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Iteration by Cesàro Means for Quasi-contractive Mappings
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Abstract. Let C be a nonempty closed convex subset of a Banach space E and T be a quasi-contractive
mapping on C. We prove, the sequence {xn}, iteratively defined by,

x1 ∈ C
yn = snxn + (1 − sn)Tnxn

xn+1 = tnxn + (1 − tn) 1
n+1

∑n
j=0 T j yn,

is weakly convergent to a point of F(T). Moreover, by a numerical example (using Matlab software), the
main result and the rate of convergence are illustrated.

1. Introduction

Let C be a nonempty subset of a Banach space E, T : C→ C and

F(T) = {x ∈ C,Tx = x},

denotes the set of fixed points of T. A mapping T is said to be asymptotically nonexpansive if there exists

a sequence {kn} of positive numbers with limn→∞ kn = 1 such that for all x, y ∈ C and n ≥ 1,

‖Tnx − Tny‖ ≤ kn‖x − y‖.

The convergence of various iteration sequence was studied broadly by many authors over the last twenty

years for construction of fixed points of nonlinear mappings (see [4–7, 10]). In 1975, Baillon [1] proved the

first nonlinear ergodic theorem as follows:

Theorem 1.1. Suppose C is a nonempty, closed and convex subset of Hilbert space H and T : C→ C is a nonexpansive

mapping such that F(T) , ∅, then for every x ∈ C, the Cesàro means

Tnx =
1

n + 1

n∑
j=0

T jx,
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converges weakly to a fixed point of T.

Then, Shimizu-Takahashi [8] proved for an asymptotically nonexpansive mapping T in a Hilbert space, the

approximating sequence

xn = tnu + (1 − tn)
1

n + 1

n∑
j=0

T jxn,

converges strongly to the element of F(T). In addition, Several authors surveyed iterative approximation

of Cesàro means for asymptotically nonexpansive mappings (see[2, 3]).

The property of Cesàro means for nonexpansive mappings in uniformly convex Banach spaces was

studied by Bruck for the first time. Bruck proved the nonlinear ergodic theorem for nonexpansive mapping

in uniformly convex Banach space with Fréchet differentiable norms. In 1999, Shioji-Takahashi [9] surveyed

the strong convergence of sequence

xn+1 = tnu + (1 − tn)
1

n + 1

n∑
j=0

T jxn,

in uniformly convex Banach spaces with uniformly Gateaux differentiable norms.

2. Preliminaries

Within this section, we recall some preliminary definitions and lemmas which are needed in the next

section.

Definition 2.1. Suppose E is a Banach space. E is said to satisfy Opial’s condition, if for each sequence {xn} in E the

condition xn ⇀ x implies

limn−→∞‖xn − x‖ < limn−→∞‖xn − y‖,

for all y ∈ E and y , x.

Definition 2.2. E is said to have a Fréchet differentiable norm if, for each x ∈ S(E), the unit sphere of E,

limt−→0
‖x+ty‖−‖x‖

t exists and is attained uniformly in y ∈ S(E).

Definition 2.3. Let E be an arbitrary real Banach space with norm ‖.‖ and E∗ be the dual space of E. The duality

mapping J : E→ E∗ is defined by

Jx = { f ∈ E∗ :< x, f >= ‖x‖2, ‖ f ‖ = ‖x‖},

where < x, f > denotes the value of the continuous linear function f ∈ E∗ at x ∈ E.

Definition 2.4. Let C be a nonempty subset of Banach space E. A mapping T : C→ C is said to be quasi-contraction

if there exists k ∈ [0, 1) such that for all x, y ∈ C and n ≥ 1

‖Tnx − Tny‖ ≤ k max{||x − y||, ||Tnx − x||, ||y − Tny||, ||x − Tny||, ||Tnx − y||}. (1)
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Definition 2.5. Suppose E is a uniformly convex Banach space with a Fréchet differentiable norm. If {xn} ⊆ E,

ww({xn}) is as follows:

ww({xn}) = {x ∈ E| ∃{xn j } s.t. xn j ⇀ x}. (2)

In order to prove the main result, we need the following lemmas.

