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Abstract. In this paper, we prove that the spectrum is continuous on the class of all quasi-∗-A(n) operators.
And we obtain a sufficient condition for a quasi-∗-A(n) operator to be normal. Finally, we consider the
tensor products of quasi-∗-A(n) operators, giving a necessary and sufficient condition for T ⊗ S to be a
quasi-∗-A(n) operator when T and S are both non-zero operators.

1. Introduction

Let H be an infinite dimensional separable Hilbert space, B(H) denote the C∗-algebra of all bounded linear

operators on H. An operator T ∈ B(H) is said to be hyponormal if T∗T ≥ TT∗(equivalently, if ||T∗x|| ≤ ||Tx||

for all x in H). Though there are many unsolved interesting problems for hyponormal operators (e.g., the

invariant subspace problem), one of recent hot topics in operator theory is to study natural extensions of

hyponormal operators. In paper [23] authors introduced the class of quasi-∗-A(n) operators defined as

follows:

Definition 1.1. An operator T is said to be a quasi-∗-A(n) operator if

T∗|T1+n
|

2
1+n T ≥ T∗|T∗|2T,

where n is a positive integer and |T| = (T∗T)1/2.

A quasi-∗-A(n) operator is a generalization of a hyponormal operator.

Theorem 1.2. Each hyponormal operator is a quasi-∗-A(n) operator.
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Proof. Recall from [1, Theorem 1] that if T is a hyponormal operator, then

|T1+n
|

2
1+n ≥ T∗T ≥ TT∗,

therefore, we have T∗|T1+n
|

2
1+n T ≥ T∗|T∗|2T.

Example 1.3. Let T be the unilateral weighted shift operator with weights α := {αn}n≥1 of positive real numbers, that

is,

T =



0 0 0 0 0 · · ·

α1 0 0 0 0 · · ·

0 α2 0 0 0 · · ·

0 0 α3 0 0 · · ·

0 0 0 α4 0 · · ·

...
...

...
...

...
. . .


.

It is well known that T is hyponormal if and only if α is monotonically increasing. Simple calculations show that T

is a quasi-∗-A(n) operator if and only if

(αi+n+1αi+n . . . αi+2αi+1)
1

n+1 ≥ αi (i = 1, 2, 3, . . .).

If T ∈ B(H), write N(T) for the null space of T; σ(T), σa(T) and σp(T) for the spectrum, the approximate point

spectrum and the point spectrum of T, respectively. In this paper, we study spectral properties and the

tensor products of quasi-∗-A(n) operators.

2. Spectral Properties of Quasi-∗-A(n) Operators

For every T ∈ B(H), σ(T) is a compact subset of C. The function σ viewed as a function from B(H)

into the set of all compact subsets of C, equipped with the Hausdorff metric, is well known to be upper

semi-continuous, but fails to be continuous in general. Conway and Morrel [6] have carried out a detailed

study of spectral continuity in B(H). Recently, the continuity of spectrum was considered when restricted to

certain subsets of the entire manifold of Toeplitz operators in [12, 18]. It has been proved that is continuous

in the set of normal operators and hyponormal operators in [14]. And this result has been extended to

quasihyponormal operators by Djordjević in [7], to p-hyponormal operators by Hwang and Lee in [19], and

to (p, k)-quasihyponormal, M-hyponormal, ∗-paranormal and paranormal operators by Duggal, Jeon and

Kim in [10]. In this section we extend this result to quasi-∗-A(n) operators.

Lemma 2.1. Let T be a quasi-∗-A(n) operator. Then the following assertions hold:

(1) If T is quasinilpotent, then T = 0.

(2) For every non-zero λ ∈ σp(T), the matrix representation of T with respect to the decomposition H = N(T − λ) ⊕

(N(T − λ))⊥ is: T =

(
λ 0
0 B

)
for some operator B satisfying λ < σp(B) and σ(T) = {λ} ∪ σ(B).

Proof. (1) Suppose T is a quasi-∗-A(n) operator. T is normaloid by [22], thus T = 0.

