note that G(n, r) ∈ G 0(n, r) and

G(n, r) ∈ G 1(n,n − 2r − 1). G′(n, p) denotes the cactus obtained by adding (n − p − 1)/2 independent edges

to the star Sn if n − p is odd and by adding (n − p − 2)/2 independent edges to the start Sn−1 and then

inserting a degree 2-vertex in one of those independent edges if n − p is even (See Fig.1(b)). Obviously,

G′(n, p) ∈ G 1(n, p) and G′(n, p) � G(n, (n − p − 1)/2) when n − p is odd .
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Figure 1: G(n, r) and G′(n, p) for n − p is even

It is straightforward to compute

ABC(G(n, r)) =
3r
√

2
+ (n − 2r − 1)

√
n − 2
n − 1

,

ABC(G′(n, p)) =


3(n−p−1)

2
√

2
+ p
√

n−2
n−1 i f n − p is odd,

3(n−p−2)
2
√

2
+ p
√

n−3
n−2 + 1

√
2

i f n − p is even.

For connectivity index of cacti, Lu et al.[19] gave the sharp lower bound on the Randić index of cacti; Lin

and Luo [18] gave the sharp lower bound of the Randić index of cacti with fixed pendant vertices. In this

paper, we use the techniques in [19] and [18] to give sharp upper bounds on ABC index of cacti among

G 0(n, r) and cacti among G 1(n, r), and characterize the corresponding extremal graphs, respectively.

For x, y ≥ 1, let h(x, y) =
√

x+y−2
xy . Obviously, h(x, y) = h(y, x). This lemma will be useful in the following

sections.
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Lemma 1.1. [22] h(x, 1) =
√

x−1
x is strictly increasing with x, h(x, 2) =

√
2

2 and h(x, y) =
√

x+y−2
xy is strictly

decreasing with x for fixed y ≥ 3.

2. The Maximum ABC Index of Ccacti with r Cycles

In this section, we will study the sharp upper bound on ABC index of cacti with n vertices and r cycles.

Obviously, G 0(n, 0) are trees with n vertices. Furtula et al [22] proved that the star tree, Sn, has the

maximal ABC value among all trees with n(≥ 2) vertices.

Lemma 2.1. [9] Let G ∈ G 0(n, 0) and n ≥ 2, then ABC(G) ≤ (n−1)
√

n−2
n−1 with equation if and only if G � G(n, 0) �

Sn.

Obviously, G 0(n, 1) are unicyclic graphs. Xing et al [24] gave the upper bound for ABC index of unicyclic

graphs and characterized extremal graph.

Lemma 2.2. [23] Let G ∈ G 0(n, 1) and n ≥ 3, then ABC(G) ≤ (n − 3)
√

n−2
n−1 + 3

√
2

2 with equation if and only if

G � G(n, 1).

Theorem 2.3. Let G ∈ G 0(n, r), n ≥ 5. Then ABC(G) ≤ F(n, r) with equality if and only if G � G(n, r), where

F(n, r) = 3r
√

2
+ (n − 2r − 1)

√
n−2
n−1 .

Proof. By induction on n + r. If r = 0 or r = 1, then the theorem holds clearly by Lemma 2.1 and 2.2. Now,

we assume that r ≥ 2, and n ≥ 5. If n = 5, then the theorem holds clearly by the facts that there is only one

graph G(5, 2) in G 0(5, 2) (see Fig. 1).

Let G ∈ G 0(n, r), n ≥ 6 and r ≥ 2. We consider the following two cases.

Case 1. δ(G) = 1.

Let u ∈ V(G) with d(u) = 1 and uv ∈ E(G). Denote d(v) = d and N(v)\{u} = {x1, x2, · · · , xd−1}. Then

2 ≤ d ≤ n − 1. Assume, without loss of generality, that d(x1) = d(x2) = · · · = d(xk−1) = 1 and d(xi) ≥ 2 for

k ≤ i ≤ d−1, where k ≥ 1. Set G′ = G−u−x1−x2− · · ·−xk−1, then G′ ∈ G 0(n− k, r). By induction assumption

and Lemma 1.1 , we have

ABC(G) = ABC(G′) + k
√

d−1
d +

d−1∑
i=k

[h(d, d(xi)) − h(d − k, d(xi))]

≤ ABC(G′) + k
√

d−1
d (by Lemma 1.1)

≤ F(n − k, r) + k
√

d−1
d (by inductive assumption)

= F(n, r) − (n − 2r − 1)
√

n−2
n−1 + (n − 2r − 1 − k)

√
n−k−2
n−k−1 + k

√
d−1

d

= F(n, r) + (n − 2r − 1 − k)(
√

n−k−2
n−k−1 −

√
n−2
n−1 ) + k(

√
d−1

d −

√
n−2
n−1 )

≤ F(n, r). (by Lemma 1.1)

The equality ABC(G) = F(n, r) holds if and only if equalities hold throughout the above inequalities, that

is, if and only if d = n − 1, 2r = n − k − 1 and G′ � G(n − k, r). Thus we have ABC(G) = F(n, r) holds if and

only if G � G(n, r).
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Case 2. δ(G) ≥ 2.