Lemma 2.6. (Osilike-Aniagbosor [6, Lemma 1]). Let an, bn and δn be sequences of nonnegative real numbers

satisfying the inequality

an+1 ≤ (1 + δn)an + bn.

If
∑
∞

n=0 δn < ∞ and
∑
∞

n=0 bn < ∞, then limn→∞ an exists. In particular, limn→∞ an = 0 whenever there exists a

subsequence {ank } in {an} which converges strongly to zero.

Lemma 2.7. Let {xn} be a bounded sequence on a reflexive Banach space X. If ww({xn}) = {x}, then xn ⇀ x.

Lemma 2.8. Let X be a normed space, C a convex subset of E and T : C → C a quasi-contractive mapping with

k ∈ (0, 1
2 ). If limn→∞ ‖xn − Tnxn‖ = 0 and limn→∞ ‖xn − xn+1‖ = 0. Then limn→∞ ||xn − Txn|| = 0.

Proof. Set rn = ||xn − Tnxn||, then

||xn+1 − Txn+1|| ≤ ||xn+1 − Tn+1xn+1|| + ||Txn+1 − Tn+1xn+1||

≤ rn+1 + k max{||xn+1 − Tnxn+1||, ||xn+1 − Txn+1||, ||Tn+1xn+1 − Tnxn+1||, ||Txn+1 − Tnxn+1||

, ||Tn+1xn+1 − xn+1||}.
(3)

Let ||Tn+1xn+1 − xn+1|| be the maximum, then

||xn+1 − Txn+1|| ≤ rn+1 + krn+1,

and limn→∞ ||xn − Txn|| = 0. Let ||xn+1 − Txn+1|| be the maximum, so

(1 − k)||xn+1 − Txn+1|| ≤ rn+1,

therefore limn→∞ ||xn − Txn|| = 0. Let ||xn+1 − Tnxn+1|| be the maximum. We have

||xn+1 − Tnxn+1|| ≤ ||xn+1 − xn|| + ||xn − Tnxn|| + ||Tnxn − Tnxn+1||, (4)

and also

||Tnxn − Tnxn+1|| ≤ k max{‖xn − xn+1‖, ‖Tnxn − xn‖, ‖Tnxn+1 − xn+1‖, ‖Tnxn − xn+1‖, ‖Tnxn+1 − xn‖}.

According to the above, the only case that has to be verified is, when ‖Tnxn+1 − xn+1‖ is the maximum. From

(4), we have

‖Tnxn+1 − xn+1‖ ≤ ‖xn+1 − xn‖ + ‖xn − Tnxn‖ + k‖xn+1 − Tnxn+1‖.
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Then

‖xn+1 − Tnxn+1‖ ≤
1

1 − k
(‖xn+1 − xn‖ + ‖xn − Tnxn‖).

Therefore

‖xn+1 − Txn+1‖ ≤ rn+1 +
1

1 − k
(‖xn+1 − xn‖ + rn).

Thus, ‖xn+1 − Txn+1‖ → 0 as n→∞. Let ||Tn+1xn+1 − Tnxn+1|| be the maximum. We have

||Tn+1xn+1 − Tnxn+1|| ≤ ||Tn+1xn+1 − xn+1|| + ||xn+1 − Tnxn+1||,

thus

||xn+1 − Txn+1|| ≤ rn+1 + krn+1 + k||xn+1 − Tnxn+1||.

Since

‖xn+1 − Tnxn+1‖ ≤
1

1 − k
(‖xn+1 − xn‖ + ‖xn − Tnxn‖),

we have

||xn+1 − Txn+1|| ≤ rn+1 + krn+1 +
k

1 − k
(‖xn+1 − xn‖ + rn).

Therefore, ‖xn+1 − Txn+1‖ → 0 as n→∞. Let ||Txn+1 − Tnxn+1|| be the maximum. We have

||Txn+1 − Tnxn+1|| ≤ ||Txn+1 − xn+1|| + ||Tnxn+1 − xn+1||,

therefore

(1 − k)||Txn+1 − xn+1|| ≤ rn+1 + k||Tnxn+1 − xn+1||.

