Statistical Approximation Properties of q-Balázs-Szabados-Stancu Operators

Esma Yıldız Özkan ${ }^{\text {a }}$

${ }^{a}$ Faculty of Science, Department of Mathematics, Gazi University, 06500 Ankara, Turkey

1. Introduction

After Phillips [18], the approximation properties for q-analogue of operators were studied by several researchers .
We begin with some notations and definitions of q-calculus. For any non-negative integer r, the q-integer of the number r is defined as

$$
[r]_{q}=\left\{\begin{array}{ccc}
\frac{1-q^{r}}{1-q} & \text { if } & q \neq 1 \\
r & \text { if } & q=1
\end{array}\right.
$$

where q is a positive real number.
The q -factorial is defined as

$$
[r]_{q}!=\left\{\begin{array}{cc}
{[1]_{q}[2]_{q} \ldots[r]_{q}} & \text { if } r=1,2, \ldots \\
r & \text { if } r=0
\end{array}\right.
$$

For integers n, r with $0 \leq r \leq n$, the q -binomial coefficients are defined as

$$
\left[\begin{array}{c}
n \\
r
\end{array}\right]_{q}=\frac{[n]_{q}!}{[r]_{q}![n-r]_{q}!}
$$

Details on q-integers can be found in [2, 4, 14].
Bernstein type rational functions were defined by Balázs [5]. Balázs and Szabados modified and studied approximation properties of these operators [6].

The q-analogue of the Balázs-Szabados operators were defined by Dogru [8] as follows

$$
R_{n}(f ; q, x)=\frac{1}{\prod_{s=0}^{n-1}\left(1+q^{s} a_{n} x\right)} \sum_{j=0}^{n} q^{j(j-1) / 2} f\left(\frac{[j]_{q}}{b_{n}}\right)\left[\begin{array}{c}
n \tag{1}\\
j
\end{array}\right]_{q}\left(a_{n} x\right)^{j}
$$

[^0]where $x \in[0, \infty), a_{n}=[n]_{q}^{\beta-1}, b_{n}=[n]_{q}^{\beta}$ for all $n \in \mathbb{N}, q \in(0,1]$ and $0<\beta \leq \frac{2}{3}$.
Dogru also gave the following equalities
\[

$$
\begin{equation*}
R_{n}\left(e_{0} ; q, x\right)=1 \tag{2}
\end{equation*}
$$

\]

$$
\begin{align*}
& R_{n}\left(e_{1} ; q, x\right)=\frac{x}{1+a_{n} x} \tag{3}\\
& R_{n}\left(e_{2} ; q, x\right)=\frac{[n-1]_{q}}{[n]_{q}} \frac{q^{2} x^{2}}{\left(1+a_{n} x\right)\left(1+a_{n} q x\right)}+\frac{x}{b_{n}\left(1+a_{n} x\right)}, \tag{4}
\end{align*}
$$

where $e_{k}(x)=x^{k}$ for $k=0,1,2$.
In (4), using the equality $[n]_{q}=q[n-1]_{q}+1$, we get

$$
\begin{equation*}
R_{n}\left(e_{2} ; q, x\right)=\frac{\left(1-\frac{a_{n}}{b_{n}}\right) q x^{2}}{\left(1+a_{n} x\right)\left(1+a_{n} q x\right)}+\frac{x}{b_{n}\left(1+a_{n} x\right)} \tag{5}
\end{equation*}
$$

We will use (5) instead of (4) throughout the paper.
The rational complex Balázs-Szabados operators were defined by Gal in [11]. He studied approximation properties of these operators on compact disks. In [13], the complex q-Balázs-Szabados operators were defined and the approximation properties of these operators were studied on compact disks.
$C[0, A]$ denotes the space of all continuous functions on $[0, A], A>0$ with the norm $\|f\|=\max _{x \in[0, A]}|f(x)|$ for all $f \in C[0, A]$.

We define the following q-Balázs-Szabados-Stancu operators

$$
R_{n, q}^{(\alpha, \gamma)}(f ; q, x)=\sum_{j=0}^{n} f\left(\frac{[j]_{q}+[\alpha]_{q}}{b_{n}+[\gamma]_{q}}\right) p_{n, j}(x ; q)
$$

where f is a real valued function defined on the all positive axis, $a_{n}=[n]_{q}^{\beta-1}, b_{n}=[n]_{q}^{\beta},[\alpha]_{q}=\frac{1-q^{\alpha}}{1-q}$, $[\gamma]_{q}=\frac{1-q^{\gamma}}{1-q}$ for all $n \in \mathbb{N}, q \in(0,1], 0<\beta \leq \frac{2}{3}$ and $0 \leq \alpha \leq \gamma$,

$$
p_{n, j}(x ; q)=\frac{q^{j(j-1) / 2}\left[\begin{array}{c}
n \tag{6}\\
j
\end{array}\right]_{q}\left(a_{n} x\right)^{j}}{\prod_{s=0}^{n-1}\left(1+q^{s} a_{n} x\right)}
$$

and

$$
\prod_{s=0}^{n-1}\left(1+q^{s} a_{n} x\right)=\sum_{j=0}^{n} q^{j(j-1) / 2}\left[\begin{array}{c}
n \tag{7}\\
j
\end{array}\right]_{q}\left(a_{n} x\right)^{j}
$$

It is clear that $R_{n, q}^{(\alpha, \gamma)}$ are linear and positive operators.
We have the following lemma for the operators $R_{n, q}^{(\alpha, \gamma)}$.