(2) If λ , 0 and λ ∈ σp(T), we have that N(T − λ) reduces T by [23]. So we have that T =

(
λ 0
0 B

)
on

H = N(T − λ) ⊕ (N(T − λ))⊥ for some operator B satisfying λ < σp(B) and σ(T) = {λ} ∪ σ(B).
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Lemma 2.2. [3] Let H be a complex Hilbert space. Then there exists a Hilbert space K such that H ⊂ K and a map

ϕ : B(H)→ B(K) such that

(1) ϕ is a faithful ∗-representation of the algebra B(H) on K;

(2) ϕ(A) ≥ 0 for any A ≥ 0 in B(H);

(3) σa(T) = σa(ϕ(T)) = σp(ϕ(T)) for any T ∈ B(H).

Theorem 2.3. The spectrum σ is continuous on the set of quasi-∗-A(n) operators.

Proof. Suppose T is a quasi-∗-A(n) operator. Let ϕ: B(H)→ B(K) be Berberian’s faithful ∗-representation of

Lemma 2.2. In the following, we shall show that ϕ(T) is also a quasi-∗-A(n) operator. In fact, since T is a

quasi-∗-A(n) operator, we have T∗(|T1+n
|

2
1+n − |T∗|2)T ≥ 0. Hence we have

(ϕ(T))∗(|(ϕ(T))1+n
|

2
1+n − |(ϕ(T))∗|2)ϕ(T)

= ϕ(T∗(|T1+n
|

2
1+n − |T∗|2)T) by Lemma 2.2

≥ 0 by Lemma 2.2,

so ϕ(T) is also a quasi-∗-A(n) operator. By Lemma 2.1, we have T belongs to the set C(i) (see definition in

[10]). So we have that the spectrum σ is continuous on the set of quasi-∗-A(n) operators by [10, Theorem

1.1].

Corollary 2.4. The spectrum σ(.), Weyl spectrum w(.) and Browder spectrum σb(.) are continuous on quasi-∗-A(n)

operators.

Proof. Suppose T is a quasi-∗-A(n) operator. By [22], we have that Weyl’s theorem holds for T. So we have

that Browder’s theorem holds for T. Hence Corollary 2.4 holds by Theorem 2.3 and [8, Theorem 2.2].

A complex number λ is said to be in the point spectrum σp(T) of T if there is a nonzero x ∈ H such that

(T − λ)x = 0. If in addition, (T∗ − λ)x = 0, then λ is said to be in the joint point spectrum σ jp(T) of T.

Analogously, a complex number λ is said to be in the approximate point spectrum σa(T) of T if there is a

sequence {xn} of unit vectors in H such that (T − λ)xn → 0. If in addition, (T∗ − λ)xn → 0, then λ is said to

be in the joint approximate point spectrum σ ja(T) of T. If an operator is hyponormal, then N(T) ⊆ N(T∗)

and σ jp(T) = σp(T). Here we show that if T is a quasi-∗-A(n) operator, then σ jp(T) \ {0} = σp(T) \ {0} and

σ ja(T) \ {0} = σa(T) \ {0}.

Lemma 2.5. [23] Let T be a quasi-∗-A(n) operator and λ , 0. Then Tx = λx implies T∗x = λx.

The following example provides an operator T which is a quasi-∗-A(n) operator, however, the relation

N(T) ⊆ N(T∗) does not hold.
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Example 2.6. [22] Let A =

(
1 0
0 0

)
B =

(
1 1
1 1

)
be operators on R2 , and let Hn = R

2 for all positive integers

n. Consider the operator TA,B on ⊕+∞
n=1Hn defined by

TA,B =



0 0 0 0 0 0 · · ·

A 0 0 0 0 0 · · ·

0 B 0 0 0 0 · · ·

0 0 B 0 0 0 · · ·

0 0 0 B 0 0 · · ·

0 0 0 0 B 0 · · ·

...
...

...
...

...
...

. . .


.

Then TA,B is a quasi-∗-A(n) operator, however for the vector x = (0, 0, 1,−2, 0, 0, · · · ), TA,B(x) = 0, but T∗A,B(x) , 0.

Therefore, the relation N(TA,B) ⊆ N(T∗A,B) does not always hold.

Theorem 2.7. Let T be a quasi-∗-A(n) operator. Then σ jp(T)\{0} = σp(T)\{0}.

Proof. Clearly by Lemma 2.5.

Lemma 2.8. [26] Let ϕ : B(H)→ B(K) be Berberian’s faithful ∗-representation. Then σ ja(T) = σ jp(ϕ(T)).