By the definition of cactus and δ(G) ≥ 2, there exist two edges u0u1,u0u2 ∈ E(G) such that d(u0) = d(u1) = 2

and d(u2) = d ≥ 3. We will finish the proof by considering two subcases.

Subcase 1. u1u2 < E(G).

Let G′ � G − u0 + u1u2. Then G′ ∈ G 0(n − 1, r). By induction assumption and Lemma 1.1, we have

ABC(G) = ABC(G′) + 1
√

2
≤ F(n − 1, r) + 1

√
2

(by inductive assumption)

= F(n, r) + 1
√

2
− (n − 2r − 1)

√
n−2
n−1 + (n − 2r − 2)

√
n−3
n−2

= F(n, r) + [ 1
√

2
−

√
n−2
n−1 ] + [(n − 2r − 2)

√
n−3
n−2 − (n − 2r − 2)

√
n−2
n−1 ]

< F(n, r). (by Lemma 1.1)

Subcase 2. u1u2 ∈ E(G).

Let N(u2)\{u0,u1} = {x1, x2, · · · , xd−2}. d(xi) ≥ 2 for 1 ≤ i ≤ d− 2, since δ(G) ≥ 2. Let G′ = G− u0 − u1. Then

G′ ∈ G 0(n − 2, r − 1). By inductive assumption and Lemma 1.1, we have

ABC(G) = ABC(G′) + 3
√

2
+

d−2∑
i=1

[h(d, d(xi)) − h(d − 2, d(xi))]

≤ F(n − 2, r − 1) + 3
√

2
+

d−2∑
i=k

[h(d, d(xi)) − h(d − 2, d(xi))] (by inductive assumption)

= F(n, r) − 3
√

2
− (n − 2r − 1)

√
n−2
n−1 + (n − 2r − 1)

√
n−4
n−3 + 3

√
2

+
d−2∑
i=k

[h(d, d(xi)) − h(d − 2, d(xi))]

= F(n, r) + (n − 2r − 1)[
√

n−4
n−3 −

√
n−2
n−1 ] +

d−2∑
i=k

[h(d, d(xi)) − h(d − 2, d(xi))]

≤ F(n, r). (by Lemma 1.1)

The equality ABC(G) = F(n, r) holds if and only if equalities hold throughout the above inequalities, that

is, if and only if G′ � G(n−2, r−1), 2r = n−1 and d(xi) = 2 for i = 1, · · · , d−2. Thus we have ABC(G) = F(n, r)

holds if and only if G � G(n, r). �

3. The Maximum ABC Index of Cacti with p Pendent Vertices

In this section, we will study the sharp upper bound on ABC index of cacti with n vertices and p pendent

vertices.

Denote by S1,n−3 the tree obtained by attaching one pendent vertex to a pendent vertex of the star Sn−1.

Lemma 3.1. [25] Let T be a tree with n ≥ 4 vertices and T � Sn, then ABC(T) ≤ (n − 3)
√

n−3
n−2 +

√
2 with equality

holds if and only if T � S1,n−3.

Theorem 3.2. Let G ∈ G 1(n, p), n ≥ 4.

(1) If p = n − 1, then ABC(G) = (n − 1)
√

n−2
n−1 and G � Sn.

(2) If p = n − 2, then ABC(G) ≤
√

2 + (n − 3)
√

n−3
n−2 with equality if and only if G � S1,n−3.

(3) If p ≤ n − 3, then ABC(G) ≤ f (n, p) with equality if and only if G � G′(n, p) where

f (n, p) =


3(n−p−1)

2
√

2
+ p
√

n−2
n−1 i f n − p is odd,

3(n−p−2)
2
√

2
+ p
√

n−3
n−2 + 1

√
2

i f n − p is even.
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Proof.

(1) If p = n − 1, then G � Sn. So, the result is obvious.

(2) Since G has n − 2 pendent vertices, it is a tree and n ≥ 4. By Lemma 3.1, S1,n−3 is the unique graph

with the maximum ABC index among trees with n(≥ 4) vertices and n − 2 pendent vertices. This result

follows.

(3) By induction on n + p. If n + p = 4 and p ≤ n − 3, then n = 4 and p = 0, that is, G � C4. Since

C4 � G′(4, 0), the theorem holds clearly for n + p = 4. Now, we assume that n + p ≥ 5.

Case 1. p ≥ 1.