Lemma 1.1. The following equalities are satisfied for the operators $R_{n, q}^{(\alpha, \gamma)}$

$$
\begin{align*}
& R_{n, q}^{(\alpha, \gamma)}\left(e_{0} ; x\right)=1, \tag{8}\\
& R_{n, q}^{(\alpha, \gamma)}\left(e_{1} ; x\right)=\frac{b_{n} x}{\left(b_{n}+[\gamma]_{q}\right)\left(1+a_{n} x\right)}+\frac{[\alpha]_{q}}{b_{n}+[\gamma]_{q}}, \tag{9}\\
& R_{n, q}^{(\alpha, \gamma)}\left(e_{2} ; x\right)=\frac{b_{n}^{2}\left(1-\frac{a_{n}}{b_{n}}\right) q x^{2}}{\left(b_{n}+[\gamma]_{q}\right)^{2}\left(1+a_{n} x\right)\left(1+a_{n} q x\right)}+\frac{b_{n}\left(2[\alpha]_{q}+1\right) x}{\left(b_{n}+[\gamma]_{q}\right)^{2}\left(1+a_{n} x\right)}+\frac{[\alpha]_{q}^{2}}{\left(b_{n}+[\gamma]_{q}\right)^{2}}, \tag{10}
\end{align*}
$$

where $e_{k}(x)=x^{k}$ for $k=0,1,2$.
Proof. From (7), it is clear that

$$
R_{n, \eta}^{(\alpha, \gamma)}\left(e_{0} ; x\right)=1
$$

With direct computation, we get

$$
R_{n, q}^{(\alpha, \gamma)}\left(e_{1} ; x\right)=\frac{b_{n}}{b_{n}+[\gamma]_{q}} R_{n}\left(e_{1} ; q, x\right)+\frac{[\alpha]_{q}}{b_{n}+[\gamma]_{q}} R_{n}\left(e_{0} ; q, x\right) .
$$

Using (2) and (3), we obtain desired result.
Similarly, with direct computation, we get

$$
R_{n, q}^{(\alpha, \gamma)}\left(e_{2} ; x\right)=\frac{b_{n}^{2}}{\left(b_{n}+[\gamma]_{q}\right)^{2}} R_{n}\left(e_{2} ; q, x\right)+\frac{2[\alpha]_{q} b_{n}}{\left(b_{n}+[\gamma]_{q}\right)^{2}} R_{n}\left(e_{1} ; q, x\right)+\frac{[\alpha]_{q}^{2}}{\left(b_{n}+[\gamma]_{q}\right)^{2}} R_{n}\left(e_{0} ; q, x\right) .
$$

Using (2) ,(3) and (5), we obtain desired result.
Lemma 1.2. It holds the following equalities for the operators $R_{n, q}^{(\alpha, \gamma)}$

$$
\begin{equation*}
R_{n, q}^{(\alpha, \gamma)}\left(\left(e_{1}-x\right) ; x\right)=-\frac{[\gamma]_{q} x}{\left(b_{n}+[\gamma]_{q}\right)\left(1+a_{n} x\right)}-\frac{a_{n} x^{2}}{1+a_{n} x}+\frac{[\alpha]_{q}}{b_{n}+[\gamma]_{q}} \tag{11}
\end{equation*}
$$

and

$$
\begin{align*}
R_{n, q}^{(\alpha, \gamma)}\left(\left(e_{1}-x\right)^{2} ; x\right)= & \frac{a_{n}^{2} q x^{4}+a_{n}\left(q_{n}+1\right) x^{3}}{\left(1+a_{n} x\right)\left(1+a_{n} q_{n} x\right)}-\frac{2 b_{n} a_{n} q x^{3}}{\left(b_{n}+[\gamma]_{q}\right)\left(1+a_{n} x\right)\left(1+a_{n} q x\right)} \\
& \left.+\frac{b_{n}^{2}\left(q-1-q a_{n}\right.}{b_{n}}+\frac{[\gamma]_{q}^{2}}{b_{n}^{2}}\right) x^{2} \\
\left(b_{n}+[\gamma]_{q}\right)^{2}\left(1+a_{n} x\right)\left(1+a_{n} q x\right) & \frac{b_{n}\left(2[\alpha]_{q}+1\right) x}{\left(b_{n}+[\gamma]_{q}\right)^{2}\left(1+a_{n} x\right)} \tag{12}\\
& +\frac{[\alpha]_{q}^{2}}{\left(b_{n}+[\gamma]_{q}\right)^{2}}-\frac{2[\alpha]_{q} x}{b_{n}+[\gamma]_{q}} .
\end{align*}
$$

Proof. From Lemma 1.1, the proof can be obtained easily, so we omit the proof.

