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On graded Ω-groups
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aFaculty of Civil Engineering, University of Sarajevo, Bosnia and Herzegovina

Abstract. In this paper we study the notion of a graded Ω-group (X,+,Ω), but graded in the sense of
M. Krasner, i.e., we impose nothing on the grading set except that it is nonempty, since operations of Ω
and the grading of (X,+) induce operations (generally partial) on the grading set. We prove that graded
Ω-groups in Krasner’s sense are determined up to isomorphism by their homogeneous parts, which, with
respect to induced operations, represent partial structures called Ω-homogroupoids, thus narrowing down
the theory of graded Ω-groups to the theory of Ω-homogroupoids. This approach already proved to be
useful in questions regarding A. V. Kelarev’s S-graded rings inducing S, where S is a partial cancellative
groupoid. Particularly, in this paper we prove that the homogeneous subring of a Jacobson S-graded
ring inducing S is Jacobson under certain assumptions. We also discuss the theory of prime radicals for
Ω-homogroupoids thus extending results of A. V. Mikhalev, I. N. Balaba and S. A. Pikhtilkov in a natural
way. We study some classes of Ω-homogroupoids for which the lower and upper weakly solvable radicals
coincide and also, study the question of the homogeneity of the prime radical of a graded ring.

1. Introduction

Recently, graded Ω-groups, graded by a group, were considered by A. V. Mikhalev, I. N. Balaba and S. A.
Pikhtilkov in [27] in order to unify the theory of prime radicals for various structures such as groups,
associative, conformal and vertex algebras, Lie algebras and graded algebras. Let (X,+,Ω) be a group-
graded Ω-group with 0 as the neutral element of (X,+). As we know (see e.g. [27]), a G-graded Ω-group
(X,+,Ω), where G is a group, is an Ω-group (X,+,Ω), which is the direct sum (restricted)

X =
⊕
1∈G

X1, (1)

of subgroups X1 of (X,+), called homogeneous components, and

ω(X11 , . . . ,X1n ) ⊆ X11...1n , (2)

for allω ∈ Ω, and for all 11, . . . , 1n ∈ G,where n = n(ω) is the arity ofω. Let us call elements of homogeneous
components X1 homogeneous. Also, let us call 1 ∈ G the degree of 0 , x ∈ X1 and denote it by δ(x), and call (1)
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the additive grading of X. We assume that an arbitrary operation ω ∈ Ω is distributive with respect to “+”. If
we replace (2) with

(∃h ∈ G) ω(X11 , . . . ,X1n ) ⊆ Xh, (3)

for all ω ∈ Ω, n = n(ω), and for all 11, . . . , 1n ∈ G,we see that there is no need to assume anything on G apart
from being a nonempty set, since then, (1) and (3) will imply operations (generally partial) on G. Indeed,
if ω(X11 , . . . ,X1n ) , 0, then h ∈ G, for which ω(X11 , . . . ,X1n ) ⊆ Xh, is unique, and of course, is arbitrary if
ω(X11 , . . . ,X1n ) = 0. For those 11, . . . , 1n for which ω(X11 , . . . ,X1n ) , 0, we may define ω(11, . . . , 1n) := h. For
those 11, . . . , 1n for which ω(X11 , . . . ,X1n ) = 0, ω(11, . . . , 1n) may be defined arbitrarily in order to make ω an
operation defined everywhere on G. Condition (2) can also be interpreted as δ(ω(x1, . . . , xn)) = 11 . . . 1n =
δ(x1) . . . δ(xn) if ω(x1, . . . , xn) , 0, where x1 ∈ X11 , . . . , xn ∈ X1n , which will also be satisfied, as a special
case for some binary operation, if any, in our definition of a graded Ω-group, which we give and discuss
thoroughly in the rest of the article, since it will be proved that the degree of a homogeneous element
ω(x1, . . . , xn) , 0, where xi are homogeneous, depends only on degrees of x1, . . . , xn, and, hence we may
write δ(ω(x1, . . . , xn)) = ω(δ(x1), . . . , δ(xn)) if ω(Xδ(x1), . . . ,Xδ(xn)) , 0. To resume, (3) along with (1) and the
structure (X,Ω) imply the whole set of operations (generally partial) on G, and so, (2) represents a very
special case. M. Krasner in [20] made similar observations concerning the notions of graded rings and
modules given in [1]. Let us notice that the associativity of a particular operation from Ω of a graded
Ω-group does not have to imply the associativity of the obtained (partial) operation on the grading set (see
[2, 20] for the case of graded rings). One of features of M. Krasner’s research is studying partial structures
obtained by inducing operations of a graded structure to its set of homogeneous elements (the homogeneous
part): homogroupoids in the case of graded groups, anneids in the case of graded rings and moduloids in the case
of graded modules (see [20]). The origin of studying homogeneous parts only, which are of special interest
to those who are dealing with homogeneous elements and substructures only, goes back to [17], continued
through [2, 7, 18–21, 33], and was motivated by the following observation. Let K be a division ring, | · | its
valuation onto a totally ordered group T, and observe the family {Aγ}γ∈T, where Aγ = {x ∈ K | |x| ≤ γ}. Then
{Aγ}γ∈T is a total filtration of (K,+). If Aγ =

⋃
γ′<γ Aγ′ ,Kγ = Aγ/Aγ and 1r(K) =

⊕
γ∈T Kγ, then, as we all know,

1r(K) can be made into a graded ring. Let s(K) =
⋃
γ∈T Kγ be its homogeneous part. Notice that (s(K),+) is a

partial structure, since the sum of two homogeneous elements does not have to be homogeneous; however,
if that is the case, we say that those elements are addible and we denote that relation by #. (s(K),+, ·) has the
following properties:

i) (s(K), ·) is a group with the biabsorbing element 0, i.e. x̄0 = 0x̄ = 0, for all x̄ ∈ s(K).

ii) (∀x̄, ȳ, z̄ ∈ s(K)) x̄#0; x̄#x̄; x̄#ȳ ∧ ȳ#z̄ ∧ ȳ , 0⇒ x̄#z̄;

iii) for all 0 , ā ∈ s(K), {x̄ ∈ s(K) | ā#x̄} is an additive Abelian group;

iv) (∀x̄, ȳ, z̄ ∈ s(K)) x̄#ȳ⇒ z̄x̄#z̄ȳ ∧ x̄z̄#ȳz̄ ∧ z̄(x̄ + ȳ) = z̄x̄ + z̄ȳ ∧ (x̄ + ȳ)z̄ = x̄z̄ + ȳz̄.

M. Krasner named this kind of structure a corpoid [17], which, in the sense of the above story, represents
the homogeneous part (with induced operations) of a graded division ring. The main aim of this paper is
hence, not only to define graded Ω-groups in the sense of M. Krasner, but to characterize and study their
homogeneous parts with induced operations, called Ω-homogroupoids. We will also observe corresponding
substructures and homomorphisms. This is also related to [10]. In the language of categories, we thus
obtain a wider category compared to the classical gradings, where all objects are graded by the same set and
morphisms are degree-preserving, while here, the set of objects consists of all graded Ω-groups, regardless
the grading set, and morphisms are homogeneity-preserving. One particular case of our graded Ω-groups
– graded rings in Krasner’s sense [2, 7, 20], has already proved to be useful for it so far represents the best
known tool for dealing with some open problems concerning the so called S-graded rings inducing S,where
S is a partial groupoid, see [11, 16]. A. V. Kelarev gave a list of such problems in [12] and an application
of Krasner graded rings to these questions is presented in [8]. In this paper we also proved that the
homogeneous subring of the Jacobson graded ring (graded in the forementioned sense) is Jacobson under
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certain assumptions, thus generalizing the same result which is independently obtained forZ-graded rings
by A. Smoktunowicz [32] and P.-H. Lee and E. R. Puczyłowski [25]. The study of the case of semigroup-
graded rings can be found in [26]. We also give the theory of prime radicals of Ω-homogroupoids, which is
analogous to that developed in [27], and which can be applied not only to group-graded Ω-groups, but to
any graded Ω-group. We study some classes of Ω-homogroupoids for which the lower and upper weakly
solvable radicals coincide. Particularly, we examine the case of anneids – homogeneous parts of graded
rings, and among other, prove that the prime and the Levitzki radical of the anneid of an incidence ring of
the finite group automation (see [14]) coincide. Also, we study the question of homogeneity of the prime
radical of a graded ring.

