Fixed Point of Single-Valued Cyclic Weak φ_{F}-Contraction Mappings

Sirous Moradi ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran.

Abstract

Fixed point results are presented for single-valued cyclic weakly φ_{F}-contractive mappings on complete metric spaces (X, d), where $\varphi:[0,+\infty) \longrightarrow[0,+\infty)$ is a function with $\varphi^{-1}(0)=\{0\}, \varphi(t)<t$ for all $t>0$ and $\varphi\left(t_{n}\right) \rightarrow 0$ implies $t_{n} \rightarrow 0$, and $F:[0,+\infty) \longrightarrow[0,+\infty)$ is continuous with $F^{-1}(0)=\{0\}$ and $F\left(t_{n}\right) \rightarrow 0$ implies $t_{n} \rightarrow 0$. Our results extend previous results given by Rhoades (2001)[20], Moradi and Beiranvand (2010)[13], Amini-Harandi (2010)[2] and Karapinar (2011)[11].

1. Introduction

Let (X, d) be a metric space. A mapping $T: X \rightarrow X$ is said to be a φ-weak contraction if there exists a $\operatorname{map} \varphi[0,+\infty) \longrightarrow[0,+\infty)$ with $\varphi^{-1}(0)=\{0\}$ such that

$$
\begin{equation*}
d(T x, T y) \leq d(x, y)-\varphi(d(x, y)) \tag{1}
\end{equation*}
$$

for all $x, y \in X$.
The concept of the φ-weak contraction was defined by Alber and Guerre-Delabriere [1] in 1977. Rhoades [20, Theorem 2] proved the following fixed point theorem for φ-weak contraction single-valued mappings, giving another generalization of the Banach contraction principle.

Theorem 1.1. Let (X, d) be a complete metric space and let $T: X \rightarrow X$ be a mapping such that

$$
\begin{equation*}
d(T x, T y) \leq d(x, y)-\varphi(d(x, y)) \tag{2}
\end{equation*}
$$

for all $x, y \in X($ i.e. it is φ-weakly contractive), where $\varphi[0,+\infty) \longrightarrow[0,+\infty)$ is a continuous and nondecreasing function with $\varphi^{-1}(0)=\{0\}$. Then, T has a unique fixed point.
By choosing $\psi(t)=t-\varphi(t), \varphi$-weak contractions become mappings of Boyd and Wong type [4], and on defining $k(t)=\frac{1-\varphi(t)}{t}$ for $t>0$ and $k(0)=0$, then φ-weak contractions become mappings of Reich [21]. In fixed point theory, φ-weak contraction has been studied by many authors, see for example [6], [11]-[18], [22,23], and the references therein.
In (2010) Amini-Harandi [2] proved the following theorem on the existence of a fixed point for a singlevalued mapping.

[^0]Theorem 1.2. Let (X, d) be a complete metric space and let $T: X \rightarrow X$ be a mapping satisfies

$$
\begin{equation*}
d(T x, T y) \leq \psi(d(x, y)) \tag{3}
\end{equation*}
$$

for each $x, y \in X$, where $\psi[0,+\infty) \longrightarrow[0,+\infty)$ is upper semicontinuous, $\psi(t)<t$ for each $t>0$ and satisfies $\lim \inf _{t \rightarrow \infty}(t-\psi(t))>0$. Then, T has a fixed point.

In (2010) Păcurar [19] presented the following definitions.
Definition 1.3. Let X be a non-empty set, m a positive integer and $T: X \rightarrow X$ an operator. By definition, $X=\cup_{i=1}^{m} X_{i}$ is a cyclic representation on X with respect to T if
(1) $X_{i}, i=1, \ldots$, , are non-empty sets;
(2) $T\left(X_{1}\right) \subseteq X_{2}, T\left(X_{2}\right) \subseteq X_{3}, \ldots, T\left(X_{m-1}\right) \subseteq X_{m}, T\left(X_{m}\right) \subseteq X_{1}$.

