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Abstract. Fixed point results are presented for single-valued cyclic weakly ϕF−contractive mappings on
complete metric spaces (X, d), where ϕ : [0,+∞) −→ [0,+∞) is a function with ϕ−1(0) = {0}, ϕ(t) < t for all
t > 0 and ϕ(tn)→ 0 implies tn → 0, and F : [0,+∞) −→ [0,+∞) is continuous with F−1(0) = {0} and F(tn)→ 0
implies tn → 0. Our results extend previous results given by Rhoades (2001)[20], Moradi and Beiranvand
(2010)[13], Amini-Harandi (2010)[2] and Karapinar (2011)[11].

1. Introduction

Let (X, d) be a metric space. A mapping T : X → X is said to be a ϕ−weak contraction if there exists a
map ϕ[0,+∞) −→ [0,+∞) with ϕ−1(0) = {0} such that

d(Tx,Ty) ≤ d(x, y) − ϕ(d(x, y)) (1)

for all x, y ∈ X.
The concept of the ϕ−weak contraction was defined by Alber and Guerre-Delabriere [1] in 1977. Rhoades
[20, Theorem 2] proved the following fixed point theorem for ϕ−weak contraction single-valued mappings,
giving another generalization of the Banach contraction principle.

Theorem 1.1. Let (X, d) be a complete metric space and let T : X→ X be a mapping such that

d(Tx,Ty) ≤ d(x, y) − ϕ(d(x, y)) (2)

for all x, y ∈ X(i.e. it is ϕ−weakly contractive), where ϕ[0,+∞) −→ [0,+∞) is a continuous and nondecreasing
function with ϕ−1(0) = {0}. Then, T has a unique fixed point.

By choosing ψ(t) = t − ϕ(t), ϕ−weak contractions become mappings of Boyd and Wong type [4], and on
defining k(t) =

1−ϕ(t)
t for t > 0 and k(0) = 0, then ϕ−weak contractions become mappings of Reich [21].

In fixed point theory, ϕ−weak contraction has been studied by many authors, see for example [6], [11]-[18],
[22, 23], and the references therein.
In (2010) Amini-Harandi [2] proved the following theorem on the existence of a fixed point for a single-
valued mapping.
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Email address: s-moradi@araku.ac.ir, sirousmoradi@gmail.com (Sirous Moradi)



S. Moradi / Filomat 28:9 (2014), 1747–1752 1748

Theorem 1.2. Let (X, d) be a complete metric space and let T : X→ X be a mapping satisfies

d(Tx,Ty) ≤ ψ(d(x, y)) (3)

for each x, y ∈ X, where ψ[0,+∞) −→ [0,+∞) is upper semicontinuous, ψ(t) < t for each t > 0 and satisfies
lim inft→∞(t − ψ(t)) > 0. Then, T has a fixed point.

In (2010) Pǎcurar [19] presented the following definitions.

Definition 1.3. Let X be a non-empty set, m a positive integer and T : X→ X an operator. By definition, X = ∪m
i=1Xi

is a cyclic representation on X with respect to T if

(1) Xi, i = 1, ...,m are non-empty sets;

(2) T(X1) ⊆ X2,T(X2) ⊆ X3, ...,T(Xm−1) ⊆ Xm,T(Xm) ⊆ X1.

Definition 1.4. Let (X, d) be a metric space, m a positive integer, A1,A2, ...,Am closed non-empty subsets of X and
Y = ∪m

i=1Ai. An operator T : Y→ Y is called a cyclic weak ϕ−contraction if

(1) ∪m
i=1Ai is a cyclic representation of Y with respect to T, and

(2) there exists a continuous, non-decreasing function ϕ : [0,+∞)→ [0,+∞) with ϕ(t) > 0 for t > 0 and ϕ(0) = 0,
such that

d(Tx,Ty) ≤ d(x, y) − ϕ(d(x, y)) (4)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, ...,m, where Am+1 = A1.

Recently, Karapinar [11] proved the following theorem on the existence of fixed point for cyclic weak
ϕ−contraction mappings.

Theorem 1.5. Let (X, d) be a complete metric space, m ∈ N, A1,A2, ...,Am closed non-empty subsets of X and
Y =
⋃m

i=1 Ai. Let T : Y→ Y be a cyclic weak φ− contractive mapping, where φ[0,+∞) −→ [0,+∞) with φ(t) > 0 is
a continuous function for t ∈ (0,+∞), and φ(0) = 0. Then, T has a unique fixed point z ∈

⋂m
i=1 Ai.

