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Abstract. Let n > 3 be an even number. In this paper, we show how the orders of maximal abelian
subgroups of the finite group G can influence on the structure of G. More precisely, we show that if for a
finite group G, M(G) = M(Bn(q)), then G � Bn(q). Note that M(G) is the set of orders of maximal abelian
subgroups of G. Let Γ(G) denote the non-commuting graph of G. As a consequence of our result, we show
that if G is a finite group with Γ(G) � Γ(Bn(q)), then G � Bn(q).

1. Introduction

For an integer z > 1, we denote by π(z) the set of all prime divisors of z. If G is a finite group, then π(|G|)
is denoted by π(G). The prime graph (or Gruenberg-Kegel graph) GK(G) of a group G is the graph with vertex
set π(G) where two distinct primes p and q are joined by an edge (we write (p, q) ∈ GK(G)) if G contains an
element of order pq. Let s(G) be the number of connected components of GK(G). A list of all finite simple
groups with disconnected prime graph has been obtained in [11] and [20]. A finite group G is said to be
characterizable by the set of orders of its maximal abelian subgroups, if G is uniquely determined by the orders of
its maximal abelian subgroups. More precisely, a finite group G is called characterizable by the set of orders of
its maximal abelian subgroups, if each finite group H with M(G) = M(H) is necessarily isomorphic to G. Recall
that a simple group S is a K3-group if |π(S)| = 3. It is known that if G is any K3-group, the alternating group
An (where n and n − 2 are primes or n ≤ 10), PSL2(2n), Sz(22m+1), Bn(q), where n = 2m

≥ 4 and any sporadic
simple group, then G is characterizable by the set of orders of its maximal abelian subgroups (see [1, 6, 19]).
Let M(G) = {|N| : N is a maximal abelian sub1roup o f G}. In this paper, we have proved that:
Theorem 1. Let n > 3 be an even natural number and let q be a prime power. If G is a finite group with
M(G) = M(Bn(q)), then G � Bn(q).

For every n and q, the simple groups Bn(q) and Cn(q) have the same order. These groups are isomorphic
if n = 2 or q is even. Also, s(Bn(q)) , 1 if and only if n = |n|2 or n is prime and q ∈ {2, 3}.

2. Preliminaries

In this paper, fix: the subset of vertices of a graph is called an independent set if its vertices are pairwise
non-adjacent. For a finite group G, we write ρ(G) (ρ(r,G)) for some independent set in GK(G) (containing
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a prime r) with a maximal number of vertices, which is named the maximal independent set and put
t(G) = |ρ(G)| (and t(r,G) = |ρ(r,G)|). Throughout this paper, by [x] we denote the integral part of x and by
gcd(m,n) we denote the greatest common divisor of m and n. If m is a natural number and r is prime, the
r-part of m is denoted by |m|r, i.e., |m|r = rt if rt

‖m. The notation for groups of Lie type is according to [10].
Given α ∈ Sk, we define αd to be the dk × dk permutation matrix that permutes blocks of dimension d. For
example,

(1, 2, 3)2 =

 0 I2 0
0 0 I2
I2 0 0

 .
We refer to the block matrices that arise from permutations in this way as standard permutation matrices.

Given X = 〈x1, ..., xm〉 ≤ GLd(q) and W = 〈α1, ..., αl〉 ≤ Sk, we define the wreath product X oW to be the
subgroup of GLdk(q) generated the matrices Diag(x1, Id, . . . , Id), . . . , Diag(xm, Id, . . . , Id), Diag (Id, x1, Id, . . . , Id),
. . . , Diag(Id, . . . , xm), α1d, . . . , αld (see [14]). In the whole paper, we assume that n is an even natural number
such that n ≥ 4, q is a prime power (q = pk) and p is prime. By GF(q), we denote the finite field with
q-elements. For a finite group G, we denote the maximum element of M(G) by a(G) (see [18]) and we denote
the maximum of the orders of abelian subgroups of s-Sylow subgroup of G by as(G), where s ∈ π(G). All
further unexplained notations are standard and can be found in [5] and [9].

Lemma 2.1. [18, Table 2] If S is a finite simple group of Lie type in characteristic p such that S , A1(pα) (where p =
2), A2(pα) (where gcd(pα − 1, 3) = 1), 2A2(pα) (where gcd(pα + 1, 3) = 1), 2A3(2) and 2F4(q), then a(S) = ap(S).
In particular,

- if n ≥ 4 and q is odd, then a(Bn(q)) = qn(n−1)/2+1;

- a(Cn(q)) = qn(n+1)/2, except for C2(2);

- for n ≥ 5, a(2Dn(q)) = q(n−1)(n−2)/2+2;

- a(An(q)) = q[(n+1)2/4], except for A1(q), where q is even and A2(q), where (3, q − 1) = 1.

Lemma 2.2. [3] Let G be a finite group and N C G. If r | |G/N|, r - |N| (r is prime and r , p), and if in addition
pe
‖|N| and pt

‖|CN(R)|, where R ∈ Sylr(G), then r | pe−t
− 1.

Corollary 2.3. Let G be a finite group and NCG. If r | |G/N|, r - |N| (r is prime and r , p), and if in addition pe
‖|N|

and (p, r) < GK(G), then r | pe
− 1.