Theorem 2.9. Let T be a quasi-∗-A(n) operator. Then σ ja(T)\{0} = σa(T)\{0}.

Proof. Suppose T is a quasi-∗-A(n) operator. Let ϕ: B(H)→ B(K) be Berberian’s faithful ∗-representation of

Lemma 2.2. Then ϕ(T) is a quasi-∗-A(n) operator. Hence

σa(T)\{0} = σa(ϕ(T))\{0} by Lemma 2.2

= σp(ϕ(T))\{0} by Lemma 2.2

= σ jp(ϕ(T))\{0} by Theorem 2.7

= σ ja(T)\{0} by Lemma 2.8.

In the following, we shall give a sufficient condition for quasi-∗-A(n) operators to be normal.

Theorem 2.10. Let T be a quasi-∗-A(n) operator and Riesz (i.e., σe(T) = {0}). Then T is compact and normal.

Proof. Suppose T is a quasi-∗-A(n) operator. Then we have T∗(|T1+n
|

2
1+n − |T∗|2)T ≥ 0. Let ϕ: B(H) −→ B(K)

be Berberian’s faithful ∗-representation of Lemma 2.2, ϕ(T) is also a quasi-∗-A(n) operator and hence ϕ(T)

is normaloid by [22]. If T is Riesz, then by the West Decomposition Theorem [25], we can write T = K + Q,

where K is compact and Q is quasinilpotent. Since ϕ(T) = ϕ(Q), and hence σ(ϕ(T)) = σ(ϕ(Q)) = σe(Q) = {0},

we have that ϕ(T) is quasinilpotent. Therefore ||ϕ(T)|| = r(ϕ(T)) = 0, and hence ϕ(T) = 0. Thus T is compact.

For the normality of T, since T is normaloid, there exists λ ∈ σ(T) such that |λ| = ||T||. Observe that T is

compact, the subspace N(T − λ) which is invariant for T and T∗ is not equal to {0}. Consider the family of

subspace of the following form

N(T − λ) ∩N(T − λ)∗ = NT(λ)
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and it is easy to see that NT(λ)⊥NT(λ
′

) for λ , λ
′

. Observe that

< :=
∑

λ∈σp(T)

NT(λ)

reduces T. Thus we can write

T =

(
T1 0
0 T2

)
:<⊕<⊥ →<⊕<⊥.

Note that T1 is normal. If <⊥ = {0}, then evidently T is normal. Hence we assume that <⊥ , {0}. We

now claim that T2 = 0. Assume to the contrary that T2 , 0. Since T2 is a quasi-∗-A(n) operator, and hence

normaloid, we can find µ ∈ σ(T2) such that ||T2|| = |µ| and (T2 − µ)y = 0 for some non-zero element y in<⊥.

But (T2 − µ)∗y = 0, then

N(T − µ) ∩N(T − µ)∗ = NT(µ)

is not equal to {0} and is also orthogonal to <. we obtain a contradiction and T2 = 0, and hence we can

conclude that T is normal.

3. Tensor Products of Quasi-∗-A(n) Operators

Given non-zero T, S ∈ B(H), let T ⊗ S denote the tensor products on the product space H ⊗ H. The

operation of taking tensor products T ⊗ S preserves many properties of T, S ∈ B(H), but by no means all of

them. The normaloid property is invariant under tensor products [21]. T ⊗ S is hyponormal if and only if

T and S are hyponormal [17]. There exist paranormal operators T and S such that T ⊗ S is not paranormal

[2]. Duggal [9] showed that for non-zero T, S ∈ B(H), T ⊗ S is a p-hyponormal operator if and only if T, S

are p-hyponormal, where an operator T is said to be p-hyponormal if (T∗T)p
≥ (TT∗)p for 0 < p ≤ 1. This

result was extended to ∗-class A [11] and quasi-class A [20], respectively.

In this section we obtain an analogous result for quasi-∗-A(n) operators. Before we state main theorems,

we need several preliminary results.

Lemma 3.1. [13] Let A be a positive linear operator on a Hilbert space H. Then the following properties (1) and (2)

hold.

(1) (Aλx, x) ≥ (Ax, x)λ for any λ > 1 and any unit vector x.