2. Statistical Convergence of the Operators

The concept of the statistical convergence was introduced by Fast[9].
In this section, we will give a Bohman-Korovkin type statistical approximation theorem.
Firstly, we recall some definitions about the statistical convergence. The density of a set $K \subset \mathbb{N}$ is defined by

$$
\delta\{k \leq n: k \in K\}
$$

The natural density, δ, of a set $K \subset \mathbb{N}$ is defined by

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left|K_{n}\right|,
$$

provided the limits exist [16].
A sequence $x=\left(x_{k}\right)$ is called statistically convergent to a number L if, for every $\varepsilon>0$

$$
\delta\left\{k:\left|x_{k}-L\right| \geq \varepsilon\right\}=0
$$

and it is denoted as $s t-\lim _{k} x_{k}=L$.
Any convergent sequence is statistically convergent but not conversely. For example, the sequence

$$
x_{k}=\left\{\begin{array}{ll}
L_{1}, & \text { if } k=m^{2} \\
L_{2}, & \text { if } k \neq m^{2}
\end{array}, \text { for } m=1,2, \ldots\right.
$$

is statistically convergent to L_{2} but not convergent in the ordinary sense when $L_{1} \neq L_{2}$.
Now, we consider a sequence $q=\left(q_{n}\right)$ satisfying

$$
\begin{equation*}
s t-\lim _{n} q_{n}=1 \text { and } s t-\lim _{n} q_{n}^{n}=c, 0 \leq c<1 . \tag{13}
\end{equation*}
$$

Under this conditions given in (13), it is clear that

$$
s t-\lim _{n} a_{n}=s t-\lim _{n} \frac{1}{b_{n}}=s t-\lim _{n} \frac{a_{n}}{b_{n}}=s t-\lim _{n} \frac{1}{b_{n}+[\gamma]_{q}}=0 .
$$

The useful connections of Korovkin type approximation theory were given by Altomare and Campiti in [1].
Recently, the statistical approximation of operators has also been investigated by several authors (see [7],[3],[17], [12], [19], [20], [22], [23], [21] and [24]).

Gadjiev and Orhan [10] proved the following Bohman-Korovkin type statistical approximation theorem for any sequence of positive linear operators.

Theorem 2.1. ([10]) If the sequence of positive linear operators $A_{n}: C[a, b] \rightarrow B[a, b]$ satisfies the conditions

$$
s t-\lim _{n}\left\|A_{n}\left(e_{v}\right)-e_{v}\right\|=0
$$

with $e_{v}(t)=t^{v}$ for $v=0,1,2$, then for any $f \in C[a, b]$, we have

$$
s t-\lim _{n}\left\|A_{n}(f)-f\right\|=0
$$

Now, we can give the following main result for the operators $R_{n, q}^{(\alpha, \gamma)}$.
Theorem 2.2. Let $q=\left(q_{n}\right)$ with $0<q_{n} \leq 1$ be a sequence satisfying the conditions given in (13). If f is a continuous function on $[0, A]$ with $0<A<\frac{1}{a_{n}}$ and bounded on the all positive axis, then it holds for the operators $R_{n, q}^{(\alpha, \gamma)}$

$$
s t-\lim _{n}\left\|R_{n, q_{n}}^{(\alpha, \gamma)}(f ; .)-f\right\|=0
$$

Proof. From (8) in Lemma 1.1, it is clear that

$$
\begin{equation*}
s t-\lim _{n}\left\|R_{n, q_{n}}^{(\alpha, \gamma)}\left(e_{0} ; .\right)-e_{0}\right\|=0 \tag{14}
\end{equation*}
$$

Using (11) in Lemma 1.2, we can write

$$
\begin{equation*}
\left|R_{n, q_{n}}^{(\alpha, \gamma)}\left(e_{1} ; x\right)-e_{1}(x)\right| \leq \frac{[\gamma]_{q_{n}}|x|}{\left(b_{n}+[\gamma]_{q_{n}}\right)\left|1-a_{n}\right| x \mid}+\frac{a_{n}|x|^{2}}{\left|1-a_{n}\right| x| |}+\frac{[\alpha]_{q_{n}}}{b_{n}+[\gamma]_{q_{n}}} \tag{15}
\end{equation*}
$$

Considering $0<A<\frac{1}{a_{n}}$, taking maximum of both sides of (15) on $C[0, A]$, we get

$$
\begin{equation*}
\left\|R_{n, q_{n}}^{(\alpha, \gamma)}\left(e_{1} ; .\right)-e_{1}\right\| \leq \frac{[\gamma]_{q_{n}} A}{\left(b_{n}+[\gamma]_{q_{n}}\right)\left(1-a_{n} A\right)}+\frac{a_{n} A^{2}}{1-a_{n} A}+\frac{[\alpha]_{q_{n}}}{b_{n}+[\gamma]_{q_{n}}} . \tag{16}
\end{equation*}
$$

