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Abstract. This paper considers the estimation of a linear EV (errors-in-variables) regression model under
martingale difference errors. The usual least squares estimations lead to biased estimators of the unknown
parametric when measurement errors are ignored. By correcting the attenuation we propose a modified
least squares estimator for a parametric component and construct the estimators of another parameter
component and error variance. The asymptotic normalities are also obtained for these estimators. The
simulation study indicates that the modified least squares method performs better than the usual least
squares method.

1. Introduction

Consider the following simple linear EV regression model

yi = xiβ + θ + ei, ξi = xi + ui, i = 1, · · · ,n, (1)

where yi is the response, β and θ are unknown parameters, xi is nonrandom design point. Due to the
measuring mechanism or the nature of the environment, the variable xi is measured with error and is not
directly observable. Instead, xi is observed through ξi = xi + ui, where ei,ui are random errors.

Model (1) belongs to a kind of model called the EV model or measurement error model which was
proposed by Deaton [6] to correct for the effects of sampling error and is somewhat more practical than
the ordinary regression model. There are three monographs for measurement errors models, many of
the early results are summarized in Fuller [13], and updated results of linear and nonlinear measurement
error models can be found in Cheng and Van Ness [3] and Carroll et al. [1]. The last two decades
there have been an increasing number of applications of the linear EV model due to its simple form and
wide applicability. Lai et al. [16] established strong consistency of the least squares (LS) estimators for
the unknown parameter in the multiple EV regression model; Gleser (1981) obtained some large sample
results of estimation in a multivariate EV regression model; Amemiya and Fuller (1984) also discussed
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the estimation for the multivariate EV model; Cui [4] proved the asymptotic normality of M-estimators
in the EV model; Cui and Chen [5] constructed empirical likelihood confidence regions for the unknown
parameters in model (1); Liu and Chen [20] gave consistency of the LS estimators for model (1) and also
proved that the sufficient and necessary condition for β̂n being strong and weak consistent estimate of β is

lim
n→∞

n−1An = ∞, where An =
n∑

i=1

xi − n−1
n∑

j=1
x j

2

; Miao and Yang [25] gave the loglog law for LS estimator

in simple linear EV regression model (1). Miao et al. [24] obtained consistency and asymptotic normality
for usual LS estimators in simple linear EV model (1). Other works of EV model can be found in Liang
and Wang [19], Huang et al. [15], Liang et al. [18], Huang [14], Ma and Li [22], Lv et al. [21], Delaigle
and Meister [7] and so on. However, lots of these results are based on the usual LS estimation, and it shall
produces bias. At the same time, all these articles related to the simple linear EV model (1) worked under
independent framework.

It is well known that the independence assumption for the errors is not always valid in applications,
especially for sequentially collected economic data, which often exhibit evident dependence in the errors.
Miao et al. [26] obtained the asymptotic normality and strong consistency for unknown parameters in the
EV model under the assumptions that the errors are stationary negatively associated sequences. Fan et al.
[11, 12] studied various statical properties for partially time-varying coefficient EV models with dependent
data. Martingale difference as a more realistic error has been assumed by many authors. For example, Fan
et al. [10] employed the empirical likelihood method to obtain the confidence regions for a heteroscedastic
partial linear model with martingale difference errors. Among others, see Li and Liu [17], Chen and Cui [2]
and Fan and Liang [8], for example.

In this paper, we assume that {(ei,ui),Fi, i ≥ 1} is a sequence of martingale differences with

E
(
e2

i |Fi−1

)
= σ2

1 and E
(
u2

i |Fi−1

)
= σ2

2 a.s.

Usual profile least squares parameter estimation method is the most basic method. It is widely used
because the advantage of simple algorithm and easy to implement. However, the use of LS estimation may
obtained deviation parameter estimators. In order to overcome the bias of the usual profile least squares
estimation when measurement errors are ignored, we propose the modified LS estimator for the parameter
β and construct the estimators of θ and error variance and establish the asymptotic normality for these
estimators. Modified LS estimation is an improved method for LS estimation that can reduce influence of
errors, thus improving the estimation accuracy.

The rest of this paper is organized as follows. The modified LS estimation of the parametric β and
the estimators of θ and the error variance σ2

1 are constructed in Section 2. Assumption conditions, the
asymptotic normalities of the estimators are also established in Section 2. Some simulation studies are
conducted in Section 3. The proofs of the main results are postponed in Section 4.

2. The Methodology and the Results

From model (1), it follow that

yi = ξiβ + θ + vi, vi = ei − uiβ, 1 ≤ i ≤ n.