Definition 1.4. Let (X, d) be a metric space, m a positive integer, $A_{1}, A_{2}, \ldots, A_{m}$ closed non-empty subsets of X and $Y=\cup_{i=1}^{m} A_{i}$. An operator $T: Y \rightarrow Y$ is called a cyclic weak φ-contraction if
(1) $\cup_{i=1}^{m} A_{i}$ is a cyclic representation of Y with respect to T, and
(2) there exists a continuous, non-decreasing function $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ with $\varphi(t)>0$ for $t>0$ and $\varphi(0)=0$, such that

$$
\begin{equation*}
d(T x, T y) \leq d(x, y)-\varphi(d(x, y)) \tag{4}
\end{equation*}
$$

for any $x \in A_{i}, y \in A_{i+1}, i=1,2, \ldots, m$, where $A_{m+1}=A_{1}$.
Recently, Karapinar [11] proved the following theorem on the existence of fixed point for cyclic weak φ-contraction mappings.
Theorem 1.5. Let (X, d) be a complete metric space, $m \in \mathbb{N}, A_{1}, A_{2}, \ldots, A_{m}$ closed non-empty subsets of X and $Y=\bigcup_{i=1}^{m} A_{i}$. Let $T: Y \rightarrow Y$ be a cyclic weak $\phi-$ contractive mapping, where $\phi[0,+\infty) \longrightarrow[0,+\infty)$ with $\phi(t)>0$ is a continuous function for $t \in(0,+\infty)$, and $\phi(0)=0$. Then, T has a unique fixed point $z \in \bigcap_{i=1}^{m} A_{i}$.
There are another results on the existence of fixed point for cyclic mappings, see for example [3], [7], [8], [9] and [10].

In Section 3, we extend Rhoades, Moradi and Beiranvand, Amini-Harandi and Karapinar' results.

2. Preliminaries

In this work, (X, d) denote a complete metric space. We introduce the notation \mathcal{F} for all continuous mappings $F:[0,+\infty) \longrightarrow[0,+\infty)$ with $F^{-1}(0)=\{0\}$, and satisfies the following condition:

$$
\begin{equation*}
F\left(t_{n}\right) \rightarrow 0 \text { implies } t_{n} \rightarrow 0 . \tag{5}
\end{equation*}
$$

Let Ψ be the class of all nondecreasing mapping $\psi:[0,+\infty) \longrightarrow[0,+\infty)$ with $\psi^{-1}(0)=\{0\}$ and $\psi(t)<t$ for all $t>0$.
Also we introduce the notation Φ for all mappings $\varphi:[0,+\infty) \longrightarrow[0,+\infty)$ with $\varphi^{-1}(0)=\{0\}$ and $\varphi(t)<t$ for all $t>0$ and satisfies the following condition:

$$
\begin{equation*}
\varphi\left(t_{n}\right) \rightarrow 0 \text { implies } t_{n} \rightarrow 0 \tag{6}
\end{equation*}
$$

Obviously $\Psi \subset \Phi$. Also, every l.s.c. mapping $\varphi:[0,+\infty) \longrightarrow[0,+\infty)$ with $\varphi^{-1}(0)=\{0\}, \varphi(t)<t$ for all $t>0$ and $\lim \inf _{t \rightarrow \infty} \varphi(t)>0$ belong to Φ.
At last, suppose Ω be the class of all mappings $\varphi:[0,+\infty) \longrightarrow[0,+\infty)$ with $\varphi^{-1}(0)=\{0\}$ and satisfies the following condition:
"for every interval $[a, b] \subset(0,+\infty)$, there exists $\alpha \in(0,1)$ such that $t-\varphi(t) \leq \alpha t$ for all $t \in[a, b]$."
In Section 3 we show that $\Phi \subset \Omega$.

Definition 2.1. Let (X, d) be a metric space, m a positive integer, $A_{1}, A_{2}, \ldots, A_{m}$ closed non-empty subsets of X and $Y=\cup_{i=1}^{m} A_{i}$. An operator $T: Y \rightarrow Y$ is called a cyclic weak $\varphi_{F}-$ contraction if
(1) $\cup_{i=1}^{m} A_{i}$ is a cyclic representation of Y with respect to T, and
(2) there exist two mappings $\varphi, F:[0,+\infty) \rightarrow[0,+\infty)$ with $F^{-1}(0)=\varphi^{-1}(0)=\{0\}$ and $\varphi(t)<t$ for all $t>0$ such that

$$
\begin{equation*}
F(d(T x, T y)) \leq F(d(x, y))-\varphi(F(d(x, y))) \tag{7}
\end{equation*}
$$

for any $x \in A_{i}, y \in A_{i+1}, i=1,2, \ldots, m$, where $A_{m+1}=A_{1}$.