Let u ∈ V(G) with d(u) = 1 and uv ∈ E(G). Denote d(v) = d and N(v)\{u} = {x1, x2, · · · , xd−1}. Then

2 ≤ d ≤ n − 1. Assume, without loss of generality, that d(x1) = d(x2) = · · · = d(xk−1) = 1 and d(xi) ≥ 2 for

k ≤ i ≤ d − 1, where k ≥ 1. If ∆(G) = n − 1, then d(v) = n − 1 and each block of G is either a triangle or an

edge by the definition of cactus. It follows that G � G(n, n−p−1
2 ) and n − p − 1 is even. So, we assume that

∆(G) ≤ n − 2.

Set G′ = G− u− x1 − x2 − · · · − xk−1, then G′ ∈ G 1(n− k, p− k). Note that n− p and n− k − (p− k) have the

same parity.

By induction assumption and Lemma 1.1 , we have

ABC(G) = ABC(G′) + k

√
d − 1

d
+

d−1∑
i=k

[h(d, d(xi)) − h(d − k, d(xi))]

≤ ABC(G′) + k

√
d − 1

d
(by Lemma 1.1)

≤ f (n − k, p − k) + k

√
d − 1

d
(by inductive assumption)

=

 f (n, p) − p
√

n−2
n−1 + (p − k)

√
n−k−2
n−k−1 + k

√
d−1

d , i f n − p is odd

f (n, p) − p
√

n−3
n−2 + (p − k)

√
n−k−3
n−k−2 + k

√
d−1

d , i f n − p is even

=

 f (n, p) + (p − k)(
√

n−k−2
n−k−1 −

√
n−2
n−1 ) + k(

√
d−1

d −

√
n−2
n−1 ), i f n − p is odd

f (n, p) + (p − k)(
√

n−k−3
n−k−2 −

√
n−3
n−2 ) + k(

√
d−1

d −

√
n−3
n−2 ), i f n − p is even

≤ f (n, p). (by Lemma 1.1)

The equality ABC(G) = f (n, p) holds if and only if equalities hold throughout the above inequalities,

that is, if and only if d = n − 1 , p = k and G′ � G′(n − k, p − k). Thus we have ABC(G) = f (n, p) holds if and

only if G � G′(n, p).

Case 2. p = 0.

By the definition of cactus and p = 0, there exist two edges u0u1,u0u2 ∈ E(G) such that d(u0) = d(u1) = 2

and d(u2) = d ≥ 3. We will finish the proof by considering two subcases.

Subcase 1. u1u2 < E(G).

Let G′ � G − u0 + u1u2. Then G′ ∈ G 1(n − 1, 0).
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If n is odd, then f (n − 1, 0) =
3(n−3)
2
√

2
+ 1
√

2
and f (n, 0) =

3(n−1)
2
√

2
. Thus, by inductive assumption, we have

ABC(G) = ABC(G′) + 1
√

2
≤ f (n − 1, 0) + 1

√
2

= f (n, 0) − 1
√

2
< f (n, 0).

If n is even, then f (n − 1, 0) =
3(n−2)
2
√

2
and f (n, 0) =

3(n−2)
2
√

2
+ 1
√

2
. Thus, by inductive assumption, we have

ABC(G) = ABC(G′) + 1
√

2
≤ f (n − 1, 0) + 1

√
2

= f (n, 0).

The equality ABC(G′) = f (n − 1, 0) holds if and only if G′ � G′(n − 1, 0). Hence, ABC(G) = f (n, 0) holds

if and only if G � G′(n, 0) for n is even.

Subcase 2. u1u2 ∈ E(G).

Let N(u2)\{u0,u1} = {x1, x2, · · · , xd−2}. d(xi) ≥ 2 for 1 ≤ i ≤ d− 2, since δ(G) ≥ 2. Let G′ = G− u0 − u1. Then

G′ ∈ G 1(n − 2, 0). By inductive assumption and Lemma 1.1, we have

ABC(G) = ABC(G′) + 3
√

2
+

d−2∑
i=1

[h(d, d(xi)) − h(d − 2, d(xi))]

≤ f (n − 2, 0) + 3
√

2
+

d−2∑
i=1

[h(d, d(xi)) − h(d − 2, d(xi))] (by inductive assumption)

= f (n, 0) − 3
√

2
+ 3
√

2
+

d−2∑
i=1

[h(d, d(xi)) − h(d − 2, d(xi))]

≤ f (n, 0). (by Lemma 1.1)

The equality ABC(G) = f (n, 0) holds if and only if equalities hold throughout the above inequalities,

that is, if and only if G′ � G′(n− 2, 0) and d(xi) = 2 for i = 1, · · · , d− 2. Thus we have ABC(G) = f (n, 0) holds

if and only if G � G′(n, 0).
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