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Abstract. Discrete power series methods were introduced and their regularity results were developed
by Watson [Analysis (Munich), 18(1): 97–102, 1998]. It was shown by Watson that discrete power series
method (Pλ) strictly includes corresponding power series method (P). In the present work we present
theorems showing when (Pλ) and (P) are equivalent methods and when two discrete power series methods
are equivalent.

1. Introduction

Let
∑
∞

n=0 an be a series of real or complex numbers and (sn) be its corresponding sequence of partial
sums. Let (pn) be a sequence of nonnegative numbers with p0 > 0 such that

Pn :=
n∑

k=0

pk →∞, n→∞. (1)

Assume that the power series

p(x) :=
∞∑

k=0

pkxk (2)

has radius of convergence ρ and define

tn :=
n∑

k=1

Pk−1ak. (3)

The sequence (λn) is a strictly increasing sequence of real numbers such that λ0 ≥ 1 and λn →∞ as n→∞.
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Definition 1.1. If σn :=
1

Pn

n∑
k=0

pksk → s as n → ∞, then we say that (sn) is summable to s by the weighted mean

method (Mp) and write (sn)→ s(Mp).

Definition 1.2. Suppose that ps(x) :=
1

p(x)

∞∑
k=0

pkskxk exists for each x ∈ (0, ρ). If lim
x→ρ−

ps(x) = s, then we say that

(sn) is summable to s by the power series method (P) and write (sn)→ s(P).

In the literature, the weighted mean method and the power series method are called the method (Mp) and
the method (P), respectively. The summability methods (Mp) and (P) were studied by a number of authors
such as Móricz and Rhoades [13], Móricz and Stadtmüller [14] and Kratz and Stadtmüller [9, 10]. Recently,
Çanak and Totur [4–6], Totur and Çanak [16], Erdem and Totur [7] and Totur and Dik [17] have proved
some Tauberian theorems for the methods (Mp) and (P).

The weighted mean method of summability is regular if and only if (1) is satisfied. The basic regularity
results for the power series method were summarized by Borwein [3] and his result recalled here.

Theorem 1.3. ([3])

(1) If 0 < ρ < ∞, then the method (P) is regular if and only if
∞∑

k=0
pkρk = ∞.

(2) If ρ = ∞, then the method (P) is regular.

Furthermore, Ishuguro [8] proved that (Mp) implies (P). If pn = 1 for all nonnegative integer n, then
corresponding weighted mean and power series summability methods reduce to Cesàro (C, 1) and Abel (A)

summability methods, respectively. For Abel summability, p(x) =
1

1 − x
, ρ = 1 and ps(x) = (1 − x)

∑
∞

k=0 skxk.

For Borel summability, pk =
1
k!
, p(x) = ex, ρ = ∞ and ps(x) = e−x ∑

∞

k=0
sk
k! x

k.

Discrete summability methods were first introduced by Armitage and Maddox. Armitage and Maddox
defined discrete methods corresponding to (C, 1) and (A) in [1] and [2] and later Maddox [11, 12] established
Tauberian results relating discrete Abel means. Moreover, discrete methods corresponding to the methods
(Mp) and (P) were defined by Watson [18, 19] as follows.

Set

xn :=

ρ
(
1 − 1

λn

)
if 0 < ρ < ∞

λn if ρ = ∞.

Definition 1.4. We say that (sn) is summable to s by the discrete weighted mean method, (MPλ ), and write (sn) →

s(MPλ ) if τn := σ[λn] =
1

P[λn]

[λn]∑
k=0

pksk → s as n→∞, where [λn] denotes the integer part of λn.

Definition 1.5. Suppose that ps(xn) exists for each n ≥ 0. If ps(xn) := (Pλs)n → s as n→ ∞, then we say that (sn)
is summable to s by the discrete power series method (Pλ) and we write (sn)→ s(Pλ).