For a given $\varepsilon>0$, let us define the following sets:

$$
\begin{aligned}
D & :=\left\{k:\left\|R_{k, q_{k}}^{(\alpha, \gamma)}\left(e_{1} ; .\right)-e_{1}\right\| \geq \varepsilon\right\} \\
D_{1} & :=\left\{k: \frac{[\gamma]_{q_{k}} A}{\left(b_{k}+[\gamma]_{q_{k}}\right)\left(1-a_{k} A\right)} \geq \frac{\varepsilon}{3}\right\}, \\
D_{2}: & =\left\{k: \frac{a_{k} A^{2}}{1-a_{k} A} \geq \frac{\varepsilon}{3}\right\}, \\
D_{3} & :=\left\{k: \frac{[\alpha]_{q_{k}}}{b_{k}+[\gamma]_{q_{k}}} \geq \frac{\varepsilon}{3}\right\} .
\end{aligned}
$$

From (16), since $D \subseteq D_{1} \cup D_{2} \cup D_{3}$, we get

$$
\begin{aligned}
\delta\left\{k \leq n:\left\|R_{k, q_{k}}^{(\alpha, \gamma)}\left(e_{1} ; .\right)-e_{1}\right\| \geq \varepsilon\right\} \leq & \delta\left\{k \leq n: \frac{[\gamma]_{q_{k}} A}{\left(b_{k}+[\gamma]_{q_{k}}\right)\left(1-a_{k} A\right)} \geq \frac{\varepsilon}{3}\right\} \\
& +\delta\left\{k \leq n: \frac{a_{k} A^{2}}{1-a_{k} A} \geq \frac{\varepsilon}{3}\right\}+\delta\left\{k \leq n: \frac{[\alpha]_{q_{k}}}{b_{k}+[\gamma]_{q_{k}}} \geq \frac{\varepsilon}{3}\right\}
\end{aligned}
$$

Under the condition given in (13), it is clear that

$$
s t-\lim _{n} \frac{[\gamma]_{q_{n}} A}{\left(b_{n}+[\gamma]_{q_{n}}\right)\left(1-a_{k} A\right)}=s t-\lim _{n} \frac{a_{n} A^{2}}{1-a_{n} A}=s t-\lim _{n} \frac{[\alpha]_{q_{n}}}{b_{n}+[\gamma]_{q_{n}}}=0,
$$

which implies

$$
\begin{equation*}
s t-\lim _{n}\left\|R_{n, q_{n}}^{(\alpha, \gamma)}\left(e_{1} ; .\right)-e_{1}\right\|=0 \tag{17}
\end{equation*}
$$

Using (10) in Lemma 1.1, we can write

$$
\begin{align*}
R_{n, q_{n}}^{(\alpha, \gamma)}\left(e_{2} ; .\right)-e_{2}(x)= & -\frac{a_{n}^{2} q_{n} x^{4}+a_{n}\left(q_{n}+1\right) x^{3}}{\left(1+a_{n} x\right)\left(1+a_{n} q_{n} x\right)}+\frac{b_{n}^{2}\left(q_{n}-1-q_{n} \frac{a_{n}}{b_{n}}-\frac{2[\gamma]_{q_{n}}}{b_{n}}-\frac{[\gamma] q_{p_{n}}^{2}}{b_{n}^{2}}\right) x^{2}}{\left(b_{n}+[\gamma]_{q_{n}}\right)^{2}\left(1+a_{n} x\right)\left(1+a_{n} q_{n} x\right)} \tag{18}\\
& +\frac{b_{n}\left(2[\alpha]_{q_{n}}+1\right) x}{\left(b_{n}+[\gamma]_{q_{n}}\right)^{2}\left(1+a_{n} x\right)}+\frac{[\alpha]_{q_{n}}^{2}}{\left(b_{n}+[\gamma]_{q_{n}}\right)^{2}} .
\end{align*}
$$

Considering $0<A<\frac{1}{a_{n}}$, taking absolute value both sides of (18), and passing to norm on $C[0, A]$

$$
\begin{align*}
\left\|R_{n, q_{n}}^{(\alpha, \gamma)}\left(e_{2} ; .\right)-e_{2}\right\| \leq & \frac{a_{n}^{2} q_{n} A^{4}+a_{n}\left(q_{n}+1\right) A^{3}}{\left(1-a_{n} A\right)\left(1-a_{n} q_{n} A\right)}+\frac{b_{n}^{2}\left(1-q_{n}+q_{n} \frac{a_{n}}{b_{n}}+\frac{2[\gamma]_{q_{n}}}{b_{n}}+\frac{[\gamma]_{q_{n}}^{2}}{b_{n}^{2}}\right) A^{2}}{\left(b_{n}+[\gamma]_{q_{n}}\right)^{2}\left(1-a_{n} A\right)\left(1-a_{n} q_{n} A\right)} \tag{19}\\
& +\frac{b_{n}\left(2[\alpha]_{q_{n}}+1\right) A}{\left(b_{n}+[\gamma]_{q_{n}}\right)^{2}\left(1-a_{n} A\right)}+\frac{[\alpha]_{q_{n}}^{2}}{\left(b_{n}+[\gamma]_{q_{n}}\right)^{2}} .
\end{align*}
$$