Since

‖xn+1 − Tnxn+1‖ ≤
1

1 − k
(‖xn+1 − xn‖ + ‖xn − Tnxn‖),

we get

(1 − k)||Txn+1 − xn+1|| ≤ rn+1 +
k

1 − k
(‖xn+1 − xn‖ + rn‖).

Thus ‖xn+1 − Txn+1‖ → 0 as n→∞.

Proposition 2.9. Let E be a uniformly convex Banach space and C be a nonempty, closed and convex subset of E.

Suppose T : C −→ C is a quasi-contractive mapping such that k ∈ (0, 1
2 ) and F(T) , ∅. Then I − T is demiclosed at

zero in the sense that if {xn} is a sequence in C such that xn ⇀ x ∈ C and lim supm→∞ lim supn→∞ ||xn − Tmxn|| = 0,

then (I − T)x = 0.
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Proof. Assume that T is a continuous quasi-contractive mapping such that F(T) , ∅. Let {xn} be a sequence

in C such that xn ⇀ x ∈ C and lim supm→∞ lim supn→∞ ||xn − Tmxn|| → 0, then {xn} is bounded.

Now, the sets {Tmxn,m,n ≥ 1} and {Tmx,m ≥ 1} are bounded. Indeed, for every p ∈ F(T),

||Tmxn − p|| = ||Tmxn − Tmp|| ≤ k max{||xn − p||, ||xn − Tmxn||, ‖Tmxn − p‖}.

Let ||xn − Tmxn|| be maximum, then

||xn − Tmxn|| ≤ ||xn − p|| + ||p − Tmxn||,

so

||Tmxn − p|| ≤
k

1 − k
||xn − p||.

Then

||Tmxn − p|| ≤ r||xn − p||,

where k
1−k = r. Also

||Tmx − p|| ≤ r||x − p||.

Thus {Tmxn,m,n ≥ 1} and {Tmx,m ≥ 1} are bounded. Consequently

||x − Tmx|| ≤ ||x − xn|| + ||xn − Tmx||
≤ ||x − xn|| + ||xn − Tmxn|| + ||Tmxn − Tmx||.

Since T is a quasi-contractive mapping, we have

||Tmxn − Tmx|| ≤ k max{||xn − x||, ||xn − Tmx||, ||x − Tmx||, ||xn − Tmxn||, ||x − Tmxn||}.

Suppose ||Tmx − x|| is the maximum, then

||x − Tmx|| ≤
1

1 − k
(||x − xn|| + ||xn − Tmxn||).

Consider ||x − Tmxn|| is the maximum, so

||x − Tmxn|| ≤ ||xn − Tmxn|| + ||xn − x||,

thus

||x − Tmx|| ≤ (1 + k)[||xn − x|| + ||xn − Tmxn||].

Assume ||xn − Tmx|| is the maximum, then

||xn − Tmx|| ≤ ||Tmx − x|| + ||x − xn||,

therefore

||x − Tmx|| ≤
1

1 − k
[(1 + k)||x − xn|| + ||xn − Tmxn||].

Since lim supm→∞ lim supn→∞ ||xn − Tmxn|| = 0 and ||x − xn|| → 0 as n → ∞. Then Tmx → x as m → ∞.

Therefore, the continuity of T implies (I − T)x = 0. This completes the proof.
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3. Weak Convergence

Theorem 3.1. Let E be a uniformly convex Banach space which satisfies Opial’s condition. Suppose C is a nonempty

closed convex subset of E and T : C→ C a uniformly continuous quasi-contractive mapping such that k ∈ (0, 1
2 ) and

F(T) , ∅. Assume {tn} and {sn} are real sequences such that tn → 1 or
∑

tn < ∞, {sn} is bounded away from 0 and 1

and limn→∞ sn = 1. Then sequence {xn} defined by
x1 ∈ C
yn = snxn + (1 − sn)Tnxn

xn+1 = tnxn + (1 − tn) 1
n+1

∑n
j=0 T jyn,

(5)

converges weakly to a fixed point of T.

Proof. Let p be an element of F(T). We have

‖Tnyn − p‖ ≤ k max{‖yn − p‖, ‖Tnyn − yn‖, ‖Tnyn − p‖}.