In [20] and [21], Watson also proved some Tauberian theorems for the methods (MPλ ) and (Pλ). Note
that, trivially, (MPλ ) includes (Mp) and (Pλ) includes (P) in the sense that (sn)→ s(Mp) or (sn)→ s(P) implies
(sn) → s(MPλ ) or (sn) → s(Pλ), respectively. Eventually, the methods (MPλ ) and (Pλ) inherit regularity from
the underlying methods (Mp) or (P).

The aim of this paper is to present equivalence relations between both (Pλ) and (P) and two discrete
power series methods.
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2. Auxilary Results

We require following lemmas for the proofs of the theorems in the next section.

Lemma 2.1. The identity

tn =

n∑
k=0

pk(sn − sk) (4)

is valid.

Proof. By (3), we have

tn =

n∑
k=1

Pk−1ak

= p0a1 + (p0 + p1)a2 + ... + (p0 + p1 + ... + pn−2)an−1 + (p0 + p1 + ... + pn−1)an

= p0(a1 + a2 + ... + an) + p1(a2 + a3 + ... + an) + ... + pn−2(an−1 + an) + pn−1an

= p0(sn − s0) + p1(sn − s1) + ... + pn−2(sn − sn−2) + pn−1(sn − sn−1)

=

n∑
k=0

pk(sn − sk).

Lemma 2.2. The identity

1
p(x)

∞∑
k=0

pkskxk =

∞∑
k=0

pkakxk (5)

holds if and only if

p0 = 1, pn = p1
n (n ≥ 1)· (6)

Proof. By simple calculations, it is easy to show that the identity (5) holds if and only if
∑k

v=0 pvpk−vav =

pk
∑k

v=0 av for all k ≥ 0. Thus, (5) holds for each sequence (ak) if and only if pk = pvpk−v for all 0 ≤ v ≤ k. Since
p0 , 0, this yields p0 = 1 and pn = p1

n for all n ≥ 1.

In addition, to ensure the convergence of p(x) we must choose ρ =
1
p1

, that is, p(x) =
1

1 − p1x
. In this case

the regularity condition (1) in Theorem 1.3 is also satisfied.

In the remainder of this paper we assume that p0 = 1, pn = p1
n for every positive integers n and ρ =

1
p1
.

Lemma 2.3. If
∑
∞

k=0 pkakxk converges for all x ∈ (0, ρ), then

∞∑
k=1

pkakxk =

∞∑
k=1

tk∆

(
pkxk

Pk−1

)
(0 < x < ρ).

Proof. We have
n∑

k=1

pkakxk =

n∑
k=1

Pk−1ak

(
pkxk

Pk−1

)
.
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Applying Abel’s partial summation formula, we get

n∑
k=1

pkakxk =
pnxn

Pn−1
tn +

n−1∑
k=1

tk∆

(
pkxk

Pk−1

)
.

Hence it is enough to show that pnxntn = o(Pn−1) for x ∈ (0, ρ). Fix x ∈ (0, ρ) and choose y ∈ (x, ρ). Since∑
∞

k=0 pkakyk converges,
∣∣∣pkakyk

∣∣∣ ≤M for k ≥ 1. Therefore

∣∣∣pnxntn

∣∣∣ ≤ pnxn
n∑

k=1

Pk−1 |ak|

≤ pnxn
n∑

k=1

Pk−1My−kpk
−1

≤ pnMPn−1xn
n∑

k=1

(p1y)−k

= pnMPn−1xn (p1y)−n
− 1

1 − p1y

≤ Pn−1M
(
x/y

)n

1 − p1y
= o(Pn−1).

Lemma 2.4. If (sn) is a bounded sequence, then tn = O(Pn).

Proof. Suppose that (sn) is bounded. By (4),

|tn| =

∣∣∣∣∣∣∣
n∑

k=0

pk(sn − sk)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣sn

n∑
k=0

pk −

n∑
k=0

pksk

∣∣∣∣∣∣∣
≤ |sn|

n∑
k=0

pk +

n∑
k=0

pk |sk|

≤ M
n∑

k=0

pk + M
n∑

k=0

pk

= O(Pn).