If we choose

$$
\begin{aligned}
\lambda_{n}= & \frac{a_{n}^{2} q_{n} A^{4}+a_{n}\left(q_{n}+1\right) A^{3}}{\left(1-a_{n} A\right)\left(1-a_{n} q_{n} A\right)} \\
\theta_{n} & =\frac{b_{n}^{2}\left(1-q_{n}+q_{n} \frac{a_{n}}{b_{n}}+\frac{2[\gamma]_{q_{n}}}{b_{n}}+\frac{[\gamma]_{q_{n}}^{2}}{b_{n}^{2}}\right) A^{2}}{\left(b_{n}+[\gamma]_{q_{n}}\right)^{2}\left(1-a_{n} A\right)\left(1-a_{n} q_{n} A\right)} \\
\eta_{n} & =\frac{b_{n}\left(2[\alpha]_{q_{n}}+1\right) A}{\left(b_{n}+[\gamma]_{q_{n}}\right)^{2}\left(1-a_{n} A\right)} \\
\varphi_{n} & =\frac{[\alpha]_{q_{n}}^{2}}{\left(b_{n}+[\gamma]_{q_{n}}\right)^{2}}
\end{aligned}
$$

then, under the conditions given in (13), we have

$$
\begin{equation*}
s t-\lim _{n} \lambda_{n}=s t-\lim _{n} \theta_{n}=s t-\lim _{n} \eta_{n}=s t-\lim _{n} \varphi_{n}=0 . \tag{20}
\end{equation*}
$$

Again for a given $\varepsilon>0$, let us define the following sets:

$$
\begin{aligned}
E & :=\left\{k:\left\|R_{k, q_{k}}^{(\alpha, \gamma)}\left(e_{2} ; q_{k}, \cdot\right)-e_{2}\right\| \geq \varepsilon\right\}, \\
E_{1}: & =\left\{k: \lambda_{k} \geq \frac{\varepsilon}{4}\right\}, E_{2}:=\left\{k: \theta_{k} \geq \frac{\varepsilon}{4}\right\}, \\
E_{3}: & =\left\{k: \eta_{k} \geq \frac{\varepsilon}{4}\right\}, E_{4}:=\left\{k: \varphi_{k} \geq \frac{\varepsilon}{4}\right\} .
\end{aligned}
$$

It is clear that $E \subseteq E_{1} \cup E_{2} \cup E_{3} \cup E_{4}$, which implies

$$
\begin{aligned}
\delta\left\{k \leq n:\left\|R_{k, q_{k}}^{(\alpha, \gamma)}\left(e_{2} ; .\right)-e_{2}\right\| \geq \varepsilon\right\} \leq & \delta\left\{k \leq n: \lambda_{k} \geq \frac{\varepsilon}{4}\right\}+\delta\left\{k \leq n: \theta_{k} \geq \frac{\varepsilon}{4}\right\} \\
& +\delta\left\{k \leq n: \eta_{k} \geq \frac{\varepsilon}{4}\right\}+\delta\left\{k \leq n: \varphi_{k} \geq \frac{\varepsilon}{4}\right\}
\end{aligned}
$$

From (19), we obtain that

$$
\begin{equation*}
s t-\lim _{n}\left\|R_{n, q_{n}}^{(\alpha, \gamma)}\left(e_{2} ; .\right)-e_{2}\right\|=0 \tag{21}
\end{equation*}
$$

From (15), (17) and (21) and taking into account Theorem 2.1, the proof is finished.

3. Rate of Statistical Convergence

In this part, we will give the order of statistical approximation of the operators $R_{n, \eta}^{(\alpha, \gamma)}$ by means of modulus of continuity and the elements of Lipschitz class functionals.
Let $f \in C[0, A]$. The modulus of continuity of f is defined by

$$
\omega(f ; \delta)=\sup _{\substack{|t-x| \leq \delta \\ x, t \in[0, A]}}|f(t)-f(x)|
$$

It is clear that $\lim _{\delta \rightarrow 0^{+}} \omega(f ; \delta)=0$ for all $f \in C[0, A]$. Also, we have

$$
\begin{equation*}
|f(t)-f(x)| \leq \omega(f ; \delta)\left(\frac{|t-x|}{\delta}+1\right) \tag{22}
\end{equation*}
$$

for any $\delta>0$ and each $x, t \in[0, A]$.
A function $f \in C[0, A]$ belongs to $\operatorname{Lip}_{M}(\theta)$ for $M>0$ and $0<\theta \leq 1$, provided that

$$
\begin{equation*}
|f(y)-f(x)| \leq|y-x|^{\theta}, \text { for all } x, y \in[0, A] \tag{23}
\end{equation*}
$$

