On Slowly Varying Sequences

Valentina Timotića ${ }^{\text {, }}$ Dragan Djurčićc ${ }^{\text {b }}$, Rale M. Nikolićc ${ }^{\text {c }}$
${ }^{a}$ University of East Sarajevo, Faculty of Philosophy, Alekse Šantića 1, 71420 Pale, Bosnia and Herzegovina ${ }^{b}$ University of Kragujevac, Faculty of Technical Sciences, Svetog Save 65, 32000 Čačak, Serbia
${ }^{c}$ Belgrade Metropolitan University, Tadeuša Košćuška 63, 11000 Belgrade, Serbia

Abstract

In this paper we investigate the connection between the class $S V_{s}$ of slowly varying sequences (in the sense of Karamata) and the slow equivalence, strong asymptotic equivalence, selection principles and game theory.

1. Introduction and results

Real functions $f, g:[a,+\infty) \longmapsto \mathbb{R},(a>0)$, are mutually inversely asymptotic, in denotation $f(x) \stackrel{*}{\sim} g(x)$, as $x \rightarrow+\infty$ (see e.g. [1,5,7]), if for each $\lambda>1$, there is an $x_{0}=x_{0}(\lambda) \geqslant a$ such that the inequality

$$
\begin{equation*}
f\left(\frac{x}{\lambda}\right) \leqslant g(x) \leqslant f(\lambda x) \tag{1}
\end{equation*}
$$

is satisfied for each $x \geqslant x_{0}$.
In particular, real functions $f, g:[a,+\infty) \longmapsto(0,+\infty),(a>0)$, are mutually slowly equivalent (see e.g. [8]), in denotation $f(x) \stackrel{\mathcal{\sim}}{\sim} g(x)$, as $x \rightarrow+\infty$, if

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{f(\lambda x)}{g(x)}=1 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{g(\lambda x)}{f(x)}=1 \tag{3}
\end{equation*}
$$

hold for each $\lambda>1$.
Sequences of positive real numbers $\left(c_{n}\right)_{n \in \mathbb{N}}$ and $\left(d_{n}\right)_{n \in \mathbb{N}}$ are mutually slowly equivalent, in denotation $c_{n} \stackrel{s}{\sim} d_{n}$, as $n \rightarrow+\infty$, if

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{c_{[\lambda n]}}{d_{n}}=1 \tag{4}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{d_{[\lambda n]}}{c_{n}}=1 \tag{5}
\end{equation*}
$$

\]

hold for each $\lambda>1$.
A measurable real function $f:[a,+\infty) \longmapsto(0,+\infty),(a>0)$ is slowly varying in sense of Karamata (see e.g. [9]) if

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{f(\lambda x)}{f(x)}=1 \tag{6}
\end{equation*}
$$

holds for each $\lambda>0$. The set of all these functions is denoted by $S V_{f}$. The class $S V_{f}$ is very important in asymptotic analysis (see [12]).

A sequence of positive real numbers $c=\left(c_{n}\right)_{n \in \mathbb{N}}$ is slowly varying in sense of Karamata (see e.g. [1]) if

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{c_{[\lambda n]}}{c_{n}}=1 \tag{7}
\end{equation*}
$$

holds for each $\lambda>0$. The set of all these sequences important in asymptotic analysis is denoted by $S V_{s}$ (see [1]).

In this paper the set of all positive real sequences will be denoted with \mathbb{S} (see e.g. [2]).
Proposition 1.1. Let sequences $c=\left(c_{n}\right)_{n \in \mathbb{N}}$ and $d=\left(d_{n}\right)_{n \in \mathbb{N}}$ be elements from \mathbb{S}. If $c_{n} \stackrel{s}{\sim} d_{n}$, as $n \rightarrow+\infty$, then $c \in S V_{s}$ and $d \in S V_{s}$.