Proof. Straightforward.

Lemma 2.4. [12, Corollary 11] Let H be a finite group such that 2, s ∈ π(H). If (2, s) < GK(H), then s-Sylow
subgroup of H is abelian.

Lemma 2.5. [6] Let G and H be two finite groups such that M(G) = M(H). Then G and H have the same prime
graph.

Lemma 2.6. [1] Let |n|2 = n. If G is a finite group such that M(G) = M(Bn(q)), then G � Bn(q).

For an integer n, by ν(n), η(n) and η′(n), we denote the following functions:

ν(n) =


n i f n ≡ 0 (mod 4);
n
2

i f n ≡ 2 (mod 4);
2n i f n ≡ 1 (mod 4).

, η(n) =

 n if n is odd;
n
2

otherwise. , (1)

η′(n) =

{
2n if n is odd;
n otherwise. .
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Lemma 2.7. [15, Theorem 1] Let G be a finite group with t(G) ≥ 3 and t(2,G) ≥ 2. Then the following hold:

1. There exists a finite non-abelian simple group S such that S ≤ Ḡ = G/K ≤ Aut(S) for the maximal normal
solvable subgroup K of G.

2. For every independent subset ρ of π(G) with |ρ| ≥ 3 at most one prime in ρ divides the product |K|.|Ḡ/S|. In
particular, t(S) ≥ t(G) − 1.

3. One of the following holds:
(a) every prime r ∈ π(G) nonadjacent to 2 in GK(G) does not divide the product |K|.|Ḡ/S|; in particular,

t(2,S) ≥ t(2,G);
(b) there exists a prime r ∈ π(K) nonadjacent to 2 in GK(G); in which case t(G) = 3, t(2,G) = 2, and S � A7

or A1(q) for some odd q.

Lemma 2.8. [16, Proposition 1.1] Let G = An be an alternating group of degree n.

1. Let r, s ∈ π(G) be odd primes. Then r and s are nonadjacent if and only if r + s > n;
2. let r ∈ π(G) be an odd prime. Then 2 and r are nonadjacent if and only if r + 4 > n.

If a is a natural number, r is an odd prime and gcd(r, a) = 1, then by expr(a) we denote the smallest natural
number m such that am

≡ 1 (mod r). Obviously by Fermat’s little theorem it follows that expr(a) | (r − 1).
Also, if an

≡ 1 (mod r), then expr(a) | n. If a is odd, we put exp2(a) = 1 if a ≡ 1 (mod 4), and exp2(a) = 2
otherwise.

Lemma 2.9. [8, Corollary to Zsigmondy’s theorem] Let a be a natural number greater than 1. For every natural
number m there exists a prime r with expr(a) = m, unless a = 2 and m = 1, a = 3 and m = 1, and a = 2 and m = 6.

The prime r with expr(q) = m is called a primitive prime divisor of qm
− 1. It is obvious that qm

− 1 can have
more than one primitive prime divisor. We denote by rm(q) some primitive prime divisor of qm

− 1. If there
is no ambiguous, we write rm instead of rm(q). Also, let Zm(q) denote the set of primitive prime divisors of
qm
− 1. One can easily check the following corollary:

Corollary 2.10. Let a, b and c be natural numbers and let s be a prime.

(i) If exps(p) = ab, then exps(q
a) = b;

(ii) if c | a and gcd(c, b) = 1, then Zb(pa/c) ⊆ Zb(pa);

(iii) if 2 | a, then Z2b(pa/2) ⊆ Zb(pa).

Lemma 2.11. [16, Propositions 2.1 and 2.2] and [17, Propositions 2.4, 2.5 and 2.7(5)] Let G = Bn(q) or Cn(q).
Let r and s be odd primes and r, s ∈ π(G) \ {p}. Put k = expr(q) and l = exps(q). If 1 ≤ η(k) ≤ η(l), then r and s are
nonadjacent if and only if η(k) + η(l) > n and l

k is not an odd natural number.

Lemma 2.12. [16, Proposition 3.1] Let G = Bn(q) or Cn(q), and let r ∈ π(G) and r , p. Then r and p are
nonadjacent if and only if η(expr(q)) > n − 1.

Lemma 2.13. [16, Proposition 4.3] Let G = Bn(q) or G = Cn(q). Let r be an odd prime divisor of |G|, r , p, and
k = expr(q). Then r and 2 are nonadjacent if and only if η(k) = n and one of the following holds:

1. n is odd and k = (3 − exp2(q))n;
2. n is even and k = 2n.

Lemma 2.14. [1, Corollary 3.3, Corollary 3.6 and the proof of Lemma 3.7] Let n be an even number and
α ∈M(Bn(q)).

(i) If π(α) ∩ Z2n(q) , ∅, then α =
qn + 1

gcd(2, q − 1)
;
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(ii) If π(α) ∩ Z2(n−1)(q) , ∅, then
qn−1 + 1

gcd(2, q − 1)
| α and α |

q(q2
− 1)(qn−1 + 1)

gcd(2, q − 1)
.

(iii) If π(α) ∩ Zn−1(q) , ∅, then
qn−1
− 1

gcd(2, q − 1)
| α and α |

q(q2
− 1)(qn−1

− 1)
gcd(2, q − 1)

.