2. Preliminaries

In this section, we give definitions of a graded group in Krasner’s sense and of a homogroupoid which are
essential for the rest of the article.
Let G be a multiplicative group with the neutral element e and let ∆ be a nonempty set. Although with
multiplicative operation, the direct product (restricted) [22] will be denoted by

⊕
.

Definition 2.1 ([20]). Every mapping

γ : ∆→ Sg(G), γ(δ) = Gδ (δ ∈ ∆), (4)

such that G =
⊕

δ∈∆ Gδ,where Sg(G) is the set of all subgroups of G, is called a grading or gradiation. A group with
a grading is called a graded group. A grading is called strict if Gδ , {e}, for all δ ∈ ∆. If ∆∗ = {δ ∈ ∆ |Gδ , {e}}, then
the mapping γ∗ = γ|∆∗ is a strict grading of G and is called the strict kernel of (4). Elements δ ∈ ∆ are called degrees
and the corresponding Gδ are called homogeneous components. The set H =

⋃
δ∈∆ Gδ is called the homogeneous

part of a graded group, and elements x ∈ H are called homogeneous. For a homogeneous element x , e, the unique
degree ξ ∈ ∆∗, for which x ∈ Gξ, is called the degree of x and is denoted by δ(x).

Element e generally speaking does not have a degree and δ ∈ ∆ \ ∆∗ are called empty degrees. However,
it is useful to associate a degree from ∆ \ ∆∗ to e, which we denote by 0 and call it the zero degree [20]. If
∆ = ∆∗ ∪ 0, and if we put δ(e) = 0, the grading is called proper [20].
Let G be a graded group with grading (4) and let

γ′ : ∆′ → Sg(G), γ′(δ′) = Gδ′ (δ′ ∈ ∆′) (5)

be another grading of G. Then gradings (4) and (5) are called equivalent [20] if there exists a bijective mapping
ϕ : ∆ → ∆′ such that γ(δ) = γ′(ϕ(δ)) (δ ∈ ∆). Two gradings are called weakly equivalent [20] if their strict
kernels are equivalent.
Obviously, a strict grading is determined up to equivalence by {Gδ | δ ∈ ∆}, while a grading is determined
up to weak equivalence by {Gδ | δ ∈ ∆∗}.
The homogeneous part H of a graded group G, together with the group structure of G, determine the
corresponding grading up to weak equivalence. Indeed, if a , e and b are from H, and if a ∈ Gδ, then b ∈ Gδ

if and only if ab ∈ H. Hence, if for e , a ∈ H, we define G(a) = {x ∈ H | ax ∈ H}, then {Gδ | δ ∈ ∆} coincides
with {G(a) | a ∈ H∗ = H \ {e}}.
This observation led to an idea of defining a graded group as an ordered pair (G,H), where H ⊆ G is the
homogeneous part with respect to some grading of G in the previous sense. This however required the
characterization of that homogeneous part.

Theorem 2.2 ([20]). A nonempty subset H of a group G is the homogeneous part of G with respect to some grading
of G if and only if the following conditions are satisfied:

i) e ∈ H;

ii) x ∈ H⇒ x−1
∈ H;
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iii) x, y, z, xy, yz ∈ H ∧ y , e⇒ xz ∈ H;

iv) x, y ∈ H ∧ xy < H⇒ xy = yx;

v) H generates G;

vi) If n ≥ 2 and if elements x1, . . . , xn ∈ H are such that for all i, j ∈ {1, . . . ,n}, i , j, xix j < H, then x1 . . . xn , e.

Let G be a graded group with the homogeneous part H. Multiplicative operation on G induces a partial
operation on H, since if x, y ∈ H, then xy is defined in H if and only if xy ∈ G is the element from H, and in
that case the result is the same and we write it the same way. If this situation occurs, we say that elements
x, y are composable or multipliable (addible in the case of an additive operation) and we write x#y [20]. Clearly,
x#y if and only if x, y come from the same subgroup G(a), a ∈ H∗.
In case when H with the induced operation from G is given, we may reconstruct G up to H-isomorphism.
Indeed, if a ∈ H∗, then G(a) may be defined as G(a) = {x ∈ H | a#x}. G is then the direct sum of distinct
subgroups G(a) and H is obviously the homogeneous part of G. The group G which is obtained in this way
is called the linearization of (H, ·) and we denote it by H [20].
There is a natural idea now to define a graded group using the corresponding homogeneous part, at least up
to isomorphism. In order to do that, we need to characterize the structure (H, ·),which is the homogeneous
part of some graded group, with the partial operation induced from the operation of that group.

Theorem 2.3 ([20]). Let H be a nonempty set with a partial multiplicative operation “·”. Then (H, ·) is the homoge-
neous part of some graded group G, with partial operation induced by that group, if and only if:

i) (∃e ∈ H)(∀x ∈ H) x#e ∧ xe = x;

ii) (∀x ∈ H) x#x;

iii) (∀x, y, z ∈ H) x#y ∧ y#z ∧ y , e⇒ x#z;

iv) For all e , a ∈ H, H(a) = {x ∈ H | a#x} is a group with respect to “·”,

where x#y means that x · y exists.

Definition 2.4 ([20]). A partial structure (H, ·) which satisfies conditions of Theorem 2.3 is called a homogroupoid.

3. Graded Ω-groups

Let (X,+,Ω) be an Ω-group, 0 the neutral element of (X,+), and let ∆ be a nonempty set. It is assumed that
Ω is nonempty and that it contains at least one operation of arity n ≥ 2. We also assume that an arbitrary
ω ∈ Ω is distributive with respect to “+”.

Definition 3.1. An Ω-group (X,+,Ω) is called a graded Ω-group if there exists a mapping γ, called grading,
which maps elements δ ∈ ∆ to subgroups Xδ of (X,+) such that X =

⊕
δ∈∆ Xδ and if for an arbitrary operationω ∈ Ω

we have

(∀δ1, . . . , δn(ω) ∈ ∆)(∃ξ ∈ ∆) ω(Xδ1 , . . . ,Xδn(ω) ) ⊆ Xξ, (6)

where n = n(ω) is the arity of ω. The set H =
⋃
δ∈∆ Xδ is called the homogeneous part of a graded Ω-group X.

Elements h of H are called homogeneous and η ∈ ∆∗ is called the degree of a homogeneous element 0 , h ∈ H, and
is denoted by δ(h), if h ∈ Xη.

Remark 3.2. Let us notice that ξ ∈ ∆ in (6) is unique ifω(Xδ1 , . . . ,Xδn(ω) ) , 0. Indeed, if it is not unique, there would
exist another η ∈ ∆ such that ω(Xδ1 , . . . ,Xδn(ω) ) ⊆ Xη. Hence, ω(Xδ1 , . . . ,Xδn(ω) ) ⊆ Xξ ∩ Xη = 0, a contradiction.

Just like in the case of graded rings [20], we establish the following lemma.
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Lemma 3.3. The condition (6) is satisfied if and only if the following axioms hold:

i) For an arbitrary operation ω ∈ Ω of arity n, ω(h1, . . . , hn) ∈ H, for all h1, . . . , hn ∈ H.

ii) For an arbitrary operationω ∈ Ω of arity n, ifω(h1, . . . , hn) , 0, δ(ω(h1, . . . , hn)) depends only on δ(h1), . . . , δ(hn),
h1, . . . , hn ∈ H.

Moreover, i) implies ii).

Proof. If axioms i) and ii) are satisfied, then it is obvious that (6) holds. Conversely, let us assume that (6)
holds and let ω ∈ Ω and h1, . . . , hn ∈ H be arbitrary, where n = n(ω). Then there exist δ1, . . . , δn ∈ ∆ such that
h j ∈ Xδ j , j = 1, . . . ,n.Hence, according to (6), there exists ξ ∈ ∆ such thatω(h1, . . . , hn) ∈ Xξ ⊆ H,which proves
that i) holds. However, i) implies ii). Indeed, let h1, . . . , h j, h′j, . . . , hn ∈ H, h j, h′j , 0, ω(h1, . . . , h j, . . . , hn) , 0,
ω(h1, . . . , h′j, . . . , hn) , 0 and δ(h j) = δ(h′j). Then h j + h′j ∈ H, hence ω(h1, . . . , h j, . . . , hn) + ω(h1, . . . , h′j, . . . , hn) =

ω(h1, . . . , h j + h′j, . . . , hn) ∈ H, according to i), which implies

δ(ω(h1, . . . , h j, . . . , hn)) = δ(ω(h1, . . . , h′j, . . . , hn)).