Proposition 1.2. Relation $\stackrel{s}{\sim}$ is a relation of equivalence in $S V_{s}$.
The next definition is well-known definition of α_{i}-selection principles (see e.g. [11]).
Definition 1.3. Let \mathcal{A} and \mathcal{B} be nonempty subfamilies of the set \mathbb{S}. The symbol $\alpha_{i}(\mathcal{A}, \mathcal{B}), i \in\{2,3,4\}$, denotes the following selection hypotheses: for each sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of elements from \mathcal{A} there is an element $B \in \mathcal{B}$ such that:

1. $\alpha_{2}(\mathcal{A}, \mathcal{B})$: the set $\operatorname{Im}\left(A_{n}\right) \cap \operatorname{Im}(B)$ is infinite for each $n \in \mathbb{N}$;
2. $\alpha_{3}(\mathcal{A}, \mathcal{B})$: the set $\operatorname{Im}\left(A_{n}\right) \cap \operatorname{Im}(B)$ is infinite for infinitely many $n \in \mathbb{N}$;
3. $\alpha_{4}(\mathcal{A}, \mathcal{B})$: the set $\operatorname{Im}\left(A_{n}\right) \cap \operatorname{Im}(B)$ is nonempty for infinitely many $n \in \mathbb{N}$,
where Im denotes the image of the corresponding set.
We need also the definition of an interesting game related to the α_{2} selection principle (see e.g [11]; see also [4]).

Definition 1.4. Let \mathcal{A} and \mathcal{B} be nonempty subfamilies of the set \mathbb{S}. The symbol $G_{\alpha_{2}}(\mathcal{A}, \mathcal{B})$ denotes the following infinitely long game for two players who play a round for each natural number n. In the first round the first player plays an arbitrary element $A_{1}=\left(A_{1, j}\right)_{j \in \mathbb{N}}$ from \mathcal{A}, and the second one chooses an elements from the subsequence $y_{r_{1}}=\left(A_{1, r_{1}(j)}\right)_{j \in \mathbb{N}}$ of the sequence A_{1}. At the $k^{\text {th }}$ round, $k \geq 2$), the first player plays an arbitrary element $A_{k}=\left(A_{k, j}\right)_{j \in \mathbb{N}}$ from \mathcal{A} and the second one chooses an elements from the subsequence $y_{r_{k}}=\left(A_{k, r_{k}(j)}\right)_{j \in \mathbb{N}}$ of the sequence A_{k}, such that $\operatorname{Im}\left(r_{k}(j)\right) \cap \operatorname{Im}\left(r_{p}(j)\right)=\varnothing$ is satisfied, for each $p \leq k-1$. We will say that the second player wins a play $A_{1}, y_{r_{1}} ; \ldots ; A_{k}, y_{r_{k}} ; \ldots$ if and only if all elements from the $Y=\cup_{k \in \mathbb{N}} \cup_{j \in \mathbb{N}} A_{k, r_{k}(j)}$, with respect to second index, form a subsequence of the sequence $y=\left(y_{m}\right)_{m \in \mathbb{N}} \in \mathcal{B}$.

Remark 1.5. Let sequence $c=\left(c_{n}\right)_{n \in \mathbb{N}} \in S V_{s}$. We will introduce the next set

$$
[c]_{s}=\left\{d=\left(d_{n}\right)_{n \in \mathbb{N}} \in S V_{s} \mid c_{n} \stackrel{s}{\sim} d_{n}, \text { as } n \rightarrow+\infty\right\} .
$$

Proposition 1.6. The second player has a winning strategy in the game $G_{\alpha_{2}}\left([c]_{s},[c]_{s}\right)$ for each fixed sequence $c \in S V_{s}$.
Corollary 1.7. The selection principle $\alpha_{2}\left([c]_{s},[c]_{s}\right)$ is satisfied, where the sequence $c \in S V_{s}$ is given and fixed.
Remark 1.8. (1) From Corollary 1.7 and [2] it follows that the selection principles $\alpha_{i}\left([c]_{s},[c]_{s}\right)$ are satisfied for $i \in\{3,4\}$, where the sequence $c \in S V_{s}$ is arbitrary pre-selected and fixed.
(2) From the proof of Proposition 1.6 we have that $c_{n} \sim d_{n}$, as $n \rightarrow+\infty$, is equal to $c_{n} \stackrel{s}{\sim} d_{n}$, as $n \rightarrow+\infty$, whenever sequences $c=\left(c_{n}\right)_{n \in \mathbb{N}}$ and $d=\left(d_{n}\right)_{n \in \mathbb{N}}$ belong to the class $S V_{s}$. (The symbol \sim denotes strong asymptotic equivalence (see e.g. [1])).
(3) The assertion of Corollary 1.7 has already been given in [3], but in a different form. Actually, in [3] only the sketch of the proof of this corollary is given.