Thus, we get the usual LS estimators of β and θ:

β̂n1 =

n∑
i=1

(
ξi − ξ̄n

) (
yi − ȳn

)
n∑

i=1

(
ξi − ξ̄n

)2
, θ̂n1 = ȳn − ξ̄nβ̂n1,

where ξ̄n = n−1
n∑

i=1
ξi, and other similar notations, such as ȳn, ūn, ēn, ēn are defined in the same way.
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In order to overcome the bias of the usual profile least squares estimation when measurement errors are
ignored, similar to You and Chen [27] and Fan et al. [12], we propose the modified LS estimators as follows,

β̂n =

n∑
i=1

(
ξi − ξ̄n

) (
yi − ȳn

)
n∑

i=1

(
ξi − ξ̄n

)2
− nσ2

2

, θ̂n = ȳn − ξ̄nβ̂n.

Sometimes it is also necessary to estimate the error variance σ2
1 = E

(
e2

i

)
for such tasks as the construction

of confidence regions, model-based tests, model selection procedures, single-to-noise ratio determination
and so on. From E

(
yi − xiβ − θ

)2 = σ2
1 and E

(
yi − ξiβ − θ

)2 = σ2
1 + β2σ2

2, we define an estimator of the error
variance σ2

1 as

σ̂2
1 =

1
n

n∑
i=1

(yi − θ̂n − ξiβ̂n)2
− β̂2

nσ
2
2.

Now we list some assumptions, which are also assumed in Miao et al. [25] and Fan and Liang [8].

(A1) lim
n→∞

n−1An = ∞, where An =
n∑

i=1
(xi − x̄n)2;

(A2) E |ei|
2+δ < ∞ and E |ui|

2+δ < ∞ for some δ > 0.

Theorem 2.1. Suppose that (A1) and (A2) hold. Then
√

An(β̂n − β)
σ

d
→ N (0, 1) ,

where σ2 = σ2
1 + σ2

2β
2.

Theorem 2.2. Suppose that (A1) and (A2) hold. Furthermore if An/(nx̄2
n)→∞, then

√
n(θ̂n − θ)
σ

d
→ N(0, 1).

Theorem 2.3. Under the conditions of (A1) and (A2), we have

√
n(σ̂2

1 − σ
2
1) d
→ N (0, k) ,

where k = E[(e1 − u1β)2
− (σ2

1 + β2σ2
2)].

Remark 2.4. (A1) implies that our estimators have good large-sample properties when {xn,n ≥ 1} have
greater dispersion. For example, if {xn,n ≥ 1} is a sequence of independent and identical distributed
random variables with common distribution N(0, 1), the above estimators have no asymptotic normality.
Condition (A2) is a common moment condition, which has been used by many authors, see (A2) in Fan et
al. [9] for example. Condition An/

(
nx̄2

n

)
→ ∞ in Theorem 2.2 has been used by Miao et al. [23] and Fan et

al. [9].

3. Monte Carlo Simulation Study

In this section, we carry out some simulations to study the unknown parameters and error variance in
linear EV regression model with martingale difference errors. The data are generated from the following
regression model:

yi = xiβ + θ + ei, ξi = xi + ui, i = 1, · · · ,n,
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where β = 1.5, θ = 0.5 and xi = i for i = 1, · · · ,n. Since {(ei,ui) ,Fi, 1 ≤ i ≤ n} is a martingale difference
sequence, we first generate martingale sequence {ζi, σ(ζi), i ≥ 1}, then let ηi = ζi+1 − ζi. In our simulation
process, we generate the first random number ζ1 ∼ N(0, 1), and according to the conditional distribution
ζi+1|ζi ∼ N(ζi, 0.52) for i = 1, · · · ,n, we can generate η2, · · · , ηn+1. ui is taken by using the similar process.

The sample sizes n are chosen to be 20, 30, 50, 100, 200 and 300, respectively. In each case the number of
simulated realizations is 1000. That is, for each n, we calculate the values of each estimators. Then for each
n, we repeat this process 1000 times, and we get 1000 values of each estimators. The sample means and
mean square errors (MSE) of the proposed estimators are then obtained. The simulation results are shown
in Table 1. We also plot the histograms and QQ-normality plots in Figures 1-3 to show the asymptotic
normality of the estimators.