This, of course, holds for every j = 1, . . . ,n. Now, let h1, h′1, . . . , hn, h′n ∈ H be such that ω(h1, . . . , hn) , 0,
ω(h′1, . . . , h

′
n) , 0 (hence, all of h j, h′j are distinct from 0) and δ(h j) = δ(h′j), j = 1, . . . ,n. If

ω(h1, . . . , h j−1, h′j, h j+1, . . . , hn) , 0,

then

δ(ω(h1, . . . , h j, . . . , hn)) = δ(ω(h1, . . . , h j−1, h′j, h j+1, . . . , hn))

= δ(ω(h′1, . . . , h
′

j, . . . , h
′

n)),

j = 1, . . . ,n. Analogously, if ω(h′1, . . . , h
′

j−1, h j, h′j+1, . . . , h
′
n) , 0, then

δ(ω(h1, . . . , h j, . . . , hn)) = δ(ω(h′1, . . . , h
′

j, . . . , h
′

n)), j = 1, . . . ,n.

In case when

ω(h1, . . . , h j−1, h′j, h j+1, . . . , hn) = ω(h′1, . . . , h
′

k−1, hk, h′k+1, . . . , h
′

n) = 0,

j, k = 1, . . . ,n, it is easy to see that we have

ω(h1, . . . , hn) + ω(h′1, . . . , h
′

n) = ω(h1 + h′1, . . . , hn + h′n) ∈ H

and so, δ(ω(h1, . . . , h j, . . . , hn)) = δ(ω(h′1, . . . , h
′

j, . . . , h
′
n)). Hence, ii) is satisfied.

According to Remark 3.2 and Lemma 3.3, for an arbitrary operation ω ∈ Ω of arity n, if δ1, . . . , δn ∈ ∆
are such that ω(Xδ1 , . . . ,Xδn ) , 0, then we may define ω(δ1, . . . , δn) = δ(ω(x1, . . . , xn)), where x1, . . . , xn are
homogeneous elements of X such that δ(x1) = δ1, . . . , δ(xn) = δn andω(x1, . . . , xn) , 0. For those δ1, . . . , δn ∈ ∆
for whichω(Xδ1 , . . . ,Xδn ) = 0, ω(δ1, . . . , δn) may be defined arbitrarily in order to makeω an operation defined
everywhere on ∆. However, if the grading of (X,+) is proper, i.e., if there is no other empty degree than 0
and δ(0) = 0, then, for δ1, . . . , δn ∈ ∆ for which ω(Xδ1 , . . . ,Xδn ) = 0, we may put ω(δ1, . . . , δn) = 0, and then,
the grading of (X,+,Ω) is called proper as well. The grading of (X,+,Ω) is called strict if the grading of (X,+)
is strict, i.e., if there are no empty degrees, and ω(δ1, . . . , δn) is not defined unless ω(Xδ1 , . . . ,Xδn ) , 0.
Let us now characterize the homogeneous part of a graded Ω-group X in order to view graded Ω-groups as
ordered pairs (X,H),where H is a nonempty subset of an Ω-group X, and where H is the homogeneous part
with respect to some grading of X which determines that grading up to weak equivalence (of the graded
group (X,+)).
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Theorem 3.4. Let X be an Ω-group and ∅ , H ⊆ X. Then H is the homogeneous part of X with respect to some
grading of X if and only if the following conditions are satisfied:

i) 0 ∈ H;

ii) h ∈ H⇒ −h ∈ H;

iii) h1, h2, h3 ∈ H, h1 + h2, h2 + h3 ∈ H ∧ h2 , 0⇒ h1 + h3 ∈ H;

iv) h1, h2 ∈ H ∧ h1 + h2 < H⇒ h1 + h2 = h2 + h1;

v) H generates (X,+);

vi) If n ≥ 2 and if elements h1, . . . , hn ∈ H are such that for all j, k = 1, . . . ,n, j , k, h j +hk < H, then h1 + · · ·+hn , 0;

vii) For an arbitrary operation ω ∈ Ω of arity n, ω(h1, . . . , hn) ∈ H, for all h1, . . . , hn ∈ H.

Proof. It follows from Theorem 2.2 and Lemma 3.3.

4. Ω-homogroupoids

According to Theorem 3.4.vii), operations ω ∈ Ω of a graded Ω-group (X,+,Ω) induce operations ωH on H.
For the sake of simplicity, we will denote ωH again by ω and the set of all induced operations ΩH simply
by Ω. Additive operation, on the other hand, induces a partial operation, i.e., x +H y exists and is equal to
x + y ∈ X if x + y ∈ H, and then, according to Definition 2.4, (H,+) is a homogroupoid. Hence, the following
notion is justified.

Definition 4.1. Structures (H,+,Ω) which are homogeneous parts of graded Ω-groups (X,+,Ω) and whose opera-
tions are induced by those of X are called Ω-homogroupoids.
The corresponding graded Ω-groups of Ω-homogroupoids (H,+,Ω) are denoted (H,+,Ω) and are called linearizations
of Ω-homogroupoids (H,+,Ω).

Remark 4.2. Let us notice that, just like in the case of homogroupoids, linearizations of Ω-homogroupoids (H,+,Ω)
are unique up to H-isomorphism.

The following theorem is an analogue to the corresponding theorem for anneids presented in [20].

Theorem 4.3. Let H be a nonempty set with a partial additive operation “+” and with the set Ω of operations on H.
Then (H,+,Ω) is an Ω-homogroupoid if and only if the following hold:

a) There exists 0 ∈ H such that for all j, ω(h1, . . . , h j−1, 0, h j+1, . . . , hn) = 0 (hk ∈ H) for all ω ∈ Ω;

b) Every h ∈ H is addible with 0, addibility is reflexive and it is almost transitive, i.e., if h1#h2, h2#h3 and h2 , 0,
then h1#h3;

c) If 0 , a ∈ H, H(a) = {h ∈ H | a#h} is a group with respect to addition;

d) All operations ω ∈ Ω are distributive with respect to +, i.e.

ω (h1, . . . , h j−1, h j + h′j, h j+1, . . . , hn) =

= ω(h1, . . . , h j−1, h j, h j+1, . . . , hn) + ω(h1, . . . , h j−1, h′j, h j+1, . . . , hn)

if h j#h′j, for all ω ∈ Ω.
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Proof. The necessity is clear. Let us assume that a)-d) hold. Let us notice first that 0 is the neutral element
of H since, by b) 0#0, and by a) and d),

0 = ω(h1, . . . , h j−1, 0, h j+1, . . . , hk−1, 0 + 0, hk+1, . . . , hn)
= ω(h1, . . . , h j−1, 0, h j+1, . . . , hk−1, 0, hk+1, . . . , hn) + ω(h1, . . . , h j−1, 0, h j+1, . . . , hk−1, 0, hk+1, . . . , hn)
= 0 + 0,

which implies that 0 is the neutral element of H(a), for all 0 , a ∈ H, since, by c), H(a) is a group with
respect to addition. Hence, 0 is the neutral element of (H,+). Hence, according to Theorem 2.3, (H,+) is a
homogroupoid. Let (X,+) = (H,+) and h̄1, . . . , h̄n

∈ H. Then h̄ j =
∑
δ j∈∆ h j

δ j , h j
δ j ∈ Xδ j and h j

δ j = 0 for all but
finitely many δ j

∈ ∆. Let us put

ω(h̄1, . . . , h̄n) =
∑
δ1∈∆

· · ·

∑
δn∈∆

ω(h1
δ1 , . . . , hn

δn ),

where ω ∈ Ω is arbitrary. It is not hard to prove that this operation is distributive with respect to addition.
Now, according to Lemma 3.3, (H,+,Ω) is a graded Ω-group.

Remark 4.4. It is obvious that every Ω-group is an Ω-homogroupoid, and as we have just seen, every graded Ω-group
is determined by its Ω-homogroupoid. Hence, all results obtained in the theory of Ω-homogroupoids remain true in
the theory of Ω-groups and graded Ω-groups.