The following is the definition of one of classical selection principles (see e.g. [10]).
Definition 1.9. Let \mathcal{A} and \mathcal{B} be a nonempty subfamilies of the set \mathbb{S}. The symbol $S_{f i n}(\mathcal{A}, \mathcal{B})$ denotes the next selection hypothesis: for each sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ from \mathcal{A} there is a sequence $B \in \mathcal{B}$ which consists of some numbers from the double sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ such that sequences B and $\left(A_{n}\right)_{n \in \mathbb{N}}$ have finitely many common elements for each $n \in \mathbb{N}$.

In the following definition we define a new interesting two-person game.
Definition 1.10. Let \mathcal{A} and \mathcal{B} be a nonempty subfamilies of the set \mathbb{S}. By $G_{f i n}^{\bullet}(\mathcal{A}, \mathcal{B})$ we denote the following infinitely long game for two players: In the first round the first player plays element $A_{1} \in \mathcal{A}$, and the second player chooses $k_{1}\left(k_{1} \in \mathbb{N}\right)$ elements from the sequence A_{1}, i.e. elements $b_{11}, b_{12}, \ldots, b_{1 k_{1}}$. At $s^{\text {th }}$ round, $s \geqslant 2$, the first player chooses an element $A_{s} \in \mathcal{A}$, and the second player responses by choosing $k_{s-1}^{*},\left(k_{s-1}^{*} \in \mathbb{N} \cup\{0\}\right)$
 A_{s}, say $b_{s k_{s}}$. If we form the sequence $\left(b_{t}\right)_{t \in \mathbb{N}}$ from such chosen elements

$$
b_{11}, b_{12}, \ldots, b_{1 k_{1}}, \ldots, b_{s-1 k_{s-1}}, b_{s-1 k_{s-1}+1}, b_{s-1, k_{s-1}+2}, \ldots, b_{s-1 k_{s-1}+k_{s-1}^{*}}, b_{s k_{s}}, \ldots
$$

then we say that the second player wins a play

$$
A_{1}, b_{11}, b_{12}, \ldots, b_{1 k_{1}} ; \cdots ; A_{s}, b_{s-1 k_{s-1}}, b_{s-1 k_{s-1}+1}, \cdots, b_{s-1 k_{s-1}+k_{s-1}^{*}}, b_{s k_{s}} ; \cdots
$$

if the sequence $\left(b_{t}\right)_{t \in \mathbb{N}}$ belongs to \mathcal{B}.
Proposition 1.11. The second player has a winning strategy in the game $G_{\text {fin }}^{\bullet}\left([c]_{s},[c]_{s}\right)$ for each fixed $c \in S V_{s}$.
An important game, denoted by $G_{f i n}^{*}(\mathcal{A}, \mathcal{B})$, was considered in [6]. The game $G_{f i n}^{\bullet}(\mathcal{A}, \mathcal{B})$ introduced in the previous definition is a special case of the game $G_{\text {fin }}^{*}(\mathcal{A}, \mathcal{B})$.

Corollary 1.12. The second player has a winning strategy in the game $G_{\text {fin }}^{*}\left([c]_{s},[c]_{s}\right)$ for each fixed $c \in S V_{s}$.
Remark 1.13. From the previously mentioned we have that the selection principle $S_{f i n}\left([c]_{s},[c]_{s}\right)$ is satisfied for each fixed sequence $c \in S V_{s}$.

2. Proofs of the results

Proof of Proposition 1.1. Firstly, we have

$$
\lim _{n \rightarrow+\infty} \frac{c_{[\lambda n]}}{c_{n}}=\lim _{n \rightarrow+\infty} \frac{c_{[\lambda n]}}{d_{([\lambda]-1) n}} \cdot \lim _{n \rightarrow+\infty} \frac{d_{([\lambda]-1) n}}{c_{n}}=\lim _{n \rightarrow+\infty} \frac{\left.c_{\left[\frac{\lambda n}{}\right.} \cdot \frac{(\lambda \lambda]-1) n}{} \cdot([\lambda]-1) n\right]}{d_{([\lambda]-1) n}} \cdot 1=1 \cdot 1=1
$$

since $[\lambda]-1>1$ and $\frac{\lambda}{[\lambda]-1}>1$, for $\lambda \geq 3$.