Let ‖Tnyn − p‖ be the maximum. Since 0 < k < 1
2 , this is a contradiction. Suppose ‖Tnyn − yn‖ is the

maximum. So

‖Tnyn − yn‖ ≤ ‖Tnyn − p‖ + ‖yn − p‖,

thus

‖Tnyn − p‖ ≤
k

1 − k
‖yn − p‖. (6)

Assume ‖yn − p‖ is the maximum, then

‖Tnyn − p‖ ≤ k‖yn − p‖.

Set r = k
1−k . Since r > k, we have

‖Tnyn − p‖ ≤ r‖yn − p‖. (7)

According to the equations (6) and (7), we get

||xn+1 − p|| ≤ tn||xn − p|| + (1 − tn) 1
1+n
∑n

i=0 ||T
iyn − p||

≤ tn||xn − p|| + (1 − tn)r||yn − p||.

Also

‖yn − p‖ = ||snxn + (1 − sn)Tnxn − p||
≤ sn||xn − p|| + (1 − sn)||Tnxn − p||
≤ sn||xn − p|| + (1 − sn)r||xn − p||.

Thus

||xn+1 − p|| ≤ tn||xn − p|| + (1 − tn)r||yn − p||
≤ tn||xn − p|| + (1 − tn)rsn||xn − p|| + (1 − tn)(1 − sn)r2sn||xn − p||,
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then

||xn+1 − p|| ≤ (tn + (1 − tn)rsn + (1 − tn)(1 − sn)snr2)||xn − p||.

By Lemma 2.6, limn→∞ ||xn − p|| exists. Suppose limn→∞ ||xn − p|| = h for h > 0; similar to the above

limn→∞ ||yn − p|| exists. Also

||yn − xn|| = ||snxn + (1 − tn)Tnxn − xn||

= (1 − sn)||xn − Tnxn|| → 0.

Let Anxn = 1
n+1

∑n
j=0 T jxn. Therefore

||xn+1 − xn|| = ||tnxn + (1 − tn)Anxn − xn||

= (1 − tn)||xn − Anxn||.

Since ||xn+1 − xn|| → 0; ||xn − Tnxn|| → 0 as n → 0, F(T) , ∅, {xn} is a bounded sequence in C and T is

uniformly continuous. According to Lemma 2.8, ‖xn − Txn‖ → 0 as n → ∞. Since {xn} is bounded; there is

a subsequence {xnk } of {xn} such that xnk ⇀ x. Because T is uniformly continuous ||xn − Txn|| → 0. Then we

have ||xn − Tmxn|| → 0 for all m ≥ 1; so by Proposition 2.9 x ∈ F(T). For the rest of the proof it is enough to

prove ww(xn) contains exactly one point that is called x. In order to prove the uniqueness, consider there

is another subsequence {xn j } of {xn} that converges weakly to z , x. According to above, we have to have

z ∈ F(T). So limn→∞ ||xn − x|| and limn→∞ ||xn − z|| exists. Since E satisfies Opial’s condition, we have

limn→∞ ||xn − x|| = limk→∞ ||xnk − x||
< limn→∞ ||xn − z||,

and

limn→∞ ||xn − z|| = lim j→∞ ||xn j − z||
< limn→∞ ||xn − x||,

which leads to a contradiction. Hence x = z. This shows that ww({xn}) is a singleton. Therefore, {xn}

converges weakly to x by Lemma 2.7. This completes the proof.

Theorem 3.2. Let X be a Banach space and let C be a nonempty, bounded, closed and convex subset of X; let

T1,T2,T3, · · · ,TN : C → C be quasi-contractive mapping with constants ki ∈ (0, 1
2 ) for i = 1, 2, · · · ,N . Suppose