3. Main Results

At first we prove the following useful lemma.
Lemma 3.1. Let $\varphi \in \Phi$. Then for every closed interval $[a, b] \subset(0,+\infty)$ there exists $\alpha \in(0,1)$ such that

$$
\begin{equation*}
t-\varphi(t) \leq \alpha t \tag{8}
\end{equation*}
$$

for all $t \in[a, b]$.
Proof. Suppose for every $\alpha \in(0,1)$ there exists $t \in[a, b]$ such that $t-\varphi(t)>\alpha t$. Hence for a sequence $\left\{\alpha_{n}\right\}_{n=1}^{\infty} \subset(0,1)$ with $\lim _{n \rightarrow \infty} \alpha_{n}=1$, there exists a sequence $\left\{t_{n}\right\}_{n=1}^{\infty} \subset[a, b]$ such that $t_{n}-\varphi\left(t_{n}\right)>\alpha_{n} t_{n}$, for all $n \in \mathbb{N}$. Therefore, $0 \leq \varphi\left(t_{n}\right)<\left(1-\alpha_{n}\right) t_{n}$, for all $n \in \mathbb{N}$. Since $\lim _{n \rightarrow \infty} \alpha_{n}=1$ and $\left\{t_{n}\right\}_{n=1}^{\infty} \subset[a, b]$, $\lim _{n \rightarrow \infty}\left(1-\alpha_{n}\right) t_{n}=0$. Therefore, $\lim _{n \rightarrow \infty} \varphi\left(t_{n}\right)=0$. Since $\varphi \in \Phi$, then $\lim _{n \rightarrow \infty} t_{n}=0$ and this is a contradiction.
The following theorem extends Rhoades [20], Amini-Harandi [2], Karapinar [11], Moradi and Beiranvand [13] and Branciari's results [5].
Theorem 3.2. Let (X, d) be a complete metric space, $m \in \mathbb{N}, A_{1}, A_{2}, \ldots, A_{m}$ closed non-empty subsets of X and $Y=\bigcup_{i=1}^{m} A_{i}$. Suppose that $\varphi \in \Omega$ and $F \in \mathcal{F}$. Let $T: Y \rightarrow Y$ be a cyclic weak $\phi_{F}-$ contractive mapping. Then, T has a unique fixed point $x \in \bigcap_{i=1}^{m} A_{i}$.

Proof. Let $x_{1} \in Y$, and set $x_{n+1}=T x_{n}$ for all $n \in \mathbb{N}$. We may assume that $x_{1} \in A_{1}$. Notice that for any n, there exists $i_{n} \in\{1,2, \cdots, m\}$ such that $x_{n} \in A_{i_{n}}$ and $x_{n+1} \in A_{i_{n}+1}$. So $x_{1} \in A_{1}, x_{2} \in A_{2}, \cdots, x_{m} \in A_{m}, x_{m+1} \in A_{1}, x_{m+2} \in$ $A_{2}, \cdots, x_{2 m} \in A_{m}, x_{2 m+1} \in A_{1}, \cdots$.
At first we show that $\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=0$. Using (6), for all $n \in \mathbb{N}$

$$
\begin{equation*}
F\left(d\left(x_{n+2}, x_{n+1}\right)\right) \leq F\left(d\left(x_{n+1}, x_{n}\right)\right)-\varphi\left(F\left(d\left(x_{n+1}, x_{n}\right)\right)\right) . \tag{9}
\end{equation*}
$$

So the sequence $\left\{F\left(d\left(x_{n+1}, x_{n}\right)\right)\right\}$ is monotone nonincreasing and bounded below. Hence, there exists $r \geq 0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F\left(d\left(x_{n+1}, x_{n}\right)\right)=r \tag{10}
\end{equation*}
$$