Now, let us observe the function $c_{[x]}$, for $x \geqslant 1$, where x is real number. Let $\varepsilon>1$. We will prove that there exists an interval $[A, B] \subsetneq(3,4),(A<B)$, depending on ε, such that the inequality $\frac{1}{\varepsilon}<\frac{c_{[\lambda n]}}{c_{n}}<\varepsilon$ holds uniformly for $\lambda \in[A, B]$, for sufficiently large $n \in \mathbb{N}$. Hence, we will define $n_{\lambda},\left(n_{\lambda} \in \mathbb{N}\right)$ as follows

$$
n_{\lambda}=\left\{\begin{aligned}
1, & \text { if } \frac{1}{\varepsilon}<\frac{c_{[\lambda n]}}{c_{n}}<\varepsilon, \text { for each } n \in \mathbb{N} \\
1+\max \left\{n \in \mathbb{N} \left\lvert\, \frac{c_{[\lambda n]}}{c_{n}} \geqslant \varepsilon\right. \text { or } \frac{c_{[\lambda n]}}{c_{n}} \leqslant \frac{1}{\varepsilon}\right\}, & \text { otherwise }
\end{aligned}\right.
$$

for each $\lambda \in(3,4)$. Note that $1 \leqslant n_{\lambda}<+\infty$.
Also, we will define a sequence $\left(A_{k}\right)_{k \in \mathbb{N}}$ of sets $A_{k}=\left\{\lambda \in(3,4) \mid n_{\lambda}>k\right\}, k \in \mathbb{N}$. This is a non-increasing sequence which satisfies that $\bigcap_{k=1}^{+\infty} A_{k}=\varnothing$. Not all sets from this sequence are dense in (3,4), i.e. there exists a set A_{k} for some $k \in \mathbb{N}$ which is not dense in (3,4). To prove the previously mentioned we must, firstly, emphasize that at least one of the two following inequalities is true: $\frac{1}{\varepsilon} \geqslant \frac{c_{\left[\left(n_{\lambda}-1\right) \lambda\right]}}{c_{n_{\lambda}-1}}$ or $\frac{c_{\left[\left(n_{\lambda}-1\right) \lambda\right]}}{c_{n_{\lambda}-1}} \geqslant \varepsilon$, for each $\lambda \in A_{k}$ and for fixed $k \in \mathbb{N}$. Also, there exists $\delta_{\lambda}>0$ for which at least one of the following inequalities is true: $\frac{1}{\varepsilon} \geqslant \frac{c_{\left[\left(n_{\lambda}-1\right) t\right]}}{c_{n_{\lambda}-1}}=\frac{c_{\left[\left(n_{\lambda}-1\right) \lambda\right]}}{c_{n_{\lambda}-1}}$ or $\frac{c_{\left[\left(n_{\lambda}-1\right) \lambda\right]}}{c_{n_{\lambda}-1}}=\frac{c_{\left[\left(n_{\lambda}-1\right) t\right]}}{c_{n_{\lambda}-1}} \geqslant \varepsilon$, for each $t \in\left[\lambda, \lambda+\delta_{\lambda}\right)$. Since, from inequality $n_{t} \geqslant\left(n_{\lambda}-1\right)+1>k$ we obtain that $t \in A_{k}$, for this k. Moreover, from $\lambda \in A_{k}$ we have that $\left(\lambda, \lambda+\delta_{k}\right) \subsetneq A_{k}$. Therefore, if the set A_{k} is dense in the interval $(3,4)$, then the set Int A_{k} is also dense in the interval $(3,4)$. If we assume that each set $A_{k},(k \in \mathbb{N})$ is dense in $(3,4)$ we obtain that $\left(\operatorname{Int} A_{k}\right)_{k \in \mathbb{N}}$ is a sequence of dense and open sets in $(3,4)$, also, and all of these sets are of the second category in $(3,4)$. Consequently, $\bigcap_{k=1}^{+\infty} \operatorname{Int} A_{k}$ is a dense set in $(3,4)$, so it is nonempty. That is a contradiction. Hence, there is a set $A_{n_{0}}$, for some $n_{0} \in \mathbb{N}$, which is not dense in $(3,4)$ and there is an interval $[A, B] \subsetneq(3,4)(A<B)$ such that $[A, B] \subsetneq(3,4) \backslash A_{n_{0}}=\left\{\lambda \in(3,4) \mid n_{\lambda} \leqslant n_{0}\right\}$. Now, we have that $n_{\lambda} \leqslant n_{0}$, for each $\lambda \in[A, B]$, and from that it follows $\frac{1}{\varepsilon}<\frac{c_{[\lambda n]}}{c_{n}}<\varepsilon$, for each $n \geqslant n_{0} \geqslant n_{\lambda}$ and $\lambda \in[A, B]$. Also, it holds that $\frac{c_{[\lambda x]}}{c_{[x]}}=\frac{c_{[[t \mu[x]]]}}{c_{[\mu[x]]}} \cdot \frac{c_{[\mu[x]]}}{c_{[x]}}$, for each $\lambda \geq 12$ and sufficiently large $x \geqslant x_{0}$, where $t=t(x) \in[A, B]$ and $\mu=\frac{2 \lambda}{A+B}$.
Finally, we obtain that inequalities $\lim _{x \rightarrow+\infty} \frac{c_{[\lambda x]}}{c_{[x]}} \geqslant \frac{1}{\varepsilon} \cdot 1=\frac{1}{\varepsilon}$ and $\varlimsup_{x \rightarrow+\infty} \frac{c_{[\lambda x]}}{c_{[x]}} \leqslant \varepsilon \cdot 1=\varepsilon$ are true, for each $\lambda \geq 12$, where $\varepsilon>1$ is arbitrary and pre-selected. Therefore, we have that $\lim _{x \rightarrow+\infty} \frac{c_{[\lambda x]}}{c_{[x]}}=1$ is satisfied, for each $\lambda \geq 12$, and the function $c_{[x]}, x \geqslant 1$ is the element of the class $S V_{f}$ (see e.g. [1]). The sequence $\left(c_{n}\right)_{n \in \mathbb{N}}$ is the restriction of this function to \mathbb{N}, so it is an element of the class $S V_{s}$. The proof for the sequence $\left(d_{n}\right)_{n \in \mathbb{N}}$ is analogous. This completes the proof.