3. Equivalance Results

Theorem 3.1. If the condition

lim
n→∞

λn+1

λn
= 1 (7)

is satisfied, then the method (Pλ) is equivalent to the method (P) for bounded sequences.
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Proof. Note that, trivially, (Pλ) includes (P) in the sense that (sn)→ L(P) implies (sn)→ L(Pλ). Let (sn) be (Pλ)

summable to L and let xn = ρ
(
1 −

1
λn

)
. Then, for a given x ∈ (x0, ρ), there exists an n such that xn ≤ x ≤ xn+1.

By Lemma 2.2,

∣∣∣ps(x) − (Pλs)n

∣∣∣ =

∣∣∣∣∣∣∣ 1
p(x)

∞∑
k=0

pkskxk
−

1
p(xn)

∞∑
k=0

pkskxn
k

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∞∑

k=0

pkakxk
−

∞∑
k=0

pkakxn
k

∣∣∣∣∣∣∣ .
By Lemma 2.3, we get the following

∣∣∣ps(x) − (Pλs)n

∣∣∣ =

∣∣∣∣∣∣∣
∞∑

k=1

tk∆

(
pkxk

Pk−1

)
−

∞∑
k=1

tk∆

(
pkxn

k

Pk−1

)∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞∑

k=1

tk

x∫
xn

k
pk

Pk−1
tk−1
− (k + 1)

pk+1

Pk
tkdt

∣∣∣∣∣∣∣∣
≤

∞∑
k=1

|tk|

xn+1∫
xn

∣∣∣∣∣k pk

Pk−1
tk−1
− (k + 1)

pk+1

Pk
tk
∣∣∣∣∣ dt.

By Lemma 2.4, we have tn = O(Pn). Hence

∣∣∣ps(x) − (Pλs)n

∣∣∣ = O(1)
∞∑

k=1

Pk

xn+1∫
xn

∣∣∣∣∣k pk

Pk−1
− (k + 1)

pk+1

Pk
t
∣∣∣∣∣ tk−1dt

= O(1)

xn+1∫
xn

∞∑
k=1

∣∣∣∣∣k pk

Pk−1
− (k + 1)

pk+1

Pk
t
∣∣∣∣∣ Pktk−1dt

= O(1)

xn+1∫
xn

∞∑
k=1

∣∣∣kpk
1 − (k + 1)pk+1

1 t
∣∣∣ tk−1dt

= O(1)

xn+1∫
xn

∞∑
k=1

kpk−1
1

∣∣∣∣∣p1 −
k + 1

k
p2

1t
∣∣∣∣∣ tk−1dt

= O(1)

xn+1∫
xn

(1 − p1t)
∞∑

k=1

kpk−1
1 tk−1dt.

= O(1)

xn+1∫
xn

(1 − p1t)
1

(1 − p1t)2 dt

= O(1)

xn+1∫
xn

1
1 − p1t

dt

= O(1) log
(

1 − p1xn

1 − p1xn+1

)



S. A. Sezer, İ. Çanak / Filomat 29:10 (2015), 2275–2280 2280

= O(1) log
(
λn+1

λn

)
= O(1)o(1)
= o(1).

Since (Pλs)n → L, it now follows that ps(x) → L (x → ρ−). That is, (sn) is summable to L by the method
(P). Therefore, the method (Pλ) is equivalent to the method (P) for bounded sequences.

Note that Theorem 3.1 for pn = 1 for all nonnegative integer n was proved in [15].
Remark. Let λ and µ be strictly increasing sequence of real numbers such that λ0 ≥ 1, µ0 ≥ 1, λn →∞,

µn → ∞, limn→∞
λn+1
λn

= 1, limn→∞
µn+1

µn
= 1 as n → ∞. We deduce from Theorem 3.1 that discrete power

series methods (Pλ), (Pµ) and the power series method (P) are all equivalent for bounded sequences.
Acknowledgments The authors thank the anonymous referee for many constructive comments and
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