5. Homogeneous substructures of graded Ω-groups. Homomorphisms

Naturally, M. Krasner [20] defined a homogeneous subgroup K of a graded group G to be a subgroup of G
generated by K∩H,where H is the homogeneous part of G.We define a homogeneous Ω-subgroup of a graded
Ω-group analogously.

Definition 5.1. An Ω-subgroup (Y,+,Ω) of a graded Ω-group (X,+,Ω) is called a homogeneous Ω-subgroup if
Y is generated by Y ∩H, where H is the homogeneous part of X.

Next we define the notion of a homogeneous ideal of a graded Ω-group.

Definition 5.2. Let (X,+,Ω) be a graded Ω-group. A nonempty substructure (Y,+,Ω) of X is called a homogeneous
ideal of X if:

a) (Y,+) is a normal homogeneous subgroup of (X,+);

b) (∀ω ∈ Ω)(∀x1, . . . , xn ∈ X)((∃i) xi ∈ Y⇒ ω(x1, . . . , xn) ∈ Y).

Since graded Ω-groups are up to H-isomorphism determined by their homogeneous parts H, we intend to
observe the homogeneous counterparts of above definitions.

Definition 5.3. A subset K of an Ω-homogroupoid (H,+,Ω) is called an Ω-subhomogroupoid if K is the homoge-
neous part of a homogeneous Ω-subgroup of (H,+,Ω).

The following Lemma is obvious.

Lemma 5.4. Let (H,+,Ω) be an Ω-homogroupoid. Then K ⊆ H is an Ω-subhomogroupoid of H if and only if:

a) (K,+) is a subhomogroupoid of (H,+);

b) K is closed with respect to Ω.

Definition 5.5. An Ω-subhomogroupoid K is called an ideal of an Ω-homogroupoid (H,+,Ω) if:

a) (K,+) is a normal subhomogroupoid of (H,+);
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b) (∀ω ∈ Ω)(∀h1, . . . , hn ∈ H)((∃ j) h j ∈ K⇒ ω(h1, . . . , hn) ∈ K).

Let (X,+,Ω) be a graded Ω-group with the homogeneous part H and (X′,+′,Ω′) a graded Ω′-group with
the homogeneous part H′. We also assume that X and X′ are structures of the same type, i.e., that there
exists a bijective mapping ω→ ω′ from Ω onto Ω′ such that n(ω) = n(ω′) (ω ∈ Ω). For the sake of simplicity,
additive operation “+′” will also be denoted by “+”. However, we will denote the neutral element of (X′,+)
by 0′.

Definition 5.6. A homomorphism f : (X,+,Ω)→ (X′,+,Ω′) is called a quasihomogeneous homomorphism if
f (H) ⊆ H′.

It follows that if h, k ∈ H are such that f (h), f (k) , 0′, then δ(h) = δ(k)⇒ δ( f (h)) = δ( f (k)).

Definition 5.7. A quasihomogeneous homomorphism f : (X,+,Ω) → (X′,+,Ω′) is called homogeneous if
δ( f (h)) = δ( f (k))⇒ δ(h) = δ(k) for all h, k ∈ H such that f (h), f (k) , 0′.

Now, let us observe restrictions of quasihomogeneous resp. homogeneous homomomorphisms to the
corresponding homogroupoids. We then come to the following notions.

Definition 5.8. The mapping f : (H,+,Ω) → (H′,+,Ω′) from an Ω-homogroupoid H to an Ω′-homogroupoid H′

is called a quasimorphism if:

a) (∀ω ∈ Ω)(∀h1, . . . , hn ∈ H) f (ω(h1, . . . , hn)) = ω′( f (h1), . . . , f (hn));

b) (∀h1, h2 ∈ H) h1#h2 ⇒ f (h1)# f (h2) ∧ f (h1 + h2) = f (h1) + f (h2).

If moreover 0′ , f (h1)# f (h2) , 0′ implies h1#h2, f is called a homomorphism.

Remark 5.9. The kernel and the image are defined as usual. It is important to notice that if f is a quasimorphism, then
ker f = f−1(0′) is an ideal of (H,+,Ω), but f (H) does not have to be an ideal of (H′,+,Ω′). The image f (H) is an ideal,
however, if f is a homomorphism. This is purely the consequence of the properties of the mapping (H,+)→ (H′,+) of
homogroupoids [2, 7, 20].

Theorem 5.10. Let (K,+,Ω) be an ideal of an Ω-homogroupoid (H,+,Ω). If ρ is defined by h1ρh2 if and only if h1,
h2 ∈ K or h1#h2 and h1 − h2 ∈ K (h1, h2 ∈ H), then ρ is a congruence relation on H and the factor set H/ρ, denoted
by H/K, is an Ω-homogroupoid, called the factor Ω-homogroupoid.

Proof. It is clear that ρ is a congruence on H and [h]ρ = h + K. In order to prove that H/K is an Ω-
homogroupoid, we will use the canonical mapping f : H→ H/K (see [2, 7, 10]). For an arbitrary ω ∈ Ω and
[hi]ρ ∈ H/K, i = 1, . . . ,n = n(ω), define ω([h1]ρ, . . . , [hn]ρ) = [ω(h1, . . . , hn)]ρ, where hi, i = 1, . . . ,n, are such
that [hi]ρ = f (hi), i = 1, . . . ,n.We say that [h1]ρ is addible to [h2]ρ, and write [h1]ρ#[h2]ρ if there exist elements
h1 and h2 from H such that [h1]ρ = f (h1), [h2]ρ = f (h2), and h1#h2; in that case we put [h1]ρ+ [h2]ρ = f (h1 + h2).
A routine check verifies that these operations are well defined, and that (H/K,+,Ω) is an Ω-homogroupoid,
i.e., that it satisfies all axioms of Theorem 4.3.

Let us make a convention in denoting the neutral element of the factor Ω-homogroupoid, with respect to
partial addition, by 0̄, since there is no danger of confusing it with the process of linearization (zero is the
same in an Ω-homogroupoid and in its linearization).

Remark 5.11. If K is an ideal of an Ω-homogroupoid (H,+,Ω), then, if for h ∈ H, [h]ρ = f (h) , 0̄, then it is easily
verified that (H/K)([h]ρ) � H(h)/(H(h) ∩ K), just like in the case of homogroupoids [20], where f : H → H/K is the
canonical mapping, which is, obviously, a homomorphism of Ω-homogroupoids. Using homomorphism H → H/K,
and a homogeneous homomorphism H→ H/K, we easily arrive at H/K = H/K, which represents the graded version
of the previous theorem.
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Remark 5.12. If we keep in mind what is stated in Remark 5.9, it is easy to formulate and prove isomorphism
theorems for graded Ω-groups and Ω-homogroupoids, i.e., we need to assume that the mappings under consideration
are homogeneous in the case of graded Ω-groups, and homomorphisms in the case of Ω-homogroupoids.

If I and J are ideals of an Ω-homogroupoid H, let us see what their sum is. Let

I + J = {a + b | a ∈ I, b ∈ J, a#b}.

It is easy to prove that I + J is a normal subhomogroupoid of a homogroupoid (H,+) [20]. Let ω ∈ Ω be an
arbitrary operation of arity n, c1, . . . , cn ∈ H and let ci ∈ I + J. Then there exist ai ∈ I and bi ∈ J such that ai#bi
and ci = ai + bi. Since ai#bi, we have

ω(c1, . . . , ci−1, ai, ci+1, . . . , cn)#ω(c1, . . . , ci−1, bi, ci+1, . . . , cn)

and

ω(c1, . . . , ci, . . . , cn) = ω(c1, . . . , ci−1, ai + bi, ci+1, . . . , cn)
= ω(c1, . . . , ci−1, ai, ci+1, . . . , cn) + ω(c1, . . . , ci−1, bi, ci+1, . . . , cn).

Since I and J are ideals,

ω(c1, . . . , ci−1, ai, ci+1, . . . , cn) ∈ I, ω(c1, . . . , ci−1, bi, ci+1, . . . , cn) ∈ J,

hence, I + J is an ideal of an Ω-homogroupoid H.