(2) (Aλx, x) ≤ (Ax, x)λ for any λ ∈ [0, 1] and any unit vector x.

Lemma 3.2. [24, Proposition 2.2] Let A1,A2 ∈ B(H), B1,B2 ∈ B(K) be non-negative operators. If A1 and B1 are

non-zero, then the following assertions are equivalent:

(1) A1 ⊗ B1 ≤ A2 ⊗ B2.

(2) There exists c > 0 for which A1 ≤ cA2 and B1 ≤ c−1B2.

Theorem 3.3. Let T,S ∈ B(H) be non-zero operators. Then T ⊗ S is a quasi-∗-A(n) operator if and only if T and S

are quasi-∗-A(n) operators.
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Proof. Suppose that T and S are quasi-∗-A(n) operators. Then

(T ⊗ S)∗|(T ⊗ S)1+n
|

2
1+n (T ⊗ S) = T∗|T1+n

|
2

1+n T ⊗ S∗|S1+n
|

2
1+n S

≥ T∗|T∗|2T ⊗ S∗|S∗|2S

= (T ⊗ S)∗|(T ⊗ S)∗|2(T ⊗ S). (1)

Thus T ⊗ S is a quasi-∗-A(n) operator.

Conversely, suppose that T ⊗ S is a quasi-∗-A(n) operator. Without loss of generality, it is enough to

show that T is a quasi-∗-A(n) operator. Since T ⊗ S is a quasi-∗-A(n) operator, we obtain

T∗|T1+n
|

2
1+n T ⊗ S∗|S1+n

|
2

1+n S ≥ T∗|T∗|2T ⊗ S∗|S∗|2S.

Therefore, by Lemma 3.2, there exists a positive real number l for which

l(T∗|T1+n
|

2
1+n T) ≥ T∗|T∗|2T

and

l−1(S∗|S1+n
|

2
1+n S) ≥ S∗|S∗|2S.

Consequently, for arbitrary x ∈ H, it follows from Lemma 3.1 that

||T||4 = ||T∗T||2 = sup{(T∗|T∗|2Tx, x) : ||x|| = 1}

≤ lsup{(T∗|T1+n
|

2
1+n Tx, x) : ||x|| = 1}

≤ lsup{(T∗|T1+n
|
2Tx, x)

1
1+n ||Tx||

2n
1+n : ||x|| = 1}

≤ l||T||4. (2)

Similarly, ||S||4 ≤ l−1
||S||4. Clearly, we must have l = 1, and hence T is a quasi-∗-A(n) operator.

Let C2(H) denote the Hilbert-Schmidt class. For each pair of operators A,B ∈ B(H), there is an operator

ΓA,B defined on C2(H) via the formula ΓA,B = AXB in [4]. The adjoint of ΓA,B is given by the formula

Γ∗A,B(X) = A∗XB∗; see details [4].

In the following, we show that if X is a Hilbert-Schmidt operator, A and (B∗)−1 are quasi-∗-A(n) operators

such that AX = XB, then A∗X = XB∗.

Theorem 3.4. Let A,B ∈ B(H). Then ΓA,B is a quasi-∗-A(n) operator on C2(H) if and only if A and B∗ belong to

quasi-∗-A(n) operators.
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Proof. The unitary operator U : C2(H) → H ⊗ H by a map (x ⊗ y)∗ → x ⊗ y induces the ∗-isomorphism

Ψ : B(C2(H))→ B(H ⊗H) by a map X → UXU∗. Then we can obtain Ψ(ΓA,B) = A ⊗ B∗; see details [5]. This

completes the proof by Theorem 3.3.

Theorem 3.5. Let A and (B∗)−1 be quasi-∗-A(n) operators. If AX = XB for X ∈ C2(H), then A∗X = XB∗.

Proof. Let Γ be defined on C2(H) by ΓY = AYB−1. Since A and (B−1)∗ = (B∗)−1 are quasi-∗-A(n) operators,

we have that Γ is a quasi-∗-A(n) operator on C2(H) by Theorem 3.4. Moreover, we have ΓX = AXB−1 = X

because of AX = XB. Hence X is an eigenvector of Γ. By Lemma 2.5 we have Γ∗X = A∗X(B−1)∗ = X, that is,

A∗X = XB∗.
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