Theorem 3.1. Let $q=\left(q_{n}\right)$ with $0<q_{n} \leq 1$ be a sequence satisfying the conditions given in (13). If f is a continuous function on $[0, A]$ and bounded on the all positive axis, then it holds

$$
\left|R_{n, q_{n}}^{(\alpha, \gamma)}(f ; x)-f(x)\right| \leq 2 \omega\left(f ; \delta_{n}(x)\right),
$$

where

$$
\begin{equation*}
\delta_{n}(x)=\left(R_{n, q_{n}}^{(\alpha, \gamma)}\left(\left(e_{1}-x\right)^{2} ; x\right)\right)^{1 / 2} \tag{24}
\end{equation*}
$$

Proof. From the linearity and positivity of the operators $R_{n, q_{n}}^{(\alpha, \gamma)}$ and using (22), we obtain

$$
\begin{align*}
\left|R_{n, q_{n}}^{(\alpha, \gamma)}(f ; x)-f(x)\right| & \leq R_{n, q_{n}}^{(\alpha, \gamma)}(|f(t)-f(x)| ; x) \tag{25}\\
& \leq \omega(f ; \delta(x))\left\{1+\frac{1}{\delta(x)} R_{n, q_{n}}^{(\alpha, \gamma)}\left(\left|e_{1}-x\right| ; x\right)\right\}
\end{align*}
$$

In (25), using Cauchy- Schwarz inequality, we get

$$
\left|R_{n, q_{n}}^{(\alpha, \gamma)}(f ; x)-f(x)\right| \leq \omega(f ; \delta(x))\left\{1+\frac{1}{\delta(x)}\left(R_{n, q_{n}}^{(\alpha, \gamma)}\left(\left(e_{1}-x\right)^{2} ; x\right)\right)^{1 / 2}\right\} .
$$

Finally, choosing $\delta(x)=\delta_{n}(x)$ as in (24), the proof is complete.
Theorem 3.2. Let $q=\left(q_{n}\right)$ with $0<q_{n} \leq 1$ be a sequence satisfying the conditions given in (13). If f is a continuous function on $[0, A]$ and bounded on the all positive axis then we have

$$
\left|R_{n, q_{n}}^{(\alpha, \gamma)}(f ; x)-f(x)\right| \leq M\left\{\delta_{n}(x)\right\}^{\theta}
$$

where $\delta_{n}(x)$ is given as in (24).
Proof. Using (23), we can write

$$
\begin{aligned}
\left|R_{n, q_{n}}^{(\alpha, \gamma)}(f ; x)-f(x)\right| & \leq R_{n, q_{n}}^{(\alpha, \gamma)}(|f(t)-f(x)| ; x) \\
& \leq M R_{n, q_{n}}^{(\alpha, \gamma)}\left(|t-x|^{\theta} ; x\right)
\end{aligned}
$$

Applying the Hölder inequality,we get

$$
\left|R_{n, q_{n}}^{(\alpha, \gamma)}(f ; x)-f(x)\right| \leq M\left(R_{n, q_{n}}^{(\alpha, \gamma)}\left(\left(e_{1}-x\right)^{2} ; x\right)\right)^{\theta / 2}
$$

and choosing $\delta_{n}(x)$ as given in (24), the proof is complete.

4. An r-th Order Generalization of Operators $R_{n, q}^{(\alpha, \gamma)}$

By $C^{(r)}[0, A]$ we mean the space of all functions f for which their r-th derivative $f^{(r)}$ with $f^{(0)}(x)=f(x)$ are continuous on $[0, A]$ and bounded all positive axis for $A>0$ and $r=0,1,2 \ldots$.

Now, using the similar method by Kirov and Popova [15], we consider the following r-th order generalization

$$
\begin{equation*}
R_{n, q, r}^{(\alpha, \gamma)}(f ; x)=\sum_{j=0}^{n} \sum_{i=0}^{r} p_{n, j}(x ; q) \frac{f^{(i)}\left(\xi_{n, j}(q)\right)}{i!}\left(x-\xi_{n, j}(q)\right)^{i} \tag{26}
\end{equation*}
$$

where $n \in \mathbb{N}, \xi_{n, j}(q):=\frac{[j]_{q}+[\alpha]_{q}}{b_{n}+[\gamma]_{q}}, f \in C^{(r)}[0, A], p_{n, j}(x ; q)$ is as given in (6), $a_{n}=[n]_{q}^{\beta-1}, b_{n}=[n]_{q}^{\beta}$ with $0<\beta \leq \frac{2}{3}$ and $0 \leq \alpha \leq \gamma$.
If we take $r=0$ in (26) then we get $R_{n, q, 0}^{(\alpha, \gamma)}(f ; x)=R_{n, q}^{(\alpha, \gamma)}(f ; x)$.
We have the following approximation theorem for the operators $R_{n, q, r}^{(\alpha, \gamma)}$.