There are another results on the existence of fixed point for cyclic mappings, see for example [3], [7], [8], [9]
and [10].

In Section 3, we extend Rhoades, Moradi and Beiranvand, Amini-Harandi and Karapinar’ results.

2. Preliminaries

In this work, (X, d) denote a complete metric space. We introduce the notation F for all continuous
mappings F : [0,+∞) −→ [0,+∞) with F−1(0) = {0}, and satisfies the following condition:

F(tn)→ 0 implies tn → 0. (5)

Let Ψ be the class of all nondecreasing mapping ψ : [0,+∞) −→ [0,+∞) with ψ−1(0) = {0} and ψ(t) < t for
all t > 0.
Also we introduce the notation Φ for all mappings ϕ : [0,+∞) −→ [0,+∞) with ϕ−1(0) = {0} and ϕ(t) < t for
all t > 0 and satisfies the following condition:

ϕ(tn)→ 0 implies tn → 0. (6)

Obviously Ψ ⊂ Φ. Also, every l.s.c. mapping ϕ : [0,+∞) −→ [0,+∞) with ϕ−1(0) = {0}, ϕ(t) < t for all t > 0
and lim inft→∞ ϕ(t) > 0 belong to Φ.
At last, suppose Ω be the class of all mappings ϕ : [0,+∞) −→ [0,+∞) with ϕ−1(0) = {0} and satisfies the
following condition:
”for every interval [a, b] ⊂ (0,+∞), there exists α ∈ (0, 1) such that t − ϕ(t) ≤ αt for all t ∈ [a, b].”

In Section 3 we show that Φ ⊂ Ω.
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Definition 2.1. Let (X, d) be a metric space, m a positive integer, A1,A2, ...,Am closed non-empty subsets of X and
Y = ∪m

i=1Ai. An operator T : Y→ Y is called a cyclic weak ϕF−contraction if

(1) ∪m
i=1Ai is a cyclic representation of Y with respect to T, and

(2) there exist two mappings ϕ,F : [0,+∞) → [0,+∞) with F−1(0) = ϕ−1(0) = {0} and ϕ(t) < t for all t > 0 such
that

F(d(Tx,Ty)) ≤ F(d(x, y)) − ϕ(F(d(x, y))) (7)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, ...,m, where Am+1 = A1.

3. Main Results

At first we prove the following useful lemma.

Lemma 3.1. Let ϕ ∈ Φ. Then for every closed interval [a, b] ⊂ (0,+∞) there exists α ∈ (0, 1) such that

t − ϕ(t) ≤ αt (8)

for all t ∈ [a, b].

Proof. Suppose for every α ∈ (0, 1) there exists t ∈ [a, b] such that t − ϕ(t) > αt. Hence for a sequence
{αn}

∞

n=1 ⊂ (0, 1) with limn→∞ αn = 1, there exists a sequence {tn}
∞

n=1 ⊂ [a, b] such that tn − ϕ(tn) > αntn, for
all n ∈ N. Therefore, 0 ≤ ϕ(tn) < (1 − αn)tn, for all n ∈ N. Since limn→∞ αn = 1 and {tn}

∞

n=1 ⊂ [a, b],
limn→∞(1 − αn)tn = 0. Therefore, limn→∞ ϕ(tn) = 0. Since ϕ ∈ Φ, then limn→∞ tn = 0 and this is a
contradiction.

The following theorem extends Rhoades [20], Amini-Harandi [2], Karapinar [11], Moradi and Beiranvand
[13] and Branciari’s results [5].

Theorem 3.2. Let (X, d) be a complete metric space, m ∈ N, A1,A2, ...,Am closed non-empty subsets of X and
Y =
⋃m

i=1 Ai. Suppose that ϕ ∈ Ω and F ∈ F . Let T : Y → Y be a cyclic weak φF− contractive mapping. Then, T
has a unique fixed point x ∈

⋂m
i=1 Ai.

