

(m, n)-Jordan Derivations

Asia Majeed ${ }^{\text {a }}$, Cenap Ozel ${ }^{\text {b }}$
${ }^{a}$ University of Manitoba, Department of Mathematics, Winnipeg Canada
${ }^{b}$ Dokuz Eylul University, Department of Mathematics, Buca/Izmir 35160 Turkey

Abstract

A subspace lattice \mathcal{L} on H is called commutative subspace lattice if all projections in \mathcal{L} commute pairwise. It is denoted by CSL. If \mathcal{L} is a CSL, then $\operatorname{alg} \mathcal{L}$ is called a CSL algebra. Under the assumption $m+n \neq 0$ where m, n are fixed integers, if δ is a mapping from \mathcal{L} into itself satisfying the condition $(m+n) \delta\left(A^{2}\right)=2 m \delta(A) A+2 n A \delta(A)$ for all $A \in \mathcal{A}$, we call δ an (m, n) Jordan derivation. We show that if δ is a norm continuous linear (m, n) mapping from \mathcal{A} into it self then δ is a (m, n)-Jordan derivation.

1. Introduction.

Definition 1.1. Let X be a ring (or an algebra) with the unit I. An additive (or linear) map δ from X into it self is called a derivation if $\delta(A B)=\delta(A) B+A \delta(B)$ for all $A, B \in X$.

Definition 1.2. An additive (or linear) map δ from a ring (or an algebra) X into itself is called a Jordan derivation if $\delta(A B+B A)=\delta(A) B+A \delta(B)+\delta(B) A+B \delta(A)$ for all $A, B \in X$.

Definition 1.3. Let H be a separable complex Hilbert space and let $B(H)$ be the set of all bounded linear maps from H into itself. By a subspace lattice on H, we mean a collection \mathcal{L} of subspaces of H with 0 and H in \mathcal{L} such that every family $\left\{M_{r}\right\}$ of elements of \mathcal{L}, both $\cap M_{r}$ and $\vee M_{r}$ belonging to \mathcal{L}. For a subspace lattice \mathcal{L} of H, alg \mathcal{L} denotes the algebra of all operators on H that leave members of \mathcal{L} invariant. It is also disregard the distinction between a subspace and the orthogonal projection onto it. A Hilbert space subspace lattice \mathcal{L} is called a commutative subspace lattice if it consists of mutually commuting projections. If \mathcal{L} is a commutative subspace lattice then alg \mathcal{L} is called a CSL-algebra.

In [2], Vukman defined a new type of Jordan derivation, named (m, n)-Jordan derivation as follows: let $m \geq 1, n \geq 1$ be some fixed integers with $m \neq n$, and let \mathcal{A} be an algebra. Suppose there exists a nonzero additive mapping $\delta: \mathcal{A} \rightarrow \mathcal{A}$ satisfying the relation $(m+n) \delta\left(x^{2}\right)=2 m \delta(x) x+2 n x \delta(x)$ for all $x \in \mathcal{A}$ is called (m, n)-Jordan derivation.

2. (m, n)-Jordan Derivations on CSL-Algebras.

In this paper we will study (m, n)-Jordan derivation on CSL-algebras. Assume that $m+n \neq 0$. We proceed with the following lemmata.

[^0]Lemma 2.1. Let \mathcal{A} be a unital algebra. If δ is an (m, n)-Jordan derivation from \mathcal{A} into it self, then for each idempotent $P \in \mathcal{A},(m+n) \delta(P)=2 m \delta(P) P+2 n P \delta(P)$.

Proof. It is obvious from $I=I . I$ that $(m+n) \delta(I)=(m+n) \delta(I . I)=2 m \delta(I) I+2 n I \delta(I)=2 m \delta(I)+2 n \delta(I)=2(m+n) \delta(I)$. Thus $(m+n) \delta(I)=0$. Since we know that $m+n \neq 0$, therefore we have $\delta(I)=0$. For any idempotent $P \in \mathcal{A}, P(I-P)=0$. Then we have

$$
\begin{aligned}
(m+n) \delta(P(I-P)+(I-P) P) & =2 m \delta(P)(I-P)+2 m \delta(I-P) P+2 n P \delta(I-P)+2 n(I-P) \delta(P) \\
& =2 m \delta(P)+2 n \delta(P)-4 m \delta(P) P-4 n P \delta(P) \\
& \Rightarrow(m+n) \delta(P)=2 m \delta(P) P+2 n P \delta(P) .
\end{aligned}
$$

Lemma 2.2. Let \mathcal{A} and δ be as in Lemma 2.1. Then for each idempotent $P \in \mathcal{A}$ and every element $A \in \mathcal{A}$, we have (i) $(m+n) \delta(P A+A P)=2 m \delta(P) A+2 m \delta(A) P+2 n P \delta(A)+2 n A \delta(P)$
$(i i)(m+n) \delta(P A P)=m \delta(P) P A+m \delta(P) A P+m P \delta(A) P+m A \delta(P) P-m \delta(P) A+n P \delta(P) A+n P \delta(A) P+2 n P A \delta(P)+$ $n A P \delta(P)-n A \delta(P)$.