Theorem 4.1. If $f \in C^{(r)}[0, A]$ such that $f^{(r)} \in \operatorname{Lip}(\theta)$ then we have

$$
\left|R_{n, q, r}^{(\alpha, \gamma)}(f ; x)-f(x)\right| \leq \frac{M \theta B(\theta, r)}{(r-1)!(\theta+r)}\left|R_{n, q}^{(\alpha, \gamma)}(\varphi ; x)\right|
$$

where $\varphi(y)=|y-x|^{\theta+r}$ for each $x \in[0, A]$ and $B(\theta, r)$ denotes the Beta function.
Proof. From (26), we can write

$$
\begin{equation*}
f(x)-R_{n, q, r}^{(\alpha, \gamma)}(f ; x)=\sum_{j=0}^{n} p_{n, j}(x ; q)\left\{f(x)-\sum_{i=0}^{r} \frac{f^{(i)}\left(\xi_{n, j}(q)\right)}{i!}\left(x-\xi_{n, j}(q)\right)^{i}\right\} \tag{27}
\end{equation*}
$$

Using the well-known Taylor's formula, we get

$$
\begin{align*}
& f(x)-\sum_{i=0}^{r} \frac{f^{(i)}\left(\xi_{n, j}(q)\right)}{i!}\left(x-\xi_{n, j}(q)\right)^{i}= \tag{28}\\
& \quad \frac{\left(x-\xi_{n, j}(q)\right)^{r}}{(r-1)!} \int_{0}^{1}(1-t)^{r-1}\left[f^{(r)}\left(\xi_{n, j}(q)+t\left(x-\xi_{n, j}(q)\right)\right)-f^{(r)}\left(\xi_{n, j}(q)\right)\right] d t .
\end{align*}
$$

Since $f^{(r)} \in \operatorname{Lip}(\theta)$, we see that

$$
\begin{equation*}
\left|f^{(r)}\left(\xi_{n, j}(q)+t\left(x-\xi_{n, j}(q)\right)\right)-f^{(r)}\left(\xi_{n, j}(q)\right)\right| \leq M t^{\theta}\left|x-\xi_{n, j}(q)\right|^{\theta} \tag{29}
\end{equation*}
$$

Now, using (29) in (28) and considering the fact that

$$
\int_{0}^{1}(1-t)^{r-1} t^{\theta} d t=\frac{\theta B(\theta, r)}{\theta+r}
$$

we have

$$
\begin{equation*}
\left|f(x)-\sum_{i=0}^{r} \frac{f^{(i)}\left(\xi_{n, j}(q)\right)}{i!}\left(x-\xi_{n, j}(q)\right)^{i}\right| \leq \frac{M \theta B(\theta, r)}{(r-1)!(\theta+r)}\left|x-\xi_{n, j}(q)\right|^{r+\theta} \tag{30}
\end{equation*}
$$

Taking into account (30) in (27), we get the desired result.
Remark 4.2. The function φ in Theorem 4.1 belongs to $C[0, A]$ and $\varphi(x)=0$. Also, for any $x, y \in[0, A], r \in \mathbb{N}$, and $\theta \in[0,1)$, since

$$
|\varphi(y)-\varphi(x)| \leq|y-x|^{r}|y-x|^{\theta} \leq|y-x|^{\theta}
$$

we get that $\varphi \in \operatorname{Lip}_{1}(\theta)$.
Under the light of Remark 4.2, the following result is obtained from Theorem 3.1 and Theorem 3.2.

Corollary 4.3. Let $q=\left(q_{n}\right)$ with $0<q_{n} \leq 1$ be a sequence satisfying the conditions given in (13). If $f \in C^{(r)}[0, A]$ such that $f^{(r)} \in \operatorname{Lip}(\theta)$ then we have

$$
\begin{aligned}
& \text { i) }\left|R_{n, q_{n}, r}^{(\alpha, \gamma)}(f ; x)-f(x)\right| \leq \frac{2 M \theta B(\theta, r)}{(r-1)!(\theta+r)} \omega\left(\varphi ; \delta_{n}(x)\right), \\
& \text { ii) }\left|R_{n, q_{n}, r}^{(\alpha, \gamma)}(f ; x)-f(x)\right| \leq \frac{M \theta B(\theta, r)}{(r-1)!(\theta+r)}\left\{\delta_{n}(x)\right\}^{\theta},
\end{aligned}
$$

where $\delta_{n}(x)$ as given in (24).
Remark 4.4. $\delta_{n}(x)$, given in (24), is defined on $[0, A]$ for sufficiently large natural numbers. Under the conditions given in (13), it is clear that st $-\lim _{n} \delta_{n}(x)$, which implies st $-\lim _{n} \omega\left(f ; \delta_{n}(x)\right)=0$.
Consequently, Theorem 3.1 and Theorem 3.2 give us the rate of statistical convergence of the operators $R_{n, q_{n}}^{(\alpha, \gamma)}(f ; x)$ to $f(x)$ on $[0, A]$.