Proof of Proposition 1.2.

1. (Reflexivity) The asymptotic relation $\lim _{n \rightarrow+\infty} \frac{c_{[\lambda n]}}{c_{n}}=1$ is satisfied, for each sequence $c=\left(c_{n}\right)_{n \in \mathbb{N}} \in S V_{s}$ and $\lambda>1$. Hance, $c_{n} \stackrel{\stackrel{S}{\sim}}{c_{n}}$, as $n \rightarrow+\infty$.
2. (Symmetry) Relation $\stackrel{\mathcal{S}}{\sim}$ is symmetric in \mathbb{S}, therefore it is symmetric in $S V_{s} \subsetneq \mathbb{S}$, also.
3. (Transitivity) Let us assume that $c_{n} \stackrel{s}{\sim} d_{n}$, as $n \rightarrow+\infty$, and $d_{n} \stackrel{\sim}{\sim} e_{n}$, as $n \rightarrow+\infty$ are satisfied, for given sequences $c=\left(c_{n}\right)_{n \in \mathbb{N}}, d=\left(d_{n}\right)_{n \in \mathbb{N}}$ and $e=\left(e_{n}\right)_{n \in \mathbb{N}}$ from the class $S V_{s}$. Therefore, we obtain that $\lim _{n \rightarrow+\infty} \frac{c_{[\lambda n]}}{e_{n}}=\lim _{n \rightarrow+\infty} \frac{c_{[\lambda n]}}{d_{[\sqrt{\lambda} n]}} \cdot \lim _{n \rightarrow+\infty} \frac{d_{[\sqrt{\lambda} n]}}{e_{n}}=\lim _{n \rightarrow+\infty} \frac{\left.\mathcal{C}_{\left[\frac{\lambda n}{}[\sqrt{\lambda} n]\right.}[\sqrt{\lambda} n]\right]}{d_{[\sqrt{\lambda} n]}} \cdot 1=1 \cdot 1=1$, for each $\lambda>1$, since $d_{[\sqrt{\lambda} n]} \sim c_{[\sqrt{\lambda} n]}$, as $n \rightarrow+\infty$, and $\lim _{n \rightarrow+\infty} \frac{c_{[t n]}}{c_{n}}=1$ is uniform limit, for each $t \in[a, b] \subsetneq(0,+\infty),(a<b)$, (see e.g. [1]) and consequently for each $t \in\left[\frac{\sqrt{\lambda+1}}{2}, \sqrt{\lambda}\right]$, and for some $\lambda>1$, which is arbitrary pre-selected and fixed. In an analogous way it can be proved that $\lim _{n \rightarrow+\infty} \frac{e_{[\lambda n]}}{c_{n}}=1$, for each $\lambda>1$. Hence, we obtain
that $c_{n} \stackrel{\stackrel{s}{\sim}}{\sim} e_{n}$, as $n \rightarrow+\infty$. Finally, we will prove that $d_{[\sqrt{\lambda} n]} \sim c_{[\sqrt{\lambda} n]}$ is satisfied, as $n \rightarrow+\infty$, for $\lambda>1$. Namely, it holds that $\lim _{n \rightarrow+\infty} \frac{d_{[\sqrt{\lambda} n]}}{c_{[\sqrt{\lambda} n]}}=\lim _{n \rightarrow+\infty} \frac{d_{[\sqrt{\lambda} n]}}{d_{n}} \cdot \lim _{n \rightarrow+\infty} \frac{d_{n}}{c_{[\sqrt{\lambda} n]}}=1 \cdot 1=1$, for $\lambda>1$. This completes the proof.

Proof of Proposition 1.6. Let $c=\left(c_{n}\right)_{n \in \mathbb{N}}$ be an arbitrary and fixed sequence from $S V_{s}$ and let $[c]_{s}=\{d=$ $\left(d_{n}\right)_{n \in \mathbb{N}} \in S V_{s} \mid d_{n} \stackrel{s}{\sim} c_{n}$, as $\left.n \rightarrow+\infty\right\}$.