Proof. Let x1 ∈ Y, and set xn+1 = Txn for all n ∈N. We may assume that x1 ∈ A1. Notice that for any n, there
exists in ∈ {1, 2, · · · ,m} such that xn ∈ Ain and xn+1 ∈ Ain+1. So x1 ∈ A1, x2 ∈ A2, · · · , xm ∈ Am, xm+1 ∈ A1, xm+2 ∈

A2, · · · , x2m ∈ Am, x2m+1 ∈ A1, · · · .
At first we show that lim

n→∞
d(xn+1, xn) = 0. Using (6), for all n ∈N

F(d(xn+2, xn+1)) ≤ F(d(xn+1, xn)) − ϕ(F(d(xn+1, xn))). (9)

So the sequence {F(d(xn+1, xn))} is monotone nonincreasing and bounded below. Hence, there exists r ≥ 0
such that

lim
n→∞

F(d(xn+1, xn)) = r. (10)

If r > 0, then there exists ε > 0 such that r − ε > 0. From (10), there exists N0 ∈ N such that for all n ≥ N0,
F(d(xn+1, xn)) ∈ [r − ε, r + ε]. Since ϕ ∈ Ω, there exists α ∈ (0, 1) such that

t − ϕ(t) ≤ αt (11)

for all t ∈ [r − ε, r + ε]. Hence for all n ≥ N0, from (9)

F(d(xn+2, xn+1)) ≤ αF(d(xn+1, xn)). (12)
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Since F ∈ F , letting n → ∞ in (12) we get F(r) ≤ αF(r). Since α ∈ (0, 1), then F(r) = 0 and hence r = 0. So
from F ∈ F and (10) we conclude that

lim
n→∞

d(xn+1, xn) = 0. (13)

Using triangular inequality and above inequality

lim
n→∞

d(xn+l, xn) = 0, (14)

for all l ∈ {1, 2, · · · ,m}.
Now we show that {xn} is a Cauchy sequence.
Suppose that {xn} is not Cauchy. So there exists a > 0 and sequence {n(k)} such that n(k + 1) > n(k) is minimal
in the sense that d(xn(k+1), xn(k)) > a. Obviously, n(k) ≥ k for all k ∈ N. Using (13), there exists N0 ∈ N such
that for all k ≥ N0, d(xk+1, xk) > a

3 . So for all k ≥ N0, n(k + 1) − n(k) ≥ 2 and

a < d(xn(k+1), xn(k))
≤ d(xn(k+1), xn(k+1)−1) + d(xn(k+1)−1, xn(k))
≤ d(xn(k+1), xn(k+1)−1) + a. (15)

Letting k→∞ in above inequality, we get

lim
k→∞

d(xn(k+1), xn(k)) = a. (16)

Suppose that m(1) = n(1),m(2) = n(2) + l2, where l2 ∈ {0, 1, · · · ,m − 1} such that m(2) ≡ m(1) + 1(mod m),
m(3) = n(3),m(4) = n(4) + l4, where l4 ∈ {0, 1, · · · ,m − 1} such that m(4) ≡ m(3) + 1(mod m), · · · , m(2k − 1) =
n(2k − 1),m(2k) = n(2k) + l2k, where l2k ∈ {0, 1, · · · ,m − 1} such that m(2k) ≡ m(2k − 1) + 1(mod m) and · · · .
For all k ∈N

a ≤ d(xn(2k), xn(2k−1))
≤ d(xn(2k), xn(2k)+l2k ) + d(xn(2k)+l2k , xn(2k−1))
= d(xn(2k), xn(2k)+l2k ) + d(xm(2k), xm(2k−1))
≤ 2d(xn(2k), xn(2k)+l2k ) + d(xn(2k), xn(2k−1)). (17)

Using (14), (16) and above inequality, we conclude that

lim
k→∞

d(xm(2k), xm(2k−1)) = a. (18)

Since F ∈ F and (18) holds, then

lim
k→∞

F(d(xm(2k), xm(2k−1))) = F(a). (19)

Also,

d(xm(2k), xm(2k−1)) ≤ d(xm(2k), xm(2k)−1) + d(xm(2k)−1, xm(2k−1)−1) + d(xm(2k−1)−1, xm(2k−1))
≤ 2d(xm(2k), xm(2k)−1) + d(xm(2k), xm(2k−1)) + 2d(xm(2k−1)−1, xm(2k−1)). (20)

From (13), (18) and above inequality

lim
k→∞

d(xm(2k)−1, xm(2k−1)−1) = a. (21)

Hence,

lim
k→∞

F(d(xm(2k)−1, xm(2k−1)−1)) = F(a). (22)
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From (6) and m(2k) ≡ m(2k − 1) + 1(mod m) for all k ∈N, we have