6. About the direct sum

It is, of course, of interest to know if we may derive a graded Ω-group by the means of the direct sum of
graded Ω-groups. Once the direct sum is defined, other related notions will be clear enough. Since graded
Ω-groups are determined by their homogeneous parts, we are actually interested in the notion of the direct
sum of Ω-homogroupoids. The main difficulty is in defining the direct sum of homogroupoids, which is
already done [7, 20], and once we recall what the direct sum of homogroupoids is, the rest will follow easily
if we apply techniques known for Ω-groups (see e.g. [4, 31]). First we need to recall what the direct sum of
the family of graded groups is [20]. Let G =

⊕
δ∈∆ Gδ be a graded group and let {Gα

| α ∈ I} be a family of
homogeneous subgroups of G.We say that G is the direct sum

⊕
α∈I Gα of homogeneous subgroups Gα if it

is as an abstract group. It is immediate that this is the case if and only if Gδ =
⊕

α∈I Gα
δ ,where Gα

δ = Gα
∩Gδ,

δ ∈ ∆. This allows us to define the direct sum of the family of graded groups {Gα
| α ∈ I}whose sets of grades

are assumed to be mutually disjoint. If Gα =
⊕

d∈Dα
Gα

d , put D =
⋃
α∈I Dα. Sets Dα form a partition of D, and

let εI be the corresponding equivalence relation. Take η to be an orthogonal equivalence relation to εI, i.e.,
a relation for which the intersection of an arbitrary class of εI and of an arbitrary class of η is an empty set
or a singleton. Let ∆ = D/η. If δ ∈ ∆ and α ∈ I, then put Gα

δ = Gα
d if δ ∩Dα = {d} and Gα

δ = {eα} if δ ∩Dα = ∅,

where eα is the neutral element of Gα. Then
⊕(η)

α∈I Gα =
⊕

δ∈∆ Gδ is the direct sum of graded groups Gα,
where Gδ =

⊕
α∈I Gα

δ . It is clear how to translate these notions to the case of homogroupoids. Now, we
briefly turn our attention to the case of the family of graded Ω-homogroupoids. There, one should take the
orthogonal equivalence relation η to be such that [di

α]η = [di
α′ ]η implies [ω(d1

α, . . . , dn
α)]η = [ω(d1

α′ , . . . , d
n
α′ )]η,

if ω(d1
α, . . . , dn

α) and ω(d1
α′ , . . . , d

n
α′ ) exist, where di

α ∈ Dα, di
α′ ∈ Dα′ , i = 1, . . . ,n = n(ω), and then, it is clear

enough how to define the direct sum of Ω-homogroupoids.

7. GradedΩ-group vs. Ω-homogroupoid and some questions regarding the Jacobson radical of a graded
ring

We have seen that graded Ω-groups are determined by Ω-homogroupoids, but the question is which one
to choose in a particular situation, graded Ω-groups or Ω-homogroupoids. Well, if one is interested in



E. Ilić-Georgijević / Filomat 29:10 (2015), 2167–2183 2176

homogeneous elements and substructures only, then, the environment of Ω-homogroupoids is certainly
the right one. If one observes elements both homogeneous and nonhomogeneous equally, then graded
Ω-groups are, of course, sufficient. Nevertheless, when proving some properties concerning homogeneity,
in this, nonhomogeneous setting, i.e., when observing graded Ω-groups, it is not always clear which non-
homogeneous elements would play the right part. This is however clear in homogeneous setting, i.e., when
observing Ω-homogroupoids. Also, as M. Krasner pointed out in [20] while favorising homogeneous over
nonhomogeneous aspect of graded rings, it is practically much simpler to say element than homogeneous
element and to write a#b instead of ab ∈ H. We can use the similar argument to put Ω-homogroupoids in
front of graded Ω-groups. Let us look at one particular case of a graded Ω-group with grading set ∆, a
graded ring with grading set ∆ [2, 7, 20]. We call such rings Krasner graded rings or ∆-graded rings inducing
∆, according to [11, 16], or just graded rings. The corresponding Ω-homogroupoid will be called an anneid,
according to M. Krasner, see [2]. We could also call these as ringoids, but the original French term seems
to be more appropriate, since the term “ringoid” is already reserved for a set with two binary operations,
while in our case, we have one operation and one partial operation. Also, “anneid” carries a root of the
Latin word for ring, “annulus”. In [16], A. V. Kelarev and A. Plant considered the question of homogeneity
of the Jacobson radical of ∆-graded rings inducing ∆. The homogeneous aspect, i.e., the theory of anneids
proved to be useful in providing some answers to following questions.

Question 7.1 ([12]). Is it true that, if S is a finite cancellative partial groupoid with idempotent e and R =
⊕

s∈S Rs
is an S-graded ring inducing S, then J(Re) = Re ∩ J(R)?

Question 7.2 ([12]). Is it true that, for every groupoid S and every S-graded ring R satisfying a polynomial identity,
if the radicals of subrings Re are nil for all idempotents e in S, then the radical of R is nil?

In [8], theory of anneids (especially [6, 7]) was used in order to answer affirmatively to Question 7.1 in case
when the Jacobson radical and the large Jacobson radical of an anneid coincide. Here, the Jacobson radical of
an anneid A is defined as the intersection of annihilators of all regular irreducible A-moduloids and the
large Jacobson radical as the intersection of annihilators of all irreducible A-moduloids [6, 7]. Moduloids
are, as already mentioned, homogeneous parts of graded modules, and a commutative graded group
M =

⊕
d∈D Md is a graded right (left) R-module, where R is ∆-graded ring inducing ∆, if for all δ ∈ ∆ and

d ∈ D there exists t ∈ D such that MdRδ ⊆ Mt (RδMd ⊆ Mt) [2, 7, 20]. As for the Question 7.2, in [8] it is
proved that the answer is positive under certain assumptions which include the regularity (cancellativity) of
a graded PI-ring with the finite support and the assumption that the Jacobson radical and the large Jacobson
radical coincide. While proving this, one more open problem which can be found in [12] was dealt, which
asks whether a certain power of the Jacobson radical is contained in the homogeneous Jacobson radical of
an S-graded ring inducing S, where S is a finite cancellative partial groupoid.
However, there are cases when one might find the nonhomogeneous aspect more useful. For instance, let
the grading set be totally ordered. In that case, the degree may also be associated to a nonhomogeneous
element of a graded Ω-group as it can be done in the case of graded rings [20]. Namely, let (X,+,Ω) be a
graded Ω-group, whose grading is proper, with the totally ordered grading set (∆,≤), where the order is
compatible with Ω, i.e., if ω ∈ Ω, n = n(ω), δ1, . . . , δn, δ′1, . . . , δ

′
n ∈ ∆, then

δ1 ≤ δ
′

1 ∧ · · · ∧ δn ≤ δ
′

n ⇒ ω(δ1, . . . , δn) ≤ ω(δ′1, . . . , δ
′

n).

Suppose that 0 is the least element of ∆. Let x =
∑
δ∈∆ xδ ∈ X, where xδ ∈ Xδ if δ , 0 and x0 = 0. Then we

may define the degree δ(x) of x by δ(x) = maxδ∈∆ δ(xδ).
We will now focus on the special case of regular proper graded rings. Recently, A. Smoktunowicz [32] and
P.-H Lee and E. R. Puczyłowski [25] proved independently that the homogeneous subring of a Jacobson
Z-graded ring is also Jacobson, where Z denotes the set of integers. We prove that the same result holds
for ∆-graded rings inducing ∆ under certain assumptions. For results on semigroup-graded rings, see [26].
Let R be a regular proper graded ring with the totally ordered grading set ∆, with 0 as the least element.
Here, by regularity we mean that the grading set ∆ is cancellative with respect to induced operation. Also,
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assume that the order is compatible with the operation induced on ∆, i.e., if δ1, δ2, δ′1, δ
′

2 ∈ ∆ are such that
δ1 ≤ δ′1 and δ2 ≤ δ′2, then δ1δ2 ≤ δ′1δ

′

2. Let us observe the set

S = {x̄ =
∑
δ∈∆

xδ | xδ ∈ Rδ, supp(x̄) is well ordered}, (7)

where supp(x̄) denotes the support of x̄, i.e., the set {δ ∈ ∆ | xδ , 0} [20].
For x̄ =

∑
δ∈∆ xδ, ȳ =

∑
δ∈∆ yδ ∈ S, define

x̄ȳ :=
∑
ξ∈∆

∑
δδ′=ξ

xδyδ′ , (8)

and let D(ξ) := {(δ, δ′) ∈ ∆ × ∆ | δδ′ = ξ and xδyδ′ , 0} [20].
The following lemma is known, but we include its proof for convenience.

Lemma 7.3 ([20]). Element (8) belongs to S.