F =
⋂n

i=1 F(Ti) , ∅ and the sequence {xn} is defined by

x1 ∈ C
x1

n = α1
nxn + β1

nT1xn + γ1
nu1

n,
x2

n = α2
nxn + β2

nT2x1
n + γ2

nu2
n,

...
xN−1

n = αN−1
n xn + βN−1

n TN−1xN−2
n + γN−1

n uN−1
n ,

xn+1 = xN
n = αN

n xn + βN
n

1
n+1

∑N
j=1 T j

NxN−1
n + γN

n uN
n ,

(8)

where {u1
n}, . . . , {uN

n } are non-negative sequences in R such that
∑
∞

n=0 uN
n < ∞ and {α1

n}, . . . , {α
N
n }, {β1

n}, . . . , {β
N
n } and

{γ1
n}, . . . , {γ

N
n } are sequences in [0, 1] such that αi

n + βi
n + γi

n = 1 for all i = 1, 2, . . . ,N and
∑

i α
i
n + ki

1−ki
βi

n < ∞ and

also satisfy the following conditions:

i) limn→∞ βi
n = 0, ∀i = 1, 2, . . . ,N

∑
∞

n=0 β
N
n = ∞,

ii) limn→∞ γi
n = 0. (9)

Then {xn} converges strongly to the unique common fixed point of T1, . . . ,TN.
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Proof. Let p be an element of F. By using the same technique of Theorem 3.1, we have

‖xn − p‖ = ‖αN
n xn + βN

n
1

n+1

∑N
j=1 T j

NxN−1
n + γN

n uN
n − p‖

≤ αN
n ‖xn − p‖ +

βN
n

n+1

∑N
j=1 ‖T

j
NxN−1

n − p‖ + γN
n ‖uN

n − p‖

≤ αN
n ‖xn − p‖ + βN

n rN‖xN−1
n − p‖ + γN

n ‖un − p‖,

(10)

where ri = ki
1−ki

for i = 1, 2, · · · ,N. Let M = max{sup1≤i≤N ‖u
i
n − p‖}. So

‖xn − p‖ ≤ αN
n ‖xn − p‖ +

βN
n
r N‖x

N−1
n − p‖ + γN

n M

≤ (αN
n + βN

n rN)‖xN−1
n − p‖ + γN

n M

≤ hN‖xN−1
n − p‖ + γN

n M.

Suppose 1 ≤ i ≤ N − 1, then by using the technique of Theorem 3.1, we get

‖xi
n − p‖ = ‖αi

nxn + βi
nTixi−1

n + γi
nui

n − p‖

≤ αi
n‖xn − p‖ + βi

n‖Tixi−1
n − p‖ + γi

n‖ui
n − p‖

≤ αi
n‖xn − p‖ + βi

nri‖xi−1
n − p‖ + Mγi

n

≤ (αi
n + riβi

n)‖xi−1
n − p‖ + Mγi

n.

Set hi = αi
n + riβi

n. Clearly, hi < 1. So

‖xn+1 − p‖ ≤ hN(hN−1‖xN−1
n − p‖ + MγN−1

n ) + γN
n M

≤ hNhN−1‖xN−1
n − p‖ + (hNγN−1

n + γN
n )M

≤ hNhN−1hN−2‖xN−2
n − p‖ + M(γN

n + hNγN−1
n + hNhN−1γN−2

n )

≤ hN · · · h1‖xn − p‖ + M(γN
n + hNγN−1

n + . . . + hNhN−1 · · · h1γ1
n)

By Lemma 2.6, limn→∞ ||xn − p|| exists. The rest of the proof is the same as Theorem 3.1.

4. A Numerical Example

The purpose of our example is to illustrate our main result by a numerical test based on computer

programs with Matlab.

Example 4.1. Suppose T : R→ R is defined as follows:

Tx =
x

16
. (11)

It is clear, T is quasi-contraction and k = 1
16 . Set tn = n

3n+1 and sn = 1
3n . Then sequence xn which has been defined by

(5), is convergent.
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In the next graph, the rate of convergence is shown and the favorite result is obtained after 5 iterations.
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Figure 1: The iteration chart with initial value x1 = 10.

The sequence {xn} for n = 1, 2, . . . , 18 is given in the following table.

n xn n xn
1 10.00000 10 0.00012
2 3.49615 11 0.00005
3 0.33985 12 0.00003
4 0.10696 13 0.00005
5 0.03394 14 0.00001
6 0.01085 15 0.00000
7 0.00352 16 0.00000
8 0.00113 17 0.00000
9 0.00041 18 0.00000
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