If $r>0$, then there exists $\varepsilon>0$ such that $r-\varepsilon>0$. From (10), there exists $N_{0} \in \mathbb{N}$ such that for all $n \geq N_{0}$, $F\left(d\left(x_{n+1}, x_{n}\right)\right) \in[r-\varepsilon, r+\varepsilon]$. Since $\varphi \in \Omega$, there exists $\alpha \in(0,1)$ such that

$$
\begin{equation*}
t-\varphi(t) \leq \alpha t \tag{11}
\end{equation*}
$$

for all $t \in[r-\varepsilon, r+\varepsilon]$. Hence for all $n \geq N_{0}$, from (9)

$$
\begin{equation*}
F\left(d\left(x_{n+2}, x_{n+1}\right)\right) \leq \alpha F\left(d\left(x_{n+1}, x_{n}\right)\right) \tag{12}
\end{equation*}
$$

Since $F \in \mathcal{F}$, letting $n \rightarrow \infty$ in (12) we get $F(r) \leq \alpha F(r)$. Since $\alpha \in(0,1)$, then $F(r)=0$ and hence $r=0$. So from $F \in \mathcal{F}$ and (10) we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=0 \tag{13}
\end{equation*}
$$

Using triangular inequality and above inequality

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n+l}, x_{n}\right)=0 \tag{14}
\end{equation*}
$$

for all $l \in\{1,2, \cdots, m\}$.
Now we show that $\left\{x_{n}\right\}$ is a Cauchy sequence.
Suppose that $\left\{x_{n}\right\}$ is not Cauchy. So there exists $a>0$ and sequence $\{n(k)\}$ such that $n(k+1)>n(k)$ is minimal in the sense that $d\left(x_{n(k+1)}, x_{n(k)}\right)>a$. Obviously, $n(k) \geq k$ for all $k \in \mathbb{N}$. Using (13), there exists $N_{0} \in \mathbb{N}$ such that for all $k \geq N_{0}, d\left(x_{k+1}, x_{k}\right)>\frac{a}{3}$. So for all $k \geq N_{0}, n(k+1)-n(k) \geq 2$ and

$$
\begin{align*}
a & <d\left(x_{n(k+1)}, x_{n(k)}\right) \\
& \leq d\left(x_{n(k+1)}, x_{n(k+1)-1}\right)+d\left(x_{n(k+1)-1}, x_{n(k)}\right) \\
& \leq d\left(x_{n(k+1)}, x_{n(k+1)-1}\right)+a . \tag{15}
\end{align*}
$$

Letting $k \rightarrow \infty$ in above inequality, we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{n(k+1)}, x_{n(k)}\right)=a . \tag{16}
\end{equation*}
$$

Suppose that $m(1)=n(1), m(2)=n(2)+l_{2}$, where $l_{2} \in\{0,1, \cdots, m-1\}$ such that $m(2) \equiv m(1)+1(\bmod m)$, $m(3)=n(3), m(4)=n(4)+l_{4}$, where $l_{4} \in\{0,1, \cdots, m-1\}$ such that $m(4) \equiv m(3)+1(\bmod m), \cdots, m(2 k-1)=$ $n(2 k-1), m(2 k)=n(2 k)+l_{2 k}$, where $l_{2 k} \in\{0,1, \cdots, m-1\}$ such that $m(2 k) \equiv m(2 k-1)+1(\bmod m)$ and \cdots. For all $k \in \mathbb{N}$

$$
\begin{align*}
a & \leq d\left(x_{n(2 k)}, x_{n(2 k-1)}\right) \\
& \leq d\left(x_{n(2 k)}, x_{n(2 k)+l_{2 k}}\right)+d\left(x_{n(2 k)+l_{2 k}}, x_{n(2 k-1)}\right) \\
& =d\left(x_{n(2 k)}, x_{n(2 k)+l_{2 k}}\right)+d\left(x_{m(2 k)}, x_{m(2 k-1)}\right) \\
& \leq 2 d\left(x_{n(2 k)}, x_{n(2 k)+l_{2 k}}\right)+d\left(x_{n(2 k)}, x_{n(2 k-1)}\right) . \tag{17}
\end{align*}
$$