Lemma 2.15. Let r ∈ π(G) − {p} and R ∈ Sylr(SO2n+1(q)).

(i) [1, Lemma 3.18] If n = 2t, p , 2 and r = 2, then a(R) = (|q ± 1|2)2t ;
(ii) [4, Corollary before Theorem 2] let p , 2, r = 2 and 2n = 2r1 +...+2rt with r1 < ... < rt. If q2ri−1

≡ δi (mod 4),
for all i ∈ {1, ..., t} and Ri ∈ Syl2(GOεi

2ri (q)), where εi = +, if δi = +1 and εi = −, if δi = −1, then R � R1×...×Rt;

(iii) [21] let r , 2, expr(q) = m and n0 =

[
2n
η′(m)

]
. If n0 = a0 + a1r + ...+ auru, R1 ∈ Sylr(GOε

η′(m)(q)), where ε = −,

if (−1)m−1 = −1 and ε = +, otherwise and for all i ∈ {2, ...,u}, Si ∈ Sylr(Sri ), then

R � ((R1 o S2) × ... × (R1 o S2)︸                       ︷︷                       ︸
a1−times

) × ... × ((R1 o Su) × ... × (R1 o Su)︸                        ︷︷                        ︸
au−times

).

The following lemma is a known fact and for an example one can extract it from [10].

Lemma 2.16. For the natural number m,

(i) if m is odd, r ∈ Zm(q) and R ∈ Sylr(GO+
2m(q)), then R is abelian and |R| = |qm

− 1|r;

(ii) if r ∈ Z2m(q) and R ∈ Sylr(GO−2m(q)), then R is abelian and |R| = |qm + 1|r.

Lemma 2.17. Let G be a finite group such that M(G) = M(Bn(q)) and let the functions η and η′ be defined as in (1).
If r ∈ π(G) − {p}, then:

(i) if r = 2, then ar(G) | (|q2
− 1|2)n;

(ii) if r , 2, expr(q) = m and n0 =

[
2n
η′(m)

]
, then ar(G) | (|qη(m) + (−1)m

|r)n0 .

Proof. Let R ∈ Sylr(Bn(q)) and R′ ∈ Sylr(SO2n+1(q)). Since M(G) = M(Bn(q)), we conclude that ar(G) =
ar(Bn(q)) = a(R) which divides a(R′).
(i) If r = 2, then we may assume that 2n = 2r1 + ... + 2rt such that r1 < ... < rt. For i ∈ {1, ..., t}, put εi = +, if
δi = +1 and put εi = −, if δi = −1, where q2ri−1

≡ δi (mod 4). Also, let Ri ∈ Syl2(GOεi
2ri (q)). Then by Lemma

2.15(ii), R′ � R1 × ... × Rt an hence, a(R′) = a(R1)...a(Rt). Now Lemma 2.15(i) completes the proof of (i).
(ii) If r , 2, then we can assume that R ∈ Sylr(SO2n+1(q)) and n0 = a0 + a1r + ... + auru. Thus by Lemma
2.15(iii), we have

R � ((R1 o S2) × ... × (R1 o S2)︸                       ︷︷                       ︸
a1−times

) × ... × ((R1 o Su) × ... × (R1 o Su)︸                        ︷︷                        ︸
au−times

),

where for i ∈ {2, ...,u}, Si ∈ Sylr(Sri ) and R1 ∈ Sylr(GOε
η′(m)(q)), such that ε = −, if (−1)m−1 = −1 and ε = +,

otherwise. Thus
a(R) = (a(R1 o S2)...a(R1 o S2)︸                   ︷︷                   ︸

a1−times

)...(a(R1 o Su)...a(R1 o Su)︸                   ︷︷                   ︸
au−times

).

Now we can see that for all i ∈ {1, ...,u}, a(R1 o Si) = (a(R1))ri
. But by Lemma 2.16, R1 is abelian and

a(R1) = |R1| = |qη(m) + (−1)m
|r. This completes the proof of (ii).

Lemma 2.18. Let N be a normal subgroup of the finite group G and r, t ∈ π(N). If r ∈ ρ(t,N), r < ρ(t,G) and
ρ(t,G) ∩ π(G/N) = ∅, then r ∈ π(G/N).

Proof. The proof is straightforward.
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3. Main Results

We are going to prove the main theorem in the following:

3.1. On the Maximal Abelian Subgroups of the almost Simple Groups Containing Bn(q)
Let 2 | q and S = Cn(q). We denote by φ the field automorphism of S with (ai j) −→ (ap

ij) as its map.
Applying [10], if n , 2, then S(〈φ〉) = Aut(S).

Let 2 - q and S = Bn(q). We denote by δ the diagonal automorphism of S which is conjugate to the
diagonal matrix diag(λ/λ′, (λ/λ′)−1, I), where 2λ and 2λ′ are a square element and a non-square element of
GF(q), respectively and by φ the field automorphism of S with (ai j) −→ (ap

ij) as its map. Applying [10], if
n > 2 is even, then S(〈φ〉〈δ〉) = Aut(S). Note that if p = 2, then Cn(q) � Bn(q).

Lemma 3.1. Let G = S.T, where T ≤ Out(S) and r, r1 ∈ π(G) such that expr(q) = 2n and expr1
(q) = 2(n − 1).