($1^{\text {st }}$ step) Let $c=\left(c_{n}\right)_{n \in \mathbb{N}} \in S V_{s}$ and $d=\left(d_{n}\right)_{n \in \mathbb{N}} \in S V_{s}$, and $c_{n} \stackrel{s}{\sim} d_{n}$, as $n \rightarrow+\infty$. Hence, we obtain $\lim _{n \rightarrow+\infty} \frac{c_{n}}{d_{n}}=\lim _{n \rightarrow+\infty} \frac{c_{[\lambda n]}}{d_{n}} \cdot \lim _{n \rightarrow+\infty} \frac{c_{n}}{c_{[\lambda n]}}=1 \cdot \lim _{n \rightarrow+\infty} \frac{1}{\frac{c_{[\lambda n]}}{c_{n}}}=1 \cdot 1=1$ for each $\lambda>1$ i.e. $c_{n} \sim d_{n}$, as $n \rightarrow+\infty$. Inversely, let $c=\left(c_{n}\right)_{n \in \mathbb{N}} \in S V_{s}$ and $d=\left(d_{n}\right)_{n \in \mathbb{N}}$ and $c_{n} \sim d_{n}$, as $n \rightarrow+\infty$. We have that $\lim _{n \rightarrow+\infty} \frac{c_{[\lambda n]}}{d_{n}}=\lim _{n \rightarrow+\infty} \frac{c_{[\lambda n]}}{c_{n}} \cdot \lim _{n \rightarrow+\infty} \frac{c_{n}}{d_{n}}=$ $1 \cdot 1=1$ is satisfied, for $\lambda>1$. In the similar way, we can prove that $\lim _{n \rightarrow+\infty} \frac{d_{[\lambda n]}}{c_{n}}=1$ holds, for $\lambda>1$, so we obtain $c_{n} \stackrel{s}{\sim} d_{n}$ as $n \rightarrow+\infty$.
(2 $2^{\text {nd }}$ step)($1^{\text {st }}$ round) Let sequence $c=\left(c_{n}\right)_{n \in \mathbb{N}} \in S V_{s}$ and the class $[c]_{s}$ be given. Also, let σ be the strategy of the second player. First player chooses the sequence $x_{1}=\left(x_{1, j}\right)_{j \in n} \in[c]_{s}$ arbitrary. Then the second player chooses the subsequence $\sigma\left(x_{1}\right)=\left(x_{1, k_{1}(j)}\right)_{j \in \mathbb{N}}$ of the sequence x_{1} where $\operatorname{Im}\left(k_{1}\right)$ is the set of natural numbers which are divisible with 2 and not divisible with 2^{2}.
($i^{\text {th }}$ round, $i \geqslant 2$) The first player chooses the sequence $x_{i}=\left(x_{i, j}\right)_{j \in n} \in[c]_{s}$ arbitrary. Then the second player chooses the subsequence $\sigma\left(x_{i}\right)=\left(x_{i, k_{i}(j)}\right)_{j \in \mathbb{N}}$ of the sequence x_{i}, so that $\operatorname{Im}\left(k_{i}\right)$ is the set of natural numbers greater or equal to j_{i}, so that they are divisible with 2^{i}, and not divisible with 2^{i+1}, and j_{i} exists in \mathbb{N} (because of the $1^{s t}$ step of this proof) and it is given by: $1-\frac{1}{2^{i}} \leqslant \frac{x_{1, j}}{x_{i, j}} \leqslant 1+\frac{1}{2^{i}}$, for each $j \geqslant j_{i}$. Now, we will observe the set $Y=\cup_{i \in \mathbb{N}} \cup_{j \in \mathbb{N}} X_{i, k_{i}}(j)$ of positive real numbers indexed by two indexes. Elements of the set Y we can consider as the subsequence of the sequence $y=\left(y_{m}\right)_{m \in \mathbb{N}}$ given by:

$$
y_{m}= \begin{cases}x_{i, k_{i}(j),} & \text { if } m=k_{i}(j) \text { for some } i, j \in \mathbb{N} \\ x_{1, m}, & \text { otherwise }\end{cases}
$$

By the construction of the sequence y we have that $y \in \mathbb{S}$. Also, the intersection between y and $x_{i},(i \in \mathbb{N})$ is an infinite set of common elements. Let us prove that $y_{m} \sim x_{1, m}$ as $m \rightarrow+\infty$.

Let $\varepsilon \in(0,1)$. Let us choose the smallest natural number i satisfying $\frac{1}{2^{i}}<\varepsilon$. For each $k \in\{1,2, \ldots, i-1\}$ there is $j_{k}^{*} \in \mathbb{N}$ so that inequality $1-\varepsilon \leqslant \frac{x_{1, j}}{x_{k, j}} \leqslant 1+\varepsilon$ is satisfied, for each $j \geqslant j_{k}^{*}$. Let $j^{*}=\max \left\{j_{1}^{*}, \ldots, j_{i-1}^{*}\right\}$. Therefore, the inequality $1-\varepsilon \leqslant \frac{x_{1, m}}{y_{m}} \leqslant 1+\varepsilon$ is satisfied, for each $m \geqslant j^{*}$. Then, from $x_{1, m} \sim y_{m}$, as $m \rightarrow+\infty$ we obtain $y_{m} \sim c_{m}$, as $m \rightarrow+\infty$, since $\varepsilon \in(0,1)$ is arbitrary. From the $1^{\text {st }}$ step of this proof we obtain that $y_{m} \stackrel{s}{\sim} c_{m}$, as $m \rightarrow+\infty$, i.e. $y \in[c]_{s}$. This completes the proof.
Proof of Proposition 1.11. Let σ be the strategy of the second player.
($1^{\text {st }}$ round) Let the first player choose an arbitrary sequence $x_{1}=\left(x_{1, j}\right)_{j \in \mathbb{N}}$ from the class $[c]_{s}$. Then the second player plays $\sigma\left(x_{1}\right)=x_{1,1}, x_{1,2}, \ldots, x_{1, k_{1}}$, where $1-\frac{1}{2} \leqslant \frac{c_{k}}{x_{1, k}} \leqslant 1+\frac{1}{2}$ holds, for each $k \geqslant k_{1}$. This is possible according to the $1^{\text {st }}$ step of the proof of Proposition 1.6.
($i^{\text {th }}$ round, $i \geqslant 2$) Let the first player choose an arbitrary sequence $x_{i}=\left(x_{i, j}\right)_{j \in \mathbb{N}}$ from the class $[c]_{s}$. Then the second player plays $\sigma\left(x_{i}\right)=x_{i-1, k_{i-1}+1}, x_{i-1, k_{i-1}+2}, \ldots, x_{i-1, k_{i-1}+k_{i-1}^{*}}, x_{i, k_{i}}$, where $1-\frac{1}{2^{i}} \leqslant \frac{c_{k}}{x_{i, k}} \leqslant 1+\frac{1}{2^{i}}$ holds,