Proof. If δ1δ′1 = δ2δ′2 and δ1 < δ2, then δ′1 > δ′2. Indeed, if δ′1 ≤ δ′2, then δ1δ′1 ≤ δ2δ′1 ≤ δ2δ′2. Hence,
δ1δ′1 = δ2δ′1 = δ2δ′2, and since R is regular, it follows that δ1 = δ2. Therefore, the set {δ ∈ ∆ | (δ, δ′) ∈ D(ξ)} is
well ordered, since for those δ, xδyδ′ , 0, hence xδ , 0 and δ ∈ supp(x̄). Also, the set {δ′ ∈ ∆ | (δ, δ′) ∈ D(ξ)}
is well ordered with respect to reverse order, and since it is contained in supp(ȳ), it is well ordered and
finite. This means that D(ξ) is finite. Obviously, the set {δδ′ | (δ, δ′) ∈ supp(x̄) × supp(ȳ)} is well ordered,
and hence, element (8) belongs to S.

The set S, with addition defined component-wise and with the multiplication (8), is a ring, called the Hahn
completion of R [20].

Theorem 7.4. Let R be a regular proper graded ring with the totally ordered grading set ∆ such that the order is
compatible with the induced operation on ∆ and such that for all δ ∈ ∆, for which δ2 , 0, we have δ2 > δ. Then, if
T is a homogeneous subring of a graded ring R, then J(R) ∩ T ⊆ J(T). In particular, if R is Jacobson, then T is also
Jacobson.

Proof. According to assumptions, we may observe the ring S from (7) with addition defined component-
wise and with the multiplication (8). Observe also that, under our assumptions, if ξη , 0, then ξη > ξ and
ξη > η, where ξ, η ∈ ∆. The ring S is Jacobson. Indeed, let x̄ ∈ S. Then its quasi-inverse is x̄′ =

∑
∞

i=1(−1)ix̄i,
which is, under our assumptions, a well defined element in S according to [29], Theorem 4.7.
Let x ∈ J(R) ∩ T and x =

∑k
i=1 rδi , rδi ∈ Rδi . Since T is homogeneous, rδi ∈ T. Let x′ =

∑l
j=1 rλ j be the quasi-

inverse of x in R. If x′′ is a quasi-inverse of x in S, then, since x′ ∈ S, and there can be only one quasi-inverse in
S, x′ = x′′, i.e.,

∑l
j=1 rλ j =

∑
∞

i=1(−1)ixi. This means that homogeneous elements from the left-hand side belong
to the corresponding homogeneous components of homogeneous elements from the right-hand side, i.e.,
they belong to T. Hence, x′ is a quasi-inverse of x which belongs to T, and the claim follows.

The following result is of interest as well.

Theorem 7.5. Let R be a regular proper graded ring with the totally ordered grading set ∆ such that the order is
compatible with the induced operation on ∆ and such that for all δ ∈ ∆, for which δ2 , 0, we have δ2 > δ. If R is a
Jacobson graded ring, then R is a graded-nil ring, i.e., every homogeneous element is nilpotent.

Proof. Again, we observe the ring S from (7) with addition defined component-wise and with the multi-
plication (8). Embed R into S. For a homogeneous element x ∈ R, if x′ is its quasi-inverse in R and x′′ its
quasi-inverse in S, we have x′ = x′′ in S, which implies

l∑
j=1

rλ j =

∞∑
i=1

(−1)ixi,

and therefore, there exists a natural number n such that xn = 0, q.e.d.
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Example 7.6. If the grading set has nonzero idempotents, then the statements of previous theorems do not have to

hold. Indeed, let Q1 = { 2m
2n+1 | m,n ∈ Z, (2m, 2n + 1) = 1}. Then R =

(
Q1 Q1
0 Q1

)
=

(
Q1 0
0 Q1

)
⊕

(
0 Q1
0 0

)
is a Jacobson regular Krasner graded ring which has a nonzero idempotent degree corresponding to

(
Q1 0
0 Q1

)
.

However,
(
Q1 0
0 Q1

)
is a homogeneous subring which is Jacobson but not nil since Q1 is a Jacobson but not a nil

ring.

8. The theory of prime radicals

We show that the theory of prime radicals can also be developed for Ω-homogroupoids as it is developed
for group-graded Ω-groups in [27]. As in [27], we will follow the usual construction of the theory of
prime radicals (see [27] and references therein). Proofs of results in [27] were included for the sake of
convenience in reading and because the graded case is considered, and here we do the same for results on
Ω-homogroupoids. All statements are easily translated to graded Ω-groups and may be applied to any
graded Ω-group, in the spirit of Remark 4.4. Particularly, at the end of this section, we observe prime
radicals of anneids.

Definition 8.1. Let I, J be Ω-subhomogroupoids of an Ω-homogroupoid H. The commutator [I, J] of I and J is an
Ω-subhomogroupoid of an Ω-homogroupoid H which is generated by the set of elements ω(c1, . . . , cn), n ≥ 2, ω ∈ Ω,
where ci come from I or J but some elements from both I and J are among ci. An Ω-subhomogroupoid [I, I] is denoted
I2.

Definition 8.2. An element a of an Ω-homogroupoid H is called strictly Engel if for an arbitrary sequence a0, a1, . . .
of elements of H, the condition a0 = a, ai+1 ∈ (ai)2, i = 0, 1, . . . , implies that all elements are 0 starting from some i.

Definition 8.3. An Ω-homogroupoid H is called prime if for every two ideals I, J of H, [I, J] = 0 implies I = 0 or
J = 0. We say that H is semiprime if I2 = 0 implies I = 0.

Definition 8.4. An ideal P of an Ω-homogroupoid H is called prime if H/P is a prime Ω-homogroupoid.

Definition 8.5. The prime radical P(H) of an Ω-homogroupoid H is the intersection of all prime ideals of H.

Using the same methods as in [27], one can prove the following theorems.

Theorem 8.6. The prime radical of an Ω-homogroupoid H is the set of all strictly Engel elements of H.

Proof. Let a ∈ H be an element that does not belong to the prime radical, i.e., a < P(H). Then there exists
a prime ideal I of H such that a < I. This implies that the image of (a)2 in the factor Ω-homogroupoid H/I
under the canonical mapping is distinct from 0̄.Hence, (a)2 is not contained in I. Let a0 = a and let a1 ∈ (a)2

\ I
be arbitrary. Then a1 < P(H). We continue this process, and construct a sequence of elements a0 = a, a1, . . . ,
where ai+1 ∈ (ai)2 (i = 0, 1, . . . ) none of which belongs to P(H). Hence, a is not strictly Engel.
Conversely, let a ∈ H be an element which is not strictly Engel. Then there exists a sequence of elements
a0 = a, a1, . . . such that ai+1 ∈ (ai)2 (i = 0, 1, . . . ) all of which are distinct from 0. According to Zorn’s Lemma,
there exists a maximal ideal I of H which does not contain the sequence a0, a1, . . . .We claim that I is a prime
ideal. Let M and N be two ideals such that I $ M and I $ N. Then there exist natural numbers k and l such
that ak ∈ M and al ∈ N. If m = max{k, l}, then all elements of sequence ai, where i ≥ m, starting with the
number m + 1 lie in M ∩N and in [M,N]. Let f : H→ H/I be the canonical homomorphism (in the sense of
Definition 5.8). The commutant [ f (M), f (N)] of the images f (M) and f (N) of the ideals M and N in H/I is
not equal to 0̄. Therefore, I is a prime ideal of an Ω-homogroupoid H, and so, a < P(H).