Table 1: Sample means and MSE of various estimators for β = 1.5 and θ = 0.5

n 20 30 50 100 200 300

Mean(β̂n1) 1.4919 1.4954 1.4987 1.4996 1.4999 1.4999
MSE(β̂n1) 0.0013 4.0338e-4 8.3240e-5 1.0239e-5 1.1737e-6 3.8257e-7
Mean(β̂n) 1.5031 1.5004 1.5005 1.5000 1.5000 1.5000
MSE(β̂n) 0.0013 3.8878e-4 8.2436e-5 1.0054e-5 1.1666e-6 3.7682e-7
Mean(θ̂n1) 0.5852 0.5705 0.5448 0.5245 0.5066 0.5120
MSE(θ̂n1) 0.1981 0.1320 0.0675 0.0358 0.0159 0.0116
Mean(θ̂n) 0.4670 0.4930 0.4989 0.5017 0.4953 0.5045
MSE(θ̂n) 0.1976 0.1288 0.0658 0.0352 0.0158 0.0115
Mean(σ̂2

1) 0.1659 0.1922 0.2154 0.2360 0.2465 0.2479
MSE(σ̂2

1) 0.1672 0.1366 0.1047 0.0817 0.0704 0.0680

Note: 4.0338e-4 means 4.0338 × 10−4 and others are the same meaning.

From these simulation results, we draw the following conclusions. In Table 1, the estimators of β, θ and
σ2

1 are very close to their real values. The mean square errors are also very small. With the sample size
increases, the estimated values are more closer to the real values, and the mean square errors also getting
smaller. Besides, we can seen from Table 1 that the modified LS estimators β̂n and θ̂n are fitted better than
β̂n1 and θ̂n1. In addition, seen from Figures 1-3, the distribution of estimators β̂n1, β̂n, θ̂n1, θ̂n and σ̂2

1 have
good fit with the normal distribution and β̂n and θ̂n performs slightly better than β̂n1 and θ̂n1.

4. Proofs of Main Results

For the convenience and simplicity, let c denote positive constant whose value may vary at each occur-
rence. Before proving the main theorems, we give a series of lemmas.

Lemma 4.1 (Fan et al. [10], Lemma 4.3). Let {ξi,Fi} be a sequence of martingale differences, suppose that E
(
ξ2

i | Fi−1

)
≤

C a.s., and supi E |ξi|
p < ∞ for some p ≥ 2. Assume that {ani (t) , 1 ≤ i ≤ n} is an array of real numbers defined on

[0, 1] satisfying max1≤i,k≤n |ani (tk)| = O (n−s) for some s > 0, and that L (x) > 0 is a positive function slowly varying

at infinity. If max
1≤k≤n

n∑
i=1

a2
ni (Zk) = O

(
n−γ

)
, then max

1≤k≤n

∣∣∣∣∣ n∑
i=1

ani (Zk) ξi

∣∣∣∣∣ = o [n−αL (n)] a.s. for α < min
(
γ/2, s − 1/p

)
.

Lemma 4.2 (Fan et al. [10], Lemma 4.1). Let {ξi,Fi, 1 ≤ i < ∞} be a sequence of martingale differences. E
(
ξ2

i | Fi−1

)
=

σ2
i a.s. and limc→∞ supi≥1 E

(
ξ2

i I (|ξi| > c) | Fi−1

)
= 0 a.s. Assume that {cnk : 1 ≤ k ≤ n,n ≥ 1} is an array of real

numbers satisfying

lim
n→∞

n∑
k=1

c2
nkσ

2
k = 1, sup

n≥1

n∑
k=1

c2
nk < ∞, lim

n→∞
max
1≤k≤n

|cnk| = 0.

Then,
∑n

k=1 cnkξk
d
→ N (0, 1) as n→∞.
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Figure 1: Histograms and QQ-normality plots for β̂n1(top) and β̂n(bottom) with n = 300

Lemma 4.3. Suppose that conditions (A1) and (A2) hold. Then we have A−1
n

n∑
i=1

(
ξi − ξ̄n

)2
− 1 = o (1) a.s.

Proof. Observe that
n∑

i=1

(
ξi − ξ̄n

)2
= An +

n∑
i=1

(ui − ūn)2 + 2
n∑

i=1

(xi − x̄n) ui.

First, we shall establish that

1
An

n∑
i=1

(xi − x̄n) ui = o (1) a.s. (2)

(A2) and Lemma 4.1 imply that n−1 ∑n
i=1

(
u2

i − σ
2
2

)
= o (1) a.s. Further we have∣∣∣∣∣∣∣A−1

n

n∑
i=1

(xi − x̄n) ui

∣∣∣∣∣∣∣ ≤
√√

A−2
n

n∑
i=1

(
xi − x̄2

n

) n∑
i=1

u2
i =

√√
A−1

n n

n−1
n∑

i=1

(
u2

i − σ
2
2

)
+ σ2

2

 = o (1) a.s.

Thus, (2) holds. Hence, in order to prove Lemma 4.3, we need only to show that
n∑

i=1

(ui − ūn)2 = o (An) a.s. (3)
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Figure 2: Histograms and QQ-normality plots for θ̂n1(top) and θ̂n(bottom) with n = 300

Note that

n∑
i=1

(ui − ūn)2
≤

n∑
i=1

u2
i =

n∑
i=1

(
u2

i − σ
2
2

)
+ nσ2

2.