Using (14), (16) and above inequality, we conclude that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{m(2 k)}, x_{m(2 k-1)}\right)=a \tag{18}
\end{equation*}
$$

Since $F \in \mathcal{F}$ and (18) holds, then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} F\left(d\left(x_{m(2 k)}, x_{m(2 k-1)}\right)\right)=F(a) . \tag{19}
\end{equation*}
$$

Also,

$$
\begin{align*}
d\left(x_{m(2 k)}, x_{m(2 k-1)}\right) & \leq d\left(x_{m(2 k)}, x_{m(2 k)-1}\right)+d\left(x_{m(2 k)-1}, x_{m(2 k-1)-1}\right)+d\left(x_{m(2 k-1)-1}, x_{m(2 k-1)}\right) \\
& \leq 2 d\left(x_{m(2 k)}, x_{m(2 k)-1}\right)+d\left(x_{m(2 k)}, x_{m(2 k-1)}\right)+2 d\left(x_{m(2 k-1)-1}, x_{m(2 k-1)}\right) . \tag{20}
\end{align*}
$$

From (13), (18) and above inequality

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{m(2 k)-1}, x_{m(2 k-1)-1}\right)=a . \tag{21}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} F\left(d\left(x_{m(2 k)-1}, x_{m(2 k-1)-1}\right)\right)=F(a) . \tag{22}
\end{equation*}
$$

From (6) and $m(2 k) \equiv m(2 k-1)+1(\bmod m)$ for all $k \in \mathbb{N}$, we have

$$
\begin{equation*}
F\left(d\left(x_{m(2 k)}, x_{m(2 k-1)}\right)\right) \leq F\left(d\left(x_{m(2 k)-1}, x_{m(2 k-1)-1}\right)\right)-\varphi\left(F\left(d\left(x_{m(2 k)-1}, x_{m(2 k-1)-1}\right)\right)\right) . \tag{23}
\end{equation*}
$$

If $F(a)>0$ then for some $\varepsilon>0, F(a)-\varepsilon>0$. From (19) and (20), there exists $N_{0} \in \mathbb{N}$ such that for all $n \geq N_{0}$, $F\left(d\left(x_{m(2 k)}, x_{m(2 k-1)}\right)\right), F\left(d\left(x_{m(2 k)-1}, x_{m(2 k-1)-1}\right)\right) \in[F(a)-\varepsilon, F(a)+\varepsilon]$. Since $\varphi \in \Omega$, there exists $\alpha \in(0,1)$ such that

$$
\begin{equation*}
t-\varphi(t) \leq \alpha t \tag{24}
\end{equation*}
$$

for all $t \in[F(a)-\varepsilon, F(a)+\varepsilon]$. Hence for all $k \geq N_{0}$, from (23)

$$
\begin{equation*}
F\left(d\left(x_{m(2 k)}, x_{m(2 k-1)}\right)\right) \leq \alpha F\left(d\left(x_{m(2 k)-1}, x_{m(2 k-1)-1}\right)\right) \tag{25}
\end{equation*}
$$

Letting $k \rightarrow \infty$ in above inequality, we get, $F(a) \leq \alpha F(a)$. Since $\alpha \in(0,1)$, then $F(a)=0$ and hence $a=0$ and this is a contradiction.
Therefore $\left\{x_{n}\right\}$ is Cauchy.
Since (X, d) is complete and $\left\{x_{n}\right\}$ is Cauchy, there exists $x \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x$. From $\lim _{n \rightarrow \infty} x_{n m+i}=x$, $\left\{x_{n m+i}: n \in \mathbb{N}\right\} \subseteq A_{i}$ and A_{i} is closed, we conclude that $x \in A_{i}$ for $i=1,2, \cdots, m$. Therefore $x \in \bigcap_{i=1}^{m} A_{i}$. For all $n \in \mathbb{N}$, from (6) and $x \in \bigcap_{i=1}^{m} A_{i}$

$$
\begin{align*}
F\left(d\left(x_{n+1}, T x\right)\right) & =F\left(d\left(T x_{n}, T x\right)\right) \\
& \leq F\left(d\left(x_{n}, x\right)\right)-\varphi\left(F\left(d\left(x_{n}, x\right)\right)\right) \\
& \leq F\left(d\left(x_{n}, x\right)\right) \tag{26}
\end{align*}
$$