(i) If G contains a field automorphism ψ of order t, then CS(ψ) � Bn(q1/t);

(ii) if 2 - q and G contains an automorphism δψ, where ψ is a field automorphism of G of order 2, then there is an
element α ∈M(CS(δψ)) such that (pk(n−1)/2 + 1) | α and if q , 9, then α|2(pk/2

− 1)(pk(n−1)/2 + 1) and otherwise,
α | 16(pk(n−1)/2 + 1).

Proof. (i) is a known fact (for details see [1, Proof of Lemma 3.14]) and (ii) goes back to Lemma 3.17 in
[1].

Lemma 3.2. Let S E G ≤ Aut(S). If M is a maximal abelain subgroup of G, then [M : M ∩ S] | gcd(2, q − 1)k.

Proof. Since MS ≤ G ≤ Aut(S) and Z(S) = 1, we deduce that

M
M ∩ S

≤
G
S
. Out(S).

But as mentioned above, |Out(S)| = gcd(2, q − 1)k, so lemma follows.

Theorem 3.3. Let n > 3 be an even number. If G is a finite group such that M(G) = M(S) and S E G ≤ Aut(S),
then G = S.

Proof. We are going to break the proof into cases:
Case 1. If G contains a field automorphism, then without loss of generality, we can assume that ψ ∈ G
such that ψ is a field automorphism of the prime order t, where t | k. Thus Lemma 3.1(i) implies that
CS(ψ) � Bn(q1/t). Thus by Lemma 2.14(i,ii), CS(ψ) contains a maximal abelain subgroup M0 of order β

such that β ∈
{

(qn/t + 1)
gcd(2, q − 1)

,
l(q(n−1)/t + 1)
gcd(2, q − 1)

}
, where l | q1/t(q2/t

− 1). Since M0 is an abelain subgroup of

CS(ψ), we deduce that G contains a maximal abelian subgroup M such that M0〈ψ〉 ≤ M, so M ≤ CG(ψ) and
M0 ≤ M ∩ S ≤ CG(ψ) ∩ S = CS(ψ), which implies that M ∩ S = M0. Thus Lemma 3.2 implies that [M : M0]
divides gcd(2, q − 1)k and hence, there exits α ∈ M(G) such that β | α and α | βgcd(2, q − 1)k. We continue
the proof in the following subcases:

Subcase 1. If t is odd and t - n, then Corollary 2.10(ii) forces Z2n(q1/t) ⊆ Z2n(q). Let β =
(qn/t + 1)

gcd(2, q − 1)
. Then

π(α) ∩ Z2n(q) , ∅ and hence, by Lemma 2.14(i), α =
(qn + 1)

gcd(2, q − 1)
. It follows that

(qn + 1)
gcd(2, q − 1)

| βgcd(2, q − 1)k = (qn/t + 1)k. (2)

Since n ≥ 6 is even and k , 1, Lemma 2.9 shows that there exists s ∈ Z2nk(p). Thus s - (qn/t + 1) and so by (2),
s | k. On the other hand, Fermat’s little theorem shows that 2nk | s − 1, which is a contradiction.
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Subcase 2. If t is odd and t | n, then t - n − 1 and hence, Corollary 2.10(ii) forces Z2(n−1)(q1/t) ⊆ Z2(n−1)(q).

Let β =
l(q(n−1)/t + 1)
gcd(2, q − 1)

, where l | q1/t(q2/t
− 1). Then π(α) ∩ Z2(n−1)(q) , ∅ and hence, by Lemma 2.14(ii),

(qn−1 + 1)
gcd(2, q − 1)

| α. It follows that

(qn−1 + 1)
gcd(2, q − 1)

| q1/t(q2/t
− 1)(q(n−1)/t + 1)k. (3)

Since n ≥ 6 and k , 1, Lemma 2.9 shows that there exists s ∈ Z2(n−1)k(p). Thus s - q1/t(q2/t
− 1)(q(n−1)/t + 1)

and so by (3), s | k. On the other hand, Fermat’s little theorem shows that 2(n − 1)k | s − 1, which is a
contradiction.

Subcase 3. If t is even, then Corollary 2.10(iii) forces Z2(n−1)(q1/t) ⊆ Zn−1(q). Let β =
l(q(n−1)/2 + 1)
gcd(2, q − 1)

, where

l | q1/2(q − 1). Then π(α) ∩ Zn−1(q) , ∅ and hence, by Lemma 2.14(iii),
(qn−1

− 1)
gcd(2, q − 1)

| α. It follows that

(qn−1
− 1)

gcd(2, q − 1)
| q1/2(q − 1)(q(n−1)/2 + 1)k. (4)

Since n ≥ 6 and k are even, Lemma 2.9 shows that there exists s ∈ Z(n−1)k/2(p). Thus s - q1/2(q− 1)(q(n−1)/2 + 1)
and so by (4), s | k. On the other hand, Fermat’s little theorem shows that (n − 1)k/2 | s − 1, which is a
contradiction.
Case 2. If 2 - q and δ jψ ∈ G, where ψ is a field automorphism of order 2, then 2 | k and by Lemma 3.1(ii),
CBn(q)(δ jψ) contains a maximal abelain subgroup M0 of order β such that (q(n−1)/2 + 1) | β and β | l(q(n−1)/2 + 1),
where if q , 9, then l = 2(pk/2

− 1) and otherwise, l = 16. Now, the same reasoning as in Subcase 3 in Case 1
leads us to get a contradiction.
Case 3. If 2 - q and δ j

∈ G, then by Cases 1 and 2, G does not contain any field automorphism and δ jψ < G
and hence, G = SO2n+1(q). It follows that (qn + 1) ∈M(G), which is a contradiction.