Proof. (i) For any idempotent $P \in \mathcal{A}, P(I-P) P A=(I-P) P A=0$. Thus we have

$$
\begin{align*}
& (m+n) \delta(P(I-P) A+(I-P) A P) \\
& \quad=2 m \delta((I-P) A) P+2 m \delta(P)(I-P) A+2 n(I-P) A \delta(A)+2 n P \delta((I-P) A) \\
& \quad=2 m \delta(A) P-2 m \delta(P A) P+2 m \delta(P) A-2 m \delta(P) P A+2 n A \delta(P)-2 n P A \delta(P)+2 n P \delta(A)-2 n P \delta(P A), \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
& (m+n) \delta((I-P) P A+P A(I-P)) \\
& \quad=2 m \delta(I-P) P A+2 m \delta(P A)(I-P)+2 n(I-P) \delta(P A)+2 n(P A) \delta(I-P) \\
& \quad=2 m \delta(A) P-2 m \delta(P A) P+2 m \delta(P A)-2 m \delta(P) P A+2 n A \delta(P)-2 n P A \delta(P)+2 n P \delta(A)-2 n P \delta(P A) . \tag{2}
\end{align*}
$$

Combining the equations above then they give

$$
\begin{equation*}
2 m \delta(P A)+2 n \delta(P A)=2 m \delta(A) P+2 m \delta(P) A+2 n A \delta(P)+2 n P \delta(A) \tag{3}
\end{equation*}
$$

Since $\mathrm{AP}(\mathrm{I}-\mathrm{P})=\mathrm{A}(\mathrm{I}-\mathrm{P}) \mathrm{P}=0$, with the similar proof of above equations above.

$$
\begin{equation*}
2 m \delta(A P)+2 n \delta(A P)=2 m \delta(A) P+2 m \delta(P) A+2 n A \delta(P)+2 n P \delta(A) \tag{4}
\end{equation*}
$$

Combining (3) and (4) we have

$$
(m+n) \delta(A P+P A)=2 m \delta(A) P+2 m \delta(P) A+2 n A \delta(P)+2 n P \delta(A)
$$

Replacing A by $P A+A P$ in (i), we have

$$
\begin{aligned}
& (m+n) \delta(P(P A+A P)+(P A+A P) P) \\
& \quad=2 m \delta(P)(P A+A P)+2 m \delta(P A+A P) P+2 n P \delta(P A+A P)+2 n(P A+A P) \delta(P) \\
& \Rightarrow(m+n) \delta(P A+A P)+2(m+n) \delta(P A P) \\
& \quad=2 m \delta(P)(P A+A P)+2 m \delta(P A+A P) P+2 n P \delta(P A+A P)+2 n(P A+A P) \delta(P)
\end{aligned}
$$

Then it implies

$$
\begin{aligned}
& 2 m \delta(P) A+2 m \delta(A) P+2 n P \delta(A)+2 n A \delta(P)+2(m+n) \delta(P A P) \\
& =2 m \delta(P)(P A+A P)+2 m(\delta(P) A+P \delta(A)+\delta(A) P+A \delta(P) P)+2 n P(\delta(P) A \\
& \quad+P \delta(A)+\delta(A) P+A \delta(P))+2 n(P A+A P) \delta(P) \\
& =2 m \delta(P)(P A+A P)+2 m \delta(P) A P+2 m P \delta(A) P+2 m \delta(A) P+2 m A \delta(P) P \\
& \quad+2 n P \delta(P) A+2 n P \delta(A)+2 n P \delta(A) P+2 n P A \delta(P)+2 n P A \delta(P)+2 n A P \delta(P) \\
& \Rightarrow \\
& \quad 2 m \delta(P) A+2 n A \delta(P)+2(m+n) \delta(P A P) \\
& \quad=2 m \delta(P) P A+4 m \delta(P) A P+2 m P \delta(A) P+2 m A \delta(P) P+2 n P \delta(P) A+2 n P \delta(A) P+4 n P A \delta(P)+2 n A P \delta(P) .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
(m+n) \delta(P A P)= & m \delta(P) P A+m \delta(P) A P+m P \delta(A) P+m A \delta(P) P-m \delta(P) A+n P \delta(P) A \\
& +n P \delta(A) P+2 n P A \delta(P)+n A P \delta(P)-n A \delta(P)
\end{aligned}
$$