In view of Lemma 4.1, from (A1) and (A2), it follows that A−1
n

n∑
i=1

(
u2

i − σ
2
2

)
= o (1) a.s., which together with

nσ2
2 = o (An), yields (3). This completes the proof of Lemma 4.3.

Lemma 4.4. Suppose that conditions (A1) and (A2) hold, then

A−1
n

n∑
i=1

(ωi − ω̄n)2
− 1 = o (1) and A−1/2

n

n∑
i=1

(ui − ūn) ei = o (1) a.s.

where wi = ei and ui.

Proof. First, let us deal with the first equation. In view of Lemma 4.1, from (A1) and (A2) we have

1
√

An

n∑
i=1

(ei − ēn)2
≤

1
√

An

n∑
i=1

e2
i =

1
√

An

n∑
i=1

(
e2

i − σ
2
1

)
−

nσ2
1

√
An

= o (1) a.s.
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Figure 3: Histograms and QQ-normality plots for σ̂2
1 with n = 100 (top) and n = 300 (bottom)

which implies that the first equation in Lemma 4.4 holds. As to the second equation, note that

n∑
i=1

(ui − ūn) ei

√
An

≤


n∑

i=1
(ui − ūn)2 +

n∑
i=1

(
e2

i − σ
2
1

)
+ nσ2

1

An


1/2

.

Then by the first equation and Lemma 4.1 give the the second equation.

Proof of Theorem 2.1. We write

√
An(β̂n − β) =

√
An

n∑
i=1

(ui − ūn) ei +
n∑

i=1
(xi − x̄n)

(
ei − uiβ

)
− β

n∑
i=1

(ui − ūn)2 + βnσ2
2

n∑
i=1

(
ξi − ξ̄n

)2
− nσ2

2

.

From (2) and Lemmas 4.3–4.4, we find

n∑
i=1

(
ξi − ξ̄n

)2
− nσ2

2 =

n∑
i=1

(xi − x̄n)2 +

n∑
i=1

(ui − ūn)2 + 2
n∑

i=1

(xi − x̄n) (ui − ūn) − nσ2
2

p
→ An.
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In view of Lemma 4.4, it follows that

An
n∑

i=1

(
ξi − ξ̄n

)2
− nσ2

2

n∑
i=1

(ui − ūn) ei

√
An

= op (1) .

Set cnk = An(xi−x̄n)[
n∑

i=1
(ξk−ξ̄n)2

−nσ2
2

]
√

Anσ
, then we can easily derive that

lim
n→∞

n∑
k=1

c2
nkσ

2 = 1, sup
n≥1

n∑
k=1

c2
nk < ∞, lim

n→∞
max
1≤k≤n

|cnk| = 0.

According to Lemma 4.2, we obtain that
n∑

i=1
An (xi − x̄n)

(
ei − uiβ

)
[

n∑
k=1

(
ξk − ξ̄n

)2
− nσ2

2

]
√

Anσ

d
→ N (0, 1) ,

which completes the proof of Theorem 2.1. �

Proof of Theorem 2.2. We write

θ̂n − θ = x̄n(β − β̂n) + ūn(β − β̂n) − ūnβ + ēn.

By Lemma 4.2, we can easily get

1
√

nσ

n∑
i=1

(
ei − uiβ

) d
→ N (0, 1) ,

i.e.,
√

n
(
ēn − ūnβ

)
/σ

d
→ N (0, 1). Therefore, by Theorem 2.1, we need only to show that

√
n

√
An

(x̄n + ūn) = o (1) .

(A1) and Lemma 4.1 imply that
√

n
√

An
ūn = op (1) a.s. The condition An/

(
nx̄2

n

)
→ ∞ yields that

√
n

√
An

x̄n → 0.
Hence, Theorem 2.2 is proved. �

Proof of Theorem 2.3. Observe that

σ̂2
1 =

1
n

n∑
i=1

(yi − θ̂n − ξiβ̂n)2
− β2σ2

2

=
1
n

n∑
i=1

[
yi − (θ̂n − θ) − θ − ξi(β̂n − β) − βξi

]2
− β2σ2

2.

From Theorems 2.1-2.2, we can easily get

√
n(σ̂2

1 − σ
2
1) =

1
√

n

n∑
i=1

[
(yi − θ − ξiβ)2

− β2σ2
2 − σ

2
1

]
+ op(1)

=
1
√

n

n∑
i=1

[
(ei − uiβ)2

− (σ2
1 + β2σ2

2)
]

+ op(1).

Then by applying central limit theorem and the law of large numbers, we can obtain the asymptotic
normality for

√
n(σ̂2

1 − σ
2
1). �
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