These contradictions show that G = Bn(q).

3.2. Proof of the Main Theorem
Theorem 3.4. If G is a finite group such that M(G) = M(Bn(q)), then G � Bn(q).

Proof. If n = |n|2, then Lemma 2.6 completes the proof. Thus we may assume that n , |n|2. This allows
us to assume that n ≥ 6. Since M(G) = M(Bn(q)), we have GK(G) = GK(Bn(q)), considering Lemma 2.5.

Therefore, π(G) = π(Bn(q)), t(G) = t(Bn(q)) =
[3n + 5

4

]
≥ 5 and ρ(2,G) = ρ(2,Bn(q)) = {2, r2n(q)}, using [16,

Tables 4, 6 and 8]. It follows by Lemma 2.7(1) that there is a finite non-abelian simple group S such that
S ≤ Ḡ = G/K ≤ Aut(G) for the maximal solvable subgroup K of G such that t(S) ≥ t(G)− 1. We continue the
proof in the following steps:

Step I) K = 1. This implies that S ≤ G ≤ Aut(S).
Proof. Put ρ = {r2nk(p), r2(n−1)k(p), r(n−1)k(p)}. By Corollary 2.10(i), exprmk(p)(q) = m and by [16, Table 8], if

(n, q) = (6, 2), then ρ(G) = ρ(Bn(q)) = {7, 11, 13, 17, 31} and otherwise, ρ(G) = ρ(Bn(q)) = {r2i(q) :
[n + 1

2

]
≤

i ≤ n} ∪ {ri(q) :
[n

2

]
< i ≤ n, i ≡ 1 (mod 2)}. These imply that ρ ⊆ ρ(G) and hence, ρ is independent. Thus

by Lemma 2.7(2), there is a prime z ∈ {r2(n−1)k(p), r(n−1)k(p)} ∩ π(S) such that z < π(K). Also, r2nk(p) ∈ ρ(2,S)
and hence Lemma 2.7(3) forces r2nk(p) ∈ π(S) and r2nk(p) < π(K). Let R ∈ Sylr2nk(p)(S) and R1 ∈ Sylz(S). We
have that R and R1 act coprimely on K. We claim that |K|p = 1. If not, then we deduce that K has an
R-invariant p-Sylow subgroup P1 and an R1-invariant p-Sylow subgroup P2. Thus Z(P1)R and Z(P2)R1 are
subgroups of G. Since expr2nk(p)(q) = 2n, we have (p, r2nk(p)) < GK(Bn(q)) = GK(G), by Lemma 2.12. It follows



N. Ahanjideh, A. Iranmanesh / Filomat 28:9 (2014), 1871–1880 1877

that by Corollary 2.3, r2nk(p) | pt
− 1, where |Z(P1)| = |Z(P2)| = pt and hence, 2nk | t. If |CZ(P2)(R1)| = pe,

then there is α ∈ M(G) = M(Bn(q)) such that zpe
| α. It follows by Lemma 2.14(ii,iii) that pe

≤ pk. Also,
expz(p) ∈ {(n − 1)k, 2(n − 1)k} and by Lemma 2.2, z | pt−e

− 1 and hence, (n − 1)k | t − e. Since 2nk | t, we
conclude that there is a natural number a such that t = 2nka. Therefore, (n−1)k | 2nka−e = 2(n−1)ka+2ka−e,
so (n − 1)k | 2ka − e. Since e ≤ k, we have that 2ka , e and hence, (n − 1)k ≤ 2ka − e ≤ 2ka. It follows that
(n− 1) ≤ 2a, so t ≥ n(n− 1)k. But Z(P2) is an abelian subgroup of G and hence, |Z(P2)| = pt

≤ a(G) = a(Bn(q)),
which is a contradiction, because if p is even, then a(Bn(q)) = q

n(n+1)
2 and otherwise, a(Bn(q)) = q

n(n−1)
2 +1, by

Lemma 2.1.
Now, we show that |K| = 1. If this is not the case, then there is a prime s ∈ π(K). Since a(Bn(q)) ∈M(G) is a

power of p, we may assume that there is an abelian p-subgroup P of G such that |P| = a(G). Also, |K|p = 1,
so P acts coprimely on K and hence, we can see that K has a P-invariant s-Sylow subgroup S0. So Z(S0)P is
a subgroup of G. We may assume that Z(S0) is a s-elementary abelian subgroup of G and |Z(S0)| = sα. But
P is abelian and |P| = a(G). This implies that CPZ(S0)(Z(S0)) is abelian and hence, |CPZ(S0)(Z(S0))| = sαpβ < |P|.
Also,

NPZ(S0)(Z(S0))
CPZ(S0)(Z(S0))

≤ Aut(Z(S0)) = GLα(s).