F(d(xm(2k), xm(2k−1))) ≤ F(d(xm(2k)−1, xm(2k−1)−1)) − ϕ(F(d(xm(2k)−1, xm(2k−1)−1))). (23)

If F(a) > 0 then for some ε > 0, F(a) − ε > 0. From (19) and (20), there exists N0 ∈N such that for all n ≥ N0,
F(d(xm(2k), xm(2k−1))),F(d(xm(2k)−1, xm(2k−1)−1)) ∈ [F(a) − ε,F(a) + ε]. Since ϕ ∈ Ω, there exists α ∈ (0, 1) such that

t − ϕ(t) ≤ αt (24)

for all t ∈ [F(a) − ε,F(a) + ε]. Hence for all k ≥ N0, from (23)

F(d(xm(2k), xm(2k−1))) ≤ αF(d(xm(2k)−1, xm(2k−1)−1)). (25)

Letting k → ∞ in above inequality, we get, F(a) ≤ αF(a). Since α ∈ (0, 1), then F(a) = 0 and hence a = 0 and
this is a contradiction.
Therefore {xn} is Cauchy.
Since (X, d) is complete and {xn} is Cauchy, there exists x ∈ X such that lim

n→∞
xn = x. From lim

n→∞
xnm+i = x,

{xnm+i : n ∈N} ⊆ Ai and Ai is closed, we conclude that x ∈ Ai for i = 1, 2, · · · ,m. Therefore x ∈
⋂m

i=1 Ai.
For all n ∈N, from (6) and x ∈

⋂m
i=1 Ai

F(d(xn+1,Tx)) = F(d(Txn,Tx))
≤ F(d(xn, x)) − ϕ(F(d(xn, x)))
≤ F(d(xn, x)). (26)

Letting n→∞ in above inequality, we get

F(d(x,Tx)) ≤ αF(d(x, x)) = 0. (27)

Therefore F(d(x,Tx)) = 0. So d(x,Tx) = 0 and hence, Tx = x. Thus T has a fixed point x ∈
⋂m

i=1 Ai.
Uniqueness of the fixed point in

⋂m
i=1 Ai follows from (8) and this completes the proof.

Remark 3.3. By taking A1 = A2 = · · · = Am = X and define ϕ(t) = t − ψ(t), we can generalized Theorem 1.2.

Theorem 3.4. Let T : Y → Y be a mapping as in Theorem 3.1 and F(t) = t. Then the fixed point problem for T is
well-posed, that is, if there exists a sequence {yn} in Y with lim

n→∞
d(yn,Tyn) = 0, then lim

n→∞
yn = x (x is fixed point of T

in x ∈
⋂m

i=1 Ai).

Proof. Since x ∈
⋂m

i=1 Ai and yn ∈ Y, from (6)

d(yn, x) ≤ d(yn,Tyn) + d(Tyn,Tx) ≤ d(yn,Tyn) + d(yn, x) − ϕ(d(yn, x)), (28)

Therefore lim
n→∞

ϕ(d(yn, x)) = 0. Since ϕ ∈ Φ, then lim
n→∞

d(yn, x) = 0 and this completes the proof.

Theorem 3.5. Let T : Y→ Y be a mapping as in Theorem 3.1 and F(t) = t. Then T has the limit shadowing property,
that is, if there exists a convergent sequence {yn} in Y with lim

n→∞
d(yn+1,Tyn) = 0, then there exists x ∈ Y such that

lim
n→∞

d(yn,Tnx) = 0.

Proof. Let x ∈
⋂m

i=1 Ai be the fixed point of T. With a method similar to that in Theorem 3.3 we can conclude
this theorem.

The following theorem is a direct result of Theorem 3.2, where extends Theorem 1.2.

Theorem 3.6. Let (X, d) be a complete metric space and let T : X→ X be a mapping satisfies

F(d(Tx,Ty)) ≤ ψ(F(d(x, y))) (29)

for all x, y ∈ X, where F ∈ Ψ and ψ : [0,+∞) → [0,+∞) is upper semi-continuous with ψ(t) < t for all t > 0 and
satisfies lim inft→∞(t − ψ(t)) > 0. Then T has a unique fixed point.
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Proof. Let φ(t) = t − ψ(t) and apply Theorem 3.2.
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