for $k \geqslant k_{i}$, and $k_{i}=1+k_{i-1}+k_{i-1}^{*}$. Thus, the second player forms the sequence $y=\left(y_{m}\right)_{m \in \mathbb{N}}$ given by $x_{1,1}, \ldots, x_{1, k_{1}}, \ldots, x_{2, k_{2}}, \ldots, x_{i, k_{i}}, \ldots$ which belongs to \mathbb{S} and has a finite number of elements in common with each of the sequences $x_{i}, i \in \mathbb{N}$. Let $\varepsilon \in(0,1)$. Then $\frac{1}{2^{i}}<\varepsilon$ holds, for some $i \in \mathbb{N}$. Therefore, the inequality $1-\varepsilon \leqslant \frac{c_{m}}{y_{m}} \leqslant 1+\varepsilon$ holds, for each $m \geqslant 1+k_{1}+k_{1}^{*}+k_{2}^{*}+\cdots+k_{i-1}^{*}$, and we have that $c_{m} \sim y_{m}$, as $m \rightarrow+\infty$ is true. From the $1^{s t}$ step of the proof of Proposition 1.6 , we obtain $y \in[c]_{s}$. This means that the second player wins using the strategy σ. This completes the proof.

References

[1] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge, 1987.
[2] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Some properties of rapidly varying sequences, J. Math. Anal. Appl. 327 (2007), $1297-1306$.
[3] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Relations between sequences and selection properties, Abstr. Appl. Anal., Vol. 2007, Article ID 43081, 8 pages.
[4] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Exponents of convergence and games, Adv. Dyn. Syst. Appl. 6:2 (2011), 41-48.
[5] D. Djurčić, A. Torgašev, S. Ješić, The strong asymptotic equivalence and the generalized inverse, Siber. Math. J. 49 (2008), 786-795.
[6] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, A few remarks on divergent sequences: Rates of divergence, J. Math. Anal. Appl. 360 (2009), 588-598.
[7] D. Djurčić, I. Mitrović, M. Janjić, The weak and the strong equivalence relation and the asymptotic inversion, Filomat 25:4 (2011), 29-36.
[8] N. Elez, D. Djurčić, Some properties of rapidly varying functions, J. Math. Anal. Appl. 401 (2013), 888-895.
[9] J. Karamata, Sur un mode de croissance régulière des functions, Mathematica (Cluj) 4 (1930), 38-53.
[10] Lj.D.R. Kočinac, Selected results on selection principle, In: Proc. Third Sem. Geom. Topology (July 15-17, 2004, Tabriz, Iran), 2004, 71-104.
[11] Lj.D.R. Kočinac, On the α_{i}-selection principles and games, Cont. Math. 533 (2011), 107-124.
[12] E. Seneta, Regularly Varying Functions, Lecture Notes in Mathematics, No. 508, Springer-Verlag, Berlin, 1976.

[^0]: 2010 Mathematics Subject Classification. Primary 26A12; Secondary 40A05, 91A05.
 Keywords. Slowly varying sequences; mutually slowly equivalent sequences; selection principles; game theory.
 Received: 2 November 2014; Accepted: 26 November 2014
 Communicated by Dragan S. Djordjević
 This paper is supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No. 174032

 Email addresses: valentina.ko@hotmail.com (Valentina Timotić), dragandj@tfc.kg.ac.rs (Dragan Djurčić), ralevb@open.telekom.rs (Rale M. Nikolić)