Letting $n \rightarrow \infty$ in above inequality, we get

$$
\begin{equation*}
F(d(x, T x)) \leq \alpha F(d(x, x))=0 . \tag{27}
\end{equation*}
$$

Therefore $F(d(x, T x))=0$. So $d(x, T x)=0$ and hence, $T x=x$. Thus T has a fixed point $x \in \bigcap_{i=1}^{m} A_{i}$. Uniqueness of the fixed point in $\bigcap_{i=1}^{m} A_{i}$ follows from (8) and this completes the proof.
Remark 3.3. By taking $A_{1}=A_{2}=\cdots=A_{m}=X$ and define $\varphi(t)=t-\psi(t)$, we can generalized Theorem 1.2.
Theorem 3.4. Let $T: Y \rightarrow Y$ be a mapping as in Theorem 3.1 and $F(t)=t$. Then the fixed point problem for T is well-posed, that is, if there exists a sequence $\left\{y_{n}\right\}$ in Y with $\lim _{n \rightarrow \infty} d\left(y_{n}, T y_{n}\right)=0$, then $\lim _{n \rightarrow \infty} y_{n}=x$ (x is fixed point of T in $x \in \bigcap_{i=1}^{m} A_{i}$).

Proof. Since $x \in \bigcap_{i=1}^{m} A_{i}$ and $y_{n} \in Y$, from (6)

$$
\begin{equation*}
d\left(y_{n}, x\right) \leq d\left(y_{n}, T y_{n}\right)+d\left(T y_{n}, T x\right) \leq d\left(y_{n}, T y_{n}\right)+d\left(y_{n}, x\right)-\varphi\left(d\left(y_{n}, x\right)\right) \tag{28}
\end{equation*}
$$

Therefore $\lim _{n \rightarrow \infty} \varphi\left(d\left(y_{n}, x\right)\right)=0$. Since $\varphi \in \Phi$, then $\lim _{n \rightarrow \infty} d\left(y_{n}, x\right)=0$ and this completes the proof.
Theorem 3.5. Let $T: Y \rightarrow Y$ be a mapping as in Theorem 3.1 and $F(t)=t$. Then T has the limit shadowing property, that is, if there exists a convergent sequence $\left\{y_{n}\right\}$ in Y with $\lim _{n \rightarrow \infty} d\left(y_{n+1}, T y_{n}\right)=0$, then there exists $x \in Y$ such that $\lim _{n \rightarrow \infty} d\left(y_{n}, T^{n} x\right)=0$.
Proof. Let $x \in \bigcap_{i=1}^{m} A_{i}$ be the fixed point of T. With a method similar to that in Theorem 3.3 we can conclude this theorem.

The following theorem is a direct result of Theorem 3.2, where extends Theorem 1.2.
Theorem 3.6. Let (X, d) be a complete metric space and let $T: X \rightarrow X$ be a mapping satisfies

$$
\begin{equation*}
F(d(T x, T y)) \leq \psi(F(d(x, y))) \tag{29}
\end{equation*}
$$

for all $x, y \in X$, where $F \in \Psi$ and $\psi:[0,+\infty) \rightarrow[0,+\infty)$ is upper semi-continuous with $\psi(t)<t$ for all $t>0$ and satisfies $\lim \inf _{t \rightarrow \infty}(t-\psi(t))>0$. Then T has a unique fixed point.

Proof. Let $\phi(t)=t-\psi(t)$ and apply Theorem 3.2.

Acknowledgments. The author would like to thank to anonymous referees for valuable suggestions and comments.