Remark 4.5. Under the hypothesis of Corollary 4.3, we see that st $-\lim _{n} \omega\left(\varphi ; \delta_{n}(x)\right)=0$ since st $-\lim _{n} \delta_{n}(x)$. Considering Theorem 4.1, (i) and (ii) in Corollary 4.3 give us the rate of statistical convergence of the operators $R_{n, q_{n}, r}^{(\alpha, \gamma)}(f ; x)$ to $f(x)$ on $[0, A]$ provided that $f \in C^{(r)}[0, A]$ such that $f^{(r)} \in \operatorname{Lip}_{M}(\theta)$ for $r \in \mathbb{N}$.

References

[1] F. Altomare, M. Campiti, Korovkin-Type Approximation Theory and its Applications Walter de Gruyter, Berlin, 1994.
[2] G.E. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, 1999.
[3] A. Aral, O. Doğru, Bleimann Butzer and Hahn operators based on q-integers, J. Inequal. Appl. (2007) 1-12. Art. ID 79410.
[4] A. Aral, V. Gupta, R.P. Agarwal, Applications of q Calculus in Operator Theory, Springer 2013, VIII 257 p. ISBN 978-1-4614-6945-2.
[5] K. Balázs, Approximation by Bernstein type rational function, Acta Math. Acad. Sci. Hungar 26 (1975), 123-134.
[6] K. Balázs, J. Szabados, Approximation by Bernstein type rational function II, Acta Math. Acad. Sci. 40 (3-4) (1982) 331-337.
[7] O. Doğru, O. Duman, Statistical approximation of Meyer-König and Zeller operators based on q-integers, Publ. Math. Debrecen 68 (2006) no 1-2, 199-214.
[8] O. Dogru, On statistical approximation properties of Stancu type bivariate generalization of , q-Balazs-Szabados operators, Proceedings. Int. Conf on Numerical Analysis and Approximation Theory Cluj-Napoca Romania (2006) 179-194.
[9] H. Fast, Sur la convergence statistique, Collog. Math. 2 (1951) 241-244.
[10] A.D. Gadjiev, C. Orhan , Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002) 129-138.
[11] S.G. Gal, Approximation by comlex Bernstein and Convolution type operators, World Scientific Publishing Co. Pte.Ltd.,2009.
[12] V. Gupta, C. Radu, Statistical approximation properties of q-Baskakov-Kantorovich operators, Cent. Eur. J. Math. 7(4) (2009) 809-818.
[13] N. İspir, E. Yıldız Özkan, Approximation properties of complex q-Balazs-Szabados operators in compact disks , J. Inequal. Appl. 2013, 2013:361.
[14] V. Kac, P. Cheung, Quantum Calculus, Springer-Verlag, Newyork,2002.
[15] G. Kirov, L. Popova, A generalization of the linear positive operators, Math. Balcanica 7 (1993) 149-162.
[16] I. Niven, H.S. Zuckerman, H. Montgomery , An Introduction to the Theory of Numbers (5th edition), Wiley, New York, 1991.
[17] M. A Özarslan, O. Duman, H.M. Srivastava, Statistical approximation results for Kantorovich-type operators involving some special polynomials, Math. Comput. Model. 48 (2008) 388-401.
[18] G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997) 511-518.
[19] M. Mursaaleen, Q.M. Lohani, Statistical limit superior and limit inferior in probdistic normed spaces, Filomat 25 (2011), no.3,55-67.
[20] S. Aytar, A characterization theorem for levelwise statistical convercence, Filomat 25 (2011), no. 1, 133-143.
[21] M. Mursaleen, A. Khan, H.M. Srivastava, K.S. Nisar, Operators constructed by means of q-Langrange polynomials and A statistical approximation, Appl. Math. Comput. 219 (2013), no.12, 6911-6918.
[22] N. Íspir, V. Gupta, A-statistical approximation by the generalized Kantrovich-Bernstein type rational operators, Southeast Asian Bull. Math. 32 (2008), no. 1, 87-97.
[23] V. Gupta, H. Sharma, Statistical approximation by q-integrated Meyer-König-Kantrovich operators, Creat. Math. Inform. 19 (2010), no. 1, 45-52.
[24] N.I. Mahmodov, Statistical approximation of Baskakov and Baskakov-Kantrovich operators based on the q-integers, Cent. Eur. J. Math. 8 (2010), no.4, 816-826.

[^0]: 2010 Mathematics Subject Classification. Primary 41A25 ; Secondary 41A36
 Keywords. q-Balázs-Szabados operators, Stancu type operators, Korovkin type approximation theorem, modulus of continuity
 Received: 31 August 2013; Accepted: 25 January 2014
 Communicated by Hari M. Srivastava
 Email address: esmayildiz@gazi.edu.tr (Esma Yıldız Özkan)