Theorem 8.7. An Ω-homogroupoid H is semiprime if and only if P(H) = 0.
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Proof. 1. Let us first prove that an Ω-homogroupoid H is semiprime if and only if for all a ∈ H the equality
(a)2 = 0 implies a = 0.Well, let H be a semiprime Ω-homogroupoid and assume that for some a ∈ H we have
(a)2 = 0. Since H is semiprime, it follows that (a) = 0, and hence, a = 0. Conversely, assume that for all a ∈ H
the equality (a)2 = 0 implies a = 0. If I is an ideal of H for which we have I2 = 0 and a ∈ I, then (a) ⊆ I,which
implies that (a)2 = 0. Therefore, a = 0, and since a was arbitrarily chosen, I = 0, hence, H is semiprime.
2. Let I be an ideal of H such that the factor Ω-homogroupoid H/I is semiprime and b < I. We claim that
there exists a prime ideal K such that K ⊇ I and b < K. Let b0 = b. Since H/I is semiprime, (b0)2 is not
contained in I. Let b1 ∈ (b0)2

\ I. Then (b1)2 is not contained in I and then choose b2 ∈ (b1)2
\ I and so on. We

obtain a sequence of elements b0 = b, b1, . . . , such that bi+1 ∈ (bi)2 (i = 0, 1, . . . ) and none of them belongs
to I. According to Zorn’s Lemma, there exists a maximal ideal K which contains I but does not contain any
of the elements b0, b1, . . . . Now, mimicking the second part of the proof of the previous theorem, one may
show that K is a prime ideal, and, moreover, b < K.
3. Assume now that the prime radical P(H) of H is 0. Let a ∈ H and a , 0. By the previous theorem, a is
not a strictly Engel element. That means that there exists a sequence a0 = a, a1, . . . , such that ai+1 ∈ (ai)2

(i = 0, 1, . . . ), and all ai are distinct from 0. Hence, (a)2 , 0. According to 1., H is semiprime.
Conversely, let H be semiprime, a ∈ H, and a , 0.According to 2., there exists a prime ideal K ⊆ H such that
a < K. Therefore, a < P(H), and so, P(H) = 0.

In Ω-homogroupoid setting, it is natural to observe solvability rather than nilpotency, since in the special
case of Lie algebras, solvability and nilpotency do not coincide. V. A. Parfenov (Parfyonov) introduced
weakly solvable radicals in the class of Lie algebras [30], since, at the time, it was not known whether the sum
of locally solvable ideals is locally solvable. This question, known as the Amayo–Stewart problem, is later
resolved in negative in [24] thus proving that the theory of locally solvable radicals of Lie algebras cannot
be developed. Therefore, in [27], weakly solvable group-graded Ω-groups were introduced, and here we
do similar for Ω-homogroupoids.

Definition 8.8. An Ω-homogroupoid H is called solvable of degree k if there exists a natural number k such that
Hk = 0, Hk−1 , 0, where H0 = H, H1 = [H0,H0], . . . , Hi+1 = [Hi,Hi], . . . .

Definition 8.9. An Ω-homogroupoid H is called locally solvable if every finitely generated subhomogroupoid is
solvable.

If H is an Ω-homogroupoid and K ⊆ H, then we define K(0) = K, K(k+1) = {ω(a1, . . . , an) | n ≥ 2, a1, . . . , an ∈

K(k), ω ∈ Ω}, k = 0, 1, . . . .

Definition 8.10. An Ω-homogroupoid H is called weakly solvable if for every finite subset K of H there exists a
natural number k such that K(k) = 0.

We say that an Ω-homogroupoid H is with the finiteness condition if for every finite subset K ⊆ H and for all
n ≥ 2, k1, . . . , kn ∈ K, ω ∈ Ω,we have that the set of elementsω(k1, . . . , kn) is finite. If H is an Ω-homogroupoid
with the finiteness condition, then it is easy to prove that H is a weakly solvable Ω-homogroupoid if I and
H/I are weakly solvable Ω-homogroupoids, where I is an ideal of H. It is also easy to prove that the sum
of weakly solvable ideals of H is again a weakly solvable ideal. Now, one can prove that a class of weakly
solvable Ω-homogroupoids with the finiteness condition is a radical class. Analogously to the case of
group-graded Ω-groups in [27], we define the upper weakly solvable radical T(H) of an Ω-homogroupoid H
as the largest weakly solvable ideal of H, and we similarly construct the lower weakly solvable radical of an
Ω-homogroupoid H with the finiteness condition. Namely, let ρ(H) denote the sum of all ideals I of H such
that I2 = 0. The sum of two solvable ideals is solvable, and hence, ρ(H) is locally solvable. For all ordinal
numbers α, we define an ideal ρ(α), using transfinite induction in the following way:

1. ρ(0) = 0;
2. let ρ(α) be defined for all α < β. Then:

a) if β = λ + 1 is not a limit ordinal, then ρ(β) is defined as an ideal of H such that ρ(β)/ρ(λ) =
ρ(H/ρ(λ));
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b) if β is a limit ordinal, then we define ρ(β) =
⋃
λ<β ρ(λ).

There exists an ordinal β such that ρ(β) = ρ(β + 1), and ρ(β) is called the lower weakly solvable radical of an
Ω-homogroupoid H with the finiteness condition. Next we give the relation between the prime radical and
the lower weakly solvable radical which is an Ω-homogroupoid analogue of Theorem 3. from [27].

Theorem 8.11. The prime radical of an Ω-homogroupoid H with the finiteness condition coincides with the lower
weakly solvable radical.

Proof. According to Theorem 8.7, the Ω-homogroupoid H/P(H) is semiprime, and therefore, ρ(H/P(H)) = 0̄.
This implies ρ(H) ⊆ P(H). If we observe H/ρ(H), we will obtain ρ(2) ⊆ P(H). Continuing this process and
using transfinite induction, we conclude that the lower weakly solvable radical is contained in P(H).
The converse inclusion follows from the second part of the proof of Theorem 8.7.

Corollary 8.12. The prime radical P(H) of an Ω-homogroupoid H with the finiteness condition is weakly solvable.

The question of coincidence of lower and upper weakly solvable radical is of interest for particular classes
of Ω-homogroupoids. At the end of this section, we will observe it in the case of anneids. Answering
this question in the case of other particular classes of Ω-homogroupoids is left for future research (e.g.
Lie algebroids, Lie superalgebroids, special and generalized special Lie algebroids and superalgebroids are yet to be
defined and explored). Also, as in [27], we ask whether a prime radical is locally solvable.
We have the following theorem which gives us the connection between the upper weakly solvable radical
and some prime ideals.

Theorem 8.13. Let H be an Ω-homogroupoid with the finiteness condition and let {Pα} be the family of all prime
ideals of H for which we have T(H/Pα) = 0̄. Then T(H) equals the intersection of all such prime ideals.

Proof. We follow the arguments given for the proof of Theorem 4. in [27]. Let P =
⋂

Pα∈{Pα} Pα. Clearly,
T(H) ⊆ P, since T(H) ⊆ Pα, for all Pα. Let us now assume that T(H) $ P. Then there exists an element b ∈ P
such that b < T(H). Hence, there exists a finite subset X ⊆ (b) such that X(k) * T(H) (k = 0, 1, . . . ). Let us
observe the set {Qβ} of ideals of H such that

1. T(H) ⊆ Qβ;
2. X(k) * Qβ (k = 0, 1, . . . ).

Clearly, T(H) ∈ {Qβ}. Assume that there exists an infinite chain of ideals from {Qβ} such that Q1 ⊆ Q2 ⊆ . . . .
Then Q =

⋃
∞

i=1 Qi does not contain X(k) (k = 0, 1, . . . ), since X(k) is finite for all k = 0, 1, . . . . According
to Zorn’s Lemma, there exists a maximal element P0 ∈ {Qβ}. It is easily verified that H/P0 is a prime Ω-
homogroupoid. We claim that T(H/P0) = 0̄. If T(H/P0) , 0̄, then P0 $ f−1(T(H/P0)),where f is the canonical
homomorphism (in the sense of Definition 5.8). By the maximality of P0, it follows that X(l)

⊆ f−1(T(H/P0)).
Hence, f (X)(l)

⊆ T(H/P0). It follows that for some natural number m > l,we have f (X)(m) = 0̄, i.e., X(m)
⊆ P0, a

contradiction. We have constructed an ideal P0 ∈ {Qβ}which does not contain P, a contradiction. Therefore,
P = T(H).

Theorem 8.14. The prime radical of an Ω-homogroupoid H with the maximum condition on ideals is solvable.

Proof. Let K be a maximal solvable ideal of H. It is the greatest solvable ideal since the sum of two solvable
ideals is solvable. Also, an extension of a solvable Ω-homogroupoid by a solvable one is solvable. Hence,
H/K contains no ideals I with I2 = 0, and so, it is semiprime. Now, according to Theorem 8.7, P(H) ⊆ K.