which is the proof of (ii).
Corollary 2.3. Let \mathcal{A} and δ be as in Lemma 2.1. Suppose that \mathcal{B} is the subalgebra of \mathcal{A} generated by all idempotents in \mathcal{A}. Then for any $T \in \mathcal{B}$ and any $A \in \mathcal{A}$, we have $(m+n) \delta(T A+A T)=2 m \delta(A) T+2 m \delta(T) A+2 n A \delta(T)+2 n T \delta(A)$.

Lemma 2.4. Let \mathcal{L} be a CSL on H. If δ is a (m, n)-Jordan derivation from alg \mathcal{L} into itself, then for all $S, T \in \operatorname{alg} \mathcal{L}$ and $P \in \mathcal{L}$, we have
$(i)(m+n) \delta(S P T(I-P))=2 m \delta(S)(P T(I-P))+2 n S \delta(P T(I-P))$
(ii) $(m+n) \delta(P S(I-P) T)=2 m \delta(P S(I-P)) T+P S(I-P) \delta(T)$.

Proof. (i)Let P be in \mathcal{L}. Since $(m+n) \delta(P)=2 m \delta(P) P+2 n P \delta(P)$, we see that $P \delta(P) P=(I-P) \delta(P)(I-P)=0$. So $\delta(P)=P \delta(P)(I-P)$. Thus by Lemma 2.2, for every $T \in \operatorname{alg} \mathcal{L}$,

$$
\begin{aligned}
(m+n) \delta(P T(I-P)) & =(m+n) \delta(P P T(I-P)+P T(I-P) P) \\
& =2 m \delta(P)(P T(I-P)+2 m \delta(P T(I-P)) P+2 n P \delta(P T(I-P))+2 n P T(I-P) \delta(P) \\
& =2 m \delta(P T(I-P) P)+2 n P \delta(P T(I-P)) .
\end{aligned}
$$

This implies $\delta(P T(I-P))=P \delta(P T(I-P))(I-P)$ for every $T \in$ alg \mathcal{L}. By Lemma 2.2 (ii), we have $(I-P) \delta(P T P)=$ $\delta((I-P) T(I-P) P=0$ for every $T \in \operatorname{alg} \mathcal{L}$. Since $P T(I-P)=P-(P-P T(I-P))$ and $P T(I-P)$ is an idempotent, by Corollary 2.3 , for $S, T \in \operatorname{alg} \mathcal{L}$,

$$
\begin{aligned}
(m+n) \delta(S P T(I-P)= & (m+n)(\delta(P S P P T(I-P)+P T(I-P) P S P)) \\
= & 2 m \delta(P S P)(P T(I-P))+2 m \delta(P T(I-P)) P S P \\
& +2 n P S P \delta(P T(I-P))+2 n P T(I-P) \delta(P S P) \\
= & 2 m \delta(P S P)(P T(I-P))+2 n P S P \delta(P T(I-P)) \\
= & 2 m \delta(S)(P T(I-P))+2 n S \delta(P T(I-P)) .
\end{aligned}
$$

With proof (i), the proof of (ii) is also true.
By the lemmata above and the fact that a CSL-algebra contains all idempotent elements then we have the following result.
Theorem 2.5. Let \mathcal{L} be a CSL-algebra on H. If δ is a norm continuous linear (m, n) mapping from \mathcal{A} into it self then δ is a (m, n)-Jordan derivation.

References

[1] F.Lu, The Jordan stucture of CSL algebras, Studia Math. 190 (2009), 283-299.
[2] J.Vukman, On (m, n)-Jordan derivations and commutativity of prime rings, Demonstratio Math. 41(2008), 773-778.

[^0]: 2010 Mathematics Subject Classification. Primary 47L35; Secondary 16W25
 Keywords. Commutative subspace lattice, Jordan derivations, (m,n)-Jordan derivations, CSL algebra
 Received: 10 August 2013; Accepted: 03 February 2014
 Communicated by Dragan S. Djordjević
 Email addresses: a.majeed80@hotmail.co.uk (Asia Majeed), cenap.ozel@gmail.com (Cenap Ozel)