Thus GLα(s) has an abelian subgroup of order |P|/pβ. On the other hand, similar to the proof of Lemma 2.17
we can see that ap(GLα(s)) < sα. Therefore, |P|/pβ < sα, which is a contradiction. It follows that |K| = 1. Thus
by Lemma 2.7(1), S ≤ G ≤ Aut(S). �

Step II) |GS |p < qn−|n|2 .
Proof. Let p | |GS |. Since t(S) ≥ t(G) − 1 ≥ 4, [16, Tables 3,8], S � A7,A1(q). Also, since (2, r2n(q)) < GK(G),
Lemma 2.7(3)(a) forces r2n(q) - |GS | and so, Sylr2n(q)(G) = Sylr2n(q)(S). Let R ∈ Sylr2n(q)(G). It follows by Frattini’s
argument that |GS |p | |NG(R)|. Thus there is a p-subgroup Q of G such that QR is a subgroup of G and |GS |p | |Q|.
Since (p, r2n(q)) < GK(Bn(q)) = GK(G), the action of Q on R is Frobenius. Therefore, |GS |p | |R| − 1. Also,
(2, r2n(q)) < GK(G) and hence by Corollary 2.4, R is abelian. Thus |R| = a(R1), where R1 ∈ Sylr2n(q)(Bn(q)). But

since |n|2 = 2m , n, |Bn(q)|r2n(q) =

∣∣∣∣∣∣ qn + 1
q2m + 1

∣∣∣∣∣∣
r2n(q)

. So, |GS |p < qn−|n|2 . �

Step III) S is not isomorphic to a sporadic simple group.
Proof. If S is isomorphic to a sporadic simple group, then since Z(S) = 1, we have by Step I, G

S ≤ Out(S). But
|Out(S)| | 2, using [10, page 171, Table 5.1.c]. Therefore, ρ(G) = ρ(S), by Lemma 2.18. So,

t(S) = t(G).

Also, t(S) ≤ 11 and t(G) =
[3n + 5

4

]
by [16, Tables 2 and 8]. Therefore, since

[3n + 5
4

]
≤ 11 if and only if

n ≤ 13, we conclude that n ∈ {6, 10, 12}. Thus, we have the following cases:

a) If n = 6, then t(S) = t(G) =
[23

4

]
= 5. It follows that S ∈ {Fi23,Fi′24,F3} (up to isomorphism), considering

[16, Table 2]. On the other hand, expr2nk(p)(q) = 2n and hence by Lemma 2.13, r2nk(p) ∈ ρ(2,G). Thus since
by Lemma 2.7(3)(a), ρ(2,G) ⊆ ρ(2,S), we conclude that r2nk(p) ∈ ρ(2,S) and hence, Fermat’s little theorem
implies that there is an element z ∈ ρ(2,S) such that 12k = 2nk | z − 1, which is a contradiction, considering
the elements of ρ(2,Fi23), ρ(2,Fi′24) and ρ(2,F3) (see [16, Table 2]).

b) If n = 10, then t(S) = t(G) =
[35

4

]
= 8. It follows that S � F2, considering [16, Table 2]. Similar to the

previous argument, we can assume that there is an element z ∈ ρ(2,S) such that 20k = 2nk | z − 1, which is
impossible, considering the elements of ρ(2,F2).

c) If n = 12, then t(S) = t(G) =
[41

4

]
= 10, which is impossible, because there does not exist any sporadic

simple group S with t(S) = 10. �
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Step IV) S is not isomorphic to the alternating group Ax of degree x.
Proof. If S is isomorphic to Ax, then similar to the previous argument, we can see that r2n(q) ∈ ρ(2,S).
Since n ≥ 6, we have t(G) ≥ 5 and hence, t(S) ≥ 4. Therefore, [16, Table 3] implies that x ≥ 7 and hence,
G ≤ Aut(Ax) = Sx. But by Lemma 2.8(2), ρ(2,S) = {s ∈ π(Ax) : x − 3 ≤ s ≤ x} ∪ {2}, so x − 3 ≤ r2n(q) ≤ x. It

follows that r2n(q) ∈M(G), 2r2n(q) ∈M(G) or 3r2n(q) ∈M(G). Thus by Lemma 2.14(i),
qn + 1

gcd(2, q − 1)
= dr2n(q),

where d ∈ {1, 2, 3}. This forces q|n|2 + 1 ∈ {1, 2, 3}, which is impossible. �

Step V) S is isomorphic to the simple group of Lie type in characteristic p.
Proof. Using Steps (II,III,IV) and the classification theorem of finite simple groups, we conclude that S is a
simple group of Lie type in characteristic p′. If p , p′, then since by Lemma 2.1, a(G) = a(Bn(q)) is a power
of p, we can see that

a(G) ≤ ap(S)
∣∣∣∣∣GS

∣∣∣∣∣
p
. (5)

On the other hand,

ap(S) ≤ a(S). (6)

We continue the proof in the following cases:
Case 1. Let S � 2F4(22n+1), for n ≥ 1. Since t(S) ≥ t(G) − 1 ≥ 4, we may assume that S is not isomorphism to
A1(p′e), A2(p′e) with (p′e − 1, 3) = 1, 2A3(2) and 2A2(p′e) with (p′e + 1, 3) = 1, using [16, Table 8]. Therefore,
Lemma 2.1 implies that

a(S) = ap′ (S). (7)

Also, since p , p′, we obtain by Lemma 2.17 that ap′ (Bn(q)) < q2n. But ap′ (S) ≤ ap′ (G), so a(G) ≤ ap′ (G)|G/S|p <

q2nqn−|n|2 = q3n−|n|2 , using (5,6,7) and Step II. It follows that by Lemma 2.1, either
(

n(n − 1)
2

+ 1
)

k < 3nk− |n|2k

or
(

n(n + 1)
2

)
k < 3nk − |n|2k. This forces n < 6, which is a contradiction.