8.1. On prime radicals of associative anneids
Here we present some results regarding associative anneids, as special cases of Ω-homogroupoids.
An anneid A is said to be Levitzki or locally nilpotent if any finitely generated subanneid of A is nilpotent. It
can be proved easily that the class of all locally nilpotent anneids is a radical class, called the Levitzki radical,
in a universal class of all anneids. If we look at the notion of the weak solvability of an Ω-homogroupoid
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in the case of an anneid, it comes clear that the weak solvability coincides with the local nilpotency, and
thus, the upper weakly solvable radical and the Levitzki radical of an anneid coincide. Hence, according
to Corollary 8.12, we have the following proposition, which gives a positive answer to a question whether
a prime radical is locally solvable.

Proposition 8.15. The prime radical of an anneid A is contained in the Levitzki radical of A.

We may come to the same conclusion from the following results which give connection between the prime
radical of an annied A and the prime radical of the linearization A thus generalizing results obtained for
group-graded rings in [3] (see also [28]).

Lemma 8.16. Let A be an anneid and A its linearization.

i) If I is a prime ideal of A, then I ∩ A is a prime ideal of A.

ii) If J is a graded prime ideal of A, then there exists a prime ideal I of A such that J is generated by I ∩ A.

iii) The prime radical of A coincides with P(A) ∩ A, where P(A) denotes the prime radical of A regarded as a ring.

Proof. i) Let M, N be ideals of A such that MN ⊆ I ∩A. Then M N ⊆ I, and so, M ⊆ I or N ⊆ I, i.e., M ⊆ I ∩A
or N ⊆ I ∩ A.
ii) Let I be a maximal ideal with respect to the property that J is generated by I∩A.That ideal exists according
to Zorn’s Lemma. It is enough now to prove that I is a prime ideal. As usual, let M, N be ideals of A such
that I $ M, I $ N. But then, according to the choice of I, J $

⊕
a∈A∗ M ∩ A(a) and J $

⊕
a∈A∗ N ∩ A(a), and

so,
(⊕

a∈A∗ M ∩ A(a)
) (⊕

a∈A∗ N ∩ A(a)
)
* J. Since the left-hand side of the previous expression is obviously

contained in MN, we obtain MN * I, and so, I is a prime ideal.
iii) This is a corollary to i) and ii).

In next theorems, we depart from the homogeneous aspect, since, in these cases, the assertions are more
clear when stated from the nonhomogeneous aspect. Also, in the next theorem, P denotes the prime radical,
while P1 denotes the graded prime radical.

Theorem 8.17. Let R =
⊕

δ∈∆ Rδ be a graded ring. Then P(R) ∩ Re = P1(R) ∩ Re ⊆ P(Re), for every idempotent
e ∈ ∆∗.

Proof. Lemma 8.16iii) implies that P(R) ∩ Re = P1(R) ∩ Re. Let a ∈ P1(R) ∩ Re. It is enough to prove that a
is a strongly nilpotent element in Re (see e.g. [28]). Let a0 = a, ai+1 ∈ aiReai (i = 0, 1, . . . ) be an arbitrary
sequence in Re. However, a0 ∈ R, ai+1 ∈ aiRai (i = 0, 1, . . . ) and a0 = a ∈ P1(R), and so, there exists i such that
ai = ai+k = 0 (k ≥ 1). Hence, a ∈ P(Re).

Let us now examine the homogeneity of the prime radical of a graded ring with the totally ordered grading
set (see Section 7). We obtain analogous result to one from [9] which asserts that the prime radical of a
u.p.-semigroup-graded ring is homogeneous.

Theorem 8.18. Let R =
⊕

δ∈∆ Rδ be a regular proper graded ring with the totally ordered grading set ∆ such that
the order is compatible with the induced operation on ∆.

i) If R is not prime and if I is a nonzero prime ideal of R, then I contains a nonzero homogeneous ideal.

ii) All minimal prime ideals of R are homogeneous.

Hence, the prime radical of R is homogeneous.
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Proof. i) Since R is not prime, there exist nonzero elements a = aξ1 + · · · + aξn and b = bη1 + · · · + bηm with
aξi ∈ Rξi and bη j ∈ Rη j , i ∈ {1, . . . ,n}, j = {1, . . . ,m}, respectively, such that aRb = 0. Let δ ∈ ∆ be arbitrary. If
r ∈ Rδ, then arb = aξ1 rbη1 + · · · + aξ1 rbηm + · · · + aξn rbη1 + · · · + aξn rbηm . For those i ∈ {1, . . . ,n} and j ∈ {1, . . . ,m}
for which Rξi RδRη j , 0, we have (ξiδ)η j = ξi(δη j) and ξiδη j is uniquely presented element of ∆ under our
assumptions on R and its grading set. Hence, for all such i, j, aξi Rδbη j = 0, and therefore, aξi Rδbη j = 0 for
all i ∈ {1, . . . ,n} and all j ∈ {1, . . . ,m}. Element δ was arbitrary, so aξi Rbη j = 0 for all i and j, and particularly,
aξn Rbηm = 0 ⊆ I, and since I is prime, it follows that aξn , bηm ∈ I. Therefore, I contains a nonzero homogeneous
ideal.
ii) If I is a minimal prime ideal of R, and J the homogeneous ideal

⊕
δ∈∆ I ∩ Rδ, then if J , I, it suffices to

apply i) to R/J and I/J in order to conclude that J must be equal to I (cf. [9]).

The lower and upper weakly solvable radical of an anneid A generally do not coincide, since from the
ordinary ring theory, we know that there exists a ring whose prime and Levitzki radical do not coincide
(see e.g. [5]), and every ring is an anneid.
However, there are some classes of anneids for which we have coincidence of the upper and lower weakly
solvable radicals, just like in the case of ordinary rings. The following result is just the corollary to Theorem
8.14, since, it may be proved by standard means that if an anneid A satisfies the ascending chain condition
for right annihilators ann(a) = {x ∈ A | ax = 0} (a ∈ A), then any left or right nil ideal is contained in the
prime radical of A (see e.g. [23]).

Theorem 8.19. If A is a Noetherian anneid, i.e., an anneid with maximum condition on ideals [2, 20], then the prime
radical of A coincides with the Levitzki radical of A.

Finally, we observe one particular example of an anneid which comes from the notion of an incidence ring
of group automata defined by A. V. Kelarev in [14]. We use notation presented in [15].
A group automation is an algebraic systemA = (X,G, δ), where

1. X is a nonempty set of states;
2. G is a group of input symbols;
3. δ : X × G→ X, given by δ(x, 1) = x1 is a transition function satisfying the equality x(1h) = (x1)h for all

x ∈ X, 1, h ∈ G.

If F is a ring with 1, then the incidence ring of the automationA = (X,G, δ) over F is the ring IA = IA(F) that
is spanned as a free left F-module by the set TA = {(x, 1, x1) | x ∈ X, 1 ∈ G} with multiplication defined by
the distributive law and the rules

(x1, 11, x111) · (x2, 12, x212) =

{
(x1, 1112, x11112), if x111 = x2,
0, otherwise,

(x, 1, x1) · r = r · (x, 1, x1),

for all x, x1, x2 ∈ X, 1, 11, 12 ∈ G, r ∈ F.
Clearly, T0

A
= TA ∪ 0 is a semigroup, and IA is a T0

A
-graded ring, since IA is isomorphic to the contracted

semigroup ring F0[T0
A

] (see [12, 13]). Moreover, this graded ring is regular (see Section 7). Denote by AA
the corresponding regular anneid.

Theorem 8.20. If F is a field, and if both X and G are finite, then the prime radical and the Levitzki radical of AA
coincide.

Proof. According to Corollary 3.1(ii) of [15], if F is a field, then IA is right or left Artinian if and only if both
X and G are finite. Hence, IA is right or left Artinian, which implies that AA is also right or left Artinian,
i.e., it satisfies the descending chain condition on right or left ideals. In that case, since AA is regular, the
Jacobson radical J(AA) is nilpotent, according to [6, 7]. It follows that J(AA) is contained in the prime radical
P(AA) of AA.On the other hand, P(AA) is contained in the Levitzki radical of AA,which is contained in the
nil radical of AA, which is contained in J(AA), according to [7], and so, the prime radical and the Levitzki
radical of AA coincide.
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[28] C. Năstăsescu, F. Van Oystaeyen, Methods of graded rings, Lecture Notes in Mathematics, 1836, Springer-Verlag, Berlin, 2004.
[29] B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202–252.
[30] V. A. Parfenov, On a weakly solvable radical of Lie algebras, Siberian Math. J. 12, No. 1 (1971), 123–127.
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