References

[1] Ya. I. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert space, in: I. Gohberg, Yu. Lyubich(Eds.), New Results in Operator Theory, Advances and Applications, 98, Birkhäuser, Basel, (1997) 7-22.
[2] A. Amini-Harandi, Endpoints of set-valued contractions in metric spaces, Nonlinear Analysis (TMA) 72 (2010) 132-134.
[3] N. Bilgili, I. M. Erhan, E. Karapinar, D. Turkoglu, Cyclic contractions and related fixed point theorems on G-metric spaces, Applied Mathematics and Information Sciences 8 (2014) No. 4, 1541-1551.
[4] D. W. Boyd, J. S. Wong, On nonlinear contractions, Proceedings of the American Mathematical Society 20 (1969) 458-464.
[5] A. Branciari, A fixed point theorem for mapping satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences 29 (2002) 531-536.
[6] P. Z. Daffer, H. Kaneko, Fixed points of generalized contractive multi-valued mappings, Journal of Mathematical Analysis and Applications 192 (1995) 655-666.
[7] M. De la Sen, E. Karapinar, On a cyclic Jungck modified TS-iterative procedure with application examples, Applied Mathematics and Computation 233 (2014) 383-397.
[8] W. Du, E. Karapinar, A note on Caristi type cyclic maps: Related results and applications, Fixed Point Theory and Applications 2013:344 (2013) 194-198.
[9] N. Hussain, E. Karapinar, S. Sedghi, N. Shobkolaei, S. Firouzian, Cyclic (ϕ)-contractions in uniform spaces and related fixed point results, Abstract and Applied Analysis, Article ID 976859 (2014) 7 pages.
[10] M. Jleli, E. Karapinar, B. Samet, On cyclic (ψ, ϕ)-contractions in Kaleva-Seikkala's type fuzzy metric spaces, Journal of Intelligent and Fuzzy Systems 27 (2014) 2045-2053.
[11] E. Karapinar, Fixed point theory for cyclic weak ϕ-contraction, Applied Mathematics Letters 24 (2011) 822-825.
[12] E. Karapinar, S. Moradi, Fixed point theory for cyclic generalized (φ, ϕ)-contraction mappings, Annali Dell' Universita' Di Ferrara 59 (2013) 117-125.
[13] S. Moradi, A. Beiranvand, Fixed point of T_{F}-contractive single-valued mappings, Iranian Journal of Mathematical Sciences and Informatics 5 (2010) 25-32.
[14] S. Moradi, E. Analoei, Common fixed point of generalized (ψ, φ)-weak contraction mappings, International Journal of Nonlinear Analysis and Applications 3 (2012) 24-30.
[15] S. Moradi, A. Farajzadeh, On the fixed point of (ψ, φ)-weak and generalized (ψ, φ)-weak contraction mappings, Applied Mathematics Letters 29 (2002) 531-536.
[16] S. Moradi, Z. Fathi, E. Analouee, Common fixed point of single valued generalized φ_{f}-weakly contractive mappings, Applied Mathematics Letters 24 (2011) 771-776
[17] S. Moradi, F. Khojasteh, Endpoints of multi-valued generalized weak contraction mappings, Nonlinear Analysis (TMA) 74 (2011) 2170-2174.
[18] S. Moradi, F. Khojasteh, Endpoints of φ-weak and generalized φ-weak contractive mappings, Filomat 26:4 (2012) 725-732.
[19] M. Păcurar, I. A. Rus, Fixed point theory for cyclic φ-contraction, Nonlinear Analysis (TMA) 72 (2010) 1181-1187.
[20] B. E. Rhoades, Some theorems on weakly contractive maps, Proceedings of the Third World Congress of Nonlinear Analysis, Part 4 (Catania 2000), Nonlinear Analysis (TMA) 47 (2001) 2683-2693.
[21] S. Reich, Some fixed point problems, Atti della Accademia Nazionale dei Lincei 57 (1974) 194198.
[22] B. D. Rouhani, S. Moradi, Common Fixed Point of Multi-valued Generalized ϕ-Weak Contractive Mappings, Fixed Point Theory and Applications, Doi:10.1155/2010/708984 (2010).
[23] Q. Zhang, Y. Song, Fixed point theory for generalized φ-weak contractions, Applied Mathematics Letters 22 (2009) 758-763.

[^0]: 2010 Mathematics Subject Classification. 47H10; 54C60
 Keywords. Single-valued mapping, Cyclic weak φ_{F}-contraction, Complete metric space.
 Received: 18 April 2013; Accepted: 20 January 2015
 Communicated by Dragan S. Djordjević
 Email address: s-moradi@araku.ac.ir, sirousmoradi@gmail.com (Sirous Moradi)