Case 2. Let S � 2F4(22m+1), for n ≥ 1. Fix q′ = 22m+1. Then [16, Table 5] implies that ρ(2,S) = {2, s1, s2, s3}, for
some s1 ∈ π((q′3 + 1)/(q′ + 1)) and s2, s3 ∈ π((q′6 + 1)/(q′2 + 1)). Without loss of generality, we can assume
that s1 ∈ Z3(2m+1)(2) and s2, s3 ∈ Z6(2m+1)(2). Thus Fermat’s little theorem shows that

2m + 1 | si − 1, for i ∈ {1, 2, 3}. (8)

It is known that Out(S) � Z2m+1, so “G/S . Out(S) � Z2m+1” shows that 2 < π(G/S). Thus by Lemma
2.7(3), ρ(2,G) ∩ π(G/S) = ∅. On the other hand, by [16, Tabeles 4,6], t(2,G) = 2, so Lemma 2.18 forces to
exist 1 ≤ j ≤ 3 such that s j ∈ π(G/S) ⊆ π(Out(S)) = π(2m+1). This implies that s j | 2m+1, contradicting (8). �

Step VI) S � Bn(q) or Cn(q).
Proof. By Step V, S is a simple group of Lie type in characteristic p. Since r2nk(p) ∈ ρ(2,G), Lemma 2.7(3)(a)
forces

r2nk(p) ∈ π(S). (9)

Now, we consider all simple groups of Lie type in characteristic p one by one:
a) Let S � Bm(pe) or S � Cm(pe). Then max{exps(p) : s ∈ π(G) − {p}} = 2nk and π(S) ⊆ π(G). Thus by
(9), max{exps(p) : s ∈ π(S) − {p}} = 2nk. On the other hand, |Bm(pe)| = |Cm(pe)| = pm2e(p2e

− 1)...(p2me
− 1)

and hence, max{exps(p) : s ∈ π(S) − {p}} = 2me. It follows that 2nk = 2me. If r2(n−1)k(p) < π(S), then
r2(n−1)k(p) ∈ π( G

S ). But Z(S) = 1 and G ≤ Aut(S). So, G
S . Out(S). Since |Out(S)| | 2e (see [10, Propositions

2.4.4 and 2.6.3]), we have r2(n−1)k(p) | e. Also, 2nk = 2me and hence, r2(n−1)k(p) | nk. But Fermat’s little
theorem implies that 2(n − 1)k | r2(n−1)k(p) − 1, which is a contradiction. Otherwise, r2(n−1)k(p) ∈ π(S). Thus
2(n − 1)k = max{exps(p) : s ∈ π(S) − (Z2nk(p) ∪ {p})} = 2(m − 1)e. It follows that e = k and m = n. Therefore
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S � Bn(q) or S � Cn(q).
b) Let S � 2Dm(pe). Applying the same argument as that of in Step VI(a) shows that 2nk = 2me and since by
[10, Proposition 2.8.2], |Out(S)| | 23e, we get that r2(n−1)k(p) ∈ π(S). Thus 2(n − 1)k = 2(m − 1)e. It follows that
e = k and m = n. It is evident that ap(G) ≤ ap(S)|GS |p and by Lemma 2.1, q

n(n−1)
2 +1

≤ ap(G) and ap(S) = q
(n−1)(n−2)

2 +2.

Therefore, (II) implies that
n(n − 1)

2
+ 1 <

(n − 1)(n − 2)
2

+ n, which is impossible.

c) Let S � Dm(pe). Since t(S) =
[3m + 1

4

]
and t(S) ≥ t(G) − 1 ≥ 4, by [16, Table 8] and Lemma 2.7(2),

respectively, we have m ≥ 5 and hence, max{exps(p) : s ∈ π(S) − {p}} = 2(m − 1)e and max{exps(p) : s ∈
π(S)− (Z2(m−1)e(p)∪ {p})} = 2(m− 2)e. On the other hand, [10, Proposition 2.7.3] implies that |Out(S)| | 8e and
hence, arguing as in Step VI(a) shows that 2nk = 2(m − 1)e and 2(n − 1)k = 2(m − 2)e. Therefore, m − 1 = n
and e = k. But rm(q) ∈ π(S) and hence rn+1(q) ∈ π(G) = π(Bn(q)). Since |Bn(q)| = qn2

(q2
− 1)...(q2n

− 1)/(2, q− 1),
there exists a natural number f such that 1 ≤ f ≤ n and rn+1(q) | q2 f

− 1. It follows that n + 1 | 2 f . Moreover,
n is even and hence, n + 1 | f , which is a contradiction.

d) Let S � Am−1(pe). Using Lemma 2.7(2) and [16, Table 8], t(S) =
[m + 1

2

]
≥ t(G) − 1 ≥ 4. Thus m ≥ 7 and

hence, max{exps(p) : s ∈ π(S) − {p}} = me. Also, max{exps(p) : s ∈ π(S) − (Zme(p) ∪ {p})} = (m − 1)e. Thus
arguing as in Step VI(a) shows that me = 2nk and (m − 1)e = 2(n − 1)k. Therefore, m = n and e = 2k. But

ap(S) ≤ ap(G) ≤ q
n(n+1)

2 and ap(S) = p[(m+1)2e/4], by Lemma 2.1. Therefore,
[

(n + 1)2(2k)
4

]
≤

n(n + 1)k
2

, which is

impossible.
e) Let S � 2Am−1(pe). We denote max{exps(p) : s ∈ π(S) − {p}} by α. Arguing as in Step VI(a) shows that

2nk = α =

{
2me m ≡ 1 (mod 2);

2(m − 1)e otherwise.

and if m ≡ 1 (mod 2), then max{exps(p) : s ∈ π(S)−(Z2me(p)∪{p})} = 2(m−2)e and otherwise, max{exps(p) : s ∈
π(S)− (Z2(m−1)e(p)∪ {p})} = 2(m− 3)e. On the other hand, max{exps(p) : s ∈ π(S)− (Z2nk(p)∪ {p})} = 2(n− 1)k.
Therefore, we can see that if m ≡ 1 (mod 2), then m = 2n and 2e = k, and hence m is even, which is a
contradiction. Also, if m ≡ 0 (mod 2), then we can assume that m − 1 = 2n and 2e = k, and hence m is odd,
which is a contradiction.
f) If p = 2, e = 2 f + 1 and S � 2F4(pe), then similar to the previous argument and by the order of 2F4(pe) we
can see that 12e = 2nk and 6e = 2(n − 1)k. It follows that k = 3e and n = 2, which is a contradiction.
g) If S � E7(pe), then |Out(S)| = (2, q − 1)e, considering [10, page 170, Table 5.1.B] and hence similar to
the previous argument, we can see that r2(n−1)k(p) ∈ π(S). Also, by the order of E7(pe) we can see that
max{exps(p) : s ∈ π(S) − {p}} = 18e and max{exps(p) : s ∈ π(S) − (Z18e(p) ∪ {p})} = 14e. Again, similar to the
previous argument we can conclude that 18e = 2nk and 14e = 2(n − 1)k. It follows that 2n = 9, which is
impossible.
h) If S � E8(pe), then |Out(S)| = e, considering [10, page 170, Table 5.1.B]. Similar to the previous argument,
we may assume that 30e = 2nk and 2(n − 1)k = 24e. It follows that n = 5, which is a contradiction.
i) If S ∈ {F4(pe), E6(pe), 2E6(pe), 2B2(22e+1), 2G2(32e+1)}, then the same argument as that of in the previous case
shows that {exps(p) : s ∈ π(G)− {p}} = 2nk and {exps(p) : s ∈ π(G)− (Z2nk(p)∪ {p})} = 2(n− 1)k. Therefore, we
can see that n < 4, which is a contradiction.
j) If S ∈ {G2(pe), 3D4(pe), 2F4(2)′}, then [16, Table 9] implies that t(S) ≤ 3, which is a contradiction.
Therefore, we conclude that S � Bn(q) or S � Cn(q). �

Step VII) S � Bn(q).
Proof. By Step VI, it is enough to show that if p , 2, then S � Cn(q). If not, then a(S) = a(Cn(q)) | a(G) = a(Bn(q)),
because M(G) = M(Bn(q)). Therefore, by Lemma 2.1, q

n(n+1)
2 | q

n(n−1)
2 +1, which is impossible and hence S � Cn(q).

If p = 2, then Cn(q) � Bn(q). It follows that S � Bn(q). �

Step VIII) G = S � Bn(q).
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Proof. Using Theorem 3.3 and the previous steps, we conclude that G = S � Bn(q), as claimed.

AAM’s Conjecture. Given an arbitrary non-abelian group H, associate a graph Γ(H) to H which is called
the non-commuting graph of H. The vertex set V(Γ(H)) is H −Z(H) and the edge set E(Γ(H)) consists of (x, y),
where x and y are distinct non-central elements of H such that xy , yx. AAM’s conjecture implies that if S
is a non-abelian finite simple group and H is a group such that Γ(H) � Γ(S), then H � S.

Lemma 3.5. If S is a finite simple group and H is a finite group such that Γ(S) � Γ(H), then

1. [7] Z(H) = 1;
2. [2, Theorem 2.5] M(H) = M(S).

In [13], authors prove that AAM’s conjecture holds for finite simple groups. As a consequence of the
main theorem, we prove the following corollary. It is worth mentioning that our proof is different from
[13].

Corollary 3.6. Let n > 3 be an even natural number and let q be a prime power. If G is a finite group such that
Γ(G) � Γ(Bn(q)), then G � Bn(q).

Proof. By Lemma 3.5, Γ(G) � Γ(Bn(q)) gives that M(G) = M(Bn(q)). Therefore, Theorem 3.4 completes the
proof.
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