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Abstract. The joint limiting distribution of maximum of the specific sub-sample and maximum of the
complete sample from the first-order auto-regressive process with uniform marginal distributions is ob-
tained in this article. There are considered several examples of partial samples, consisted of non-randomly
selected terms of the full sample. It is well known that the uniform AR(1) process is strictly stationary
random sequence; it doesn’t satisfy condition of weak dependency, that prohibits clustering of extremes.
As a consequence of this property, some interesting conclusions about joint asymptotic distributions are
reached.

1. Introduction and preliminaries

In this paper will be analyzed asymptotic behavior of maxima of some incomplete samples from the
uniform AR(1) process.

Generally speaking, limit theorems are essential for understanding the real content of the concept
of probability. Extreme value theory is very well-developed branch of the probability theory, dealing
with limiting distributions for extremes not only of independent, identically distributed random variables
(classical approach), but also of certain stationary random sequences, that are weakly dependent. The
interested reader should consult the excellent book [7], for further details.

It turns out that, if a stationary sequence does not satisfy some of the weak dependence conditions, the
larger variability of the asymptotic distributional results for extrema arises. Several examples of random
sequences, for which one of the conditions of weak dependency is not fulfilled, were studied in the literature,
e.g. a uniform AR(1) process [1], [2], and, more recently, a storage process in discrete time with fractional
Brownian motion as input [10], introduced in [12].

On the other hand, properties of non-Gaussian first order linear auto-regressive models have been
investigated from different points of view. In survey of linear AR(1) models [4] there were described more
than 30 different models having linear AR(1) structure, which are very common in many areas of science
(such as time series of counts, proportions, binary outcomes, non-negative or heavy-tailed observations
etc.).

Here two types of the first-order auto-regressive process with uniform marginal distributions, one with
positive and the other with negative lag one correlation, will be considered. It will be shown that extremes
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of complete and specific partial samples from each of these two types of uniform AR(1) process manifest
different asymptotic behavior. However, the interesting extremal properties of this process, related to the
partial samples, are not exhausted in this paper, and could be subject to further consideration, as indicated
in conclusion.

The class of first-order auto-regressive processes with uniform marginal distributions - further referred
to as uniform AR(1) processes - was originally studied by Chernick [1]. A random process (Xn)n∈N from
this class is defined by recursive formula

Xn =
1
r

Xn−1 + εn, n ≥ 2, (1.1)

where r ≥ 2 - called parameter of this process - is a positive integer; X1 is distributed uniformly on the
interval [0, 1]; the εn’s form a sequence of i.i.d. random variables with the discrete uniform distribution on

the set
{
0,

1
r
, . . . ,

r − 1
r

}
and r.v. εn is independent of Xn−1 for each n. As a matter of fact, (Xn), defined in this

way, is a strictly stationary random sequence with Xn distributed uniformly on the interval [0, 1] for each n.
Further properties of a uniform AR(1) process, which were established by Chernick [1], were related

to fulfilling of weak dependence conditions - Leadbetter’s [5] condition D(un) and Loynes’ [8] condition
D′(un). These two conditions are of crucial importance in extreme value theory for strictly stationary
random sequences; when they hold it is possible to obtain extremal results similar to those in classical

theory for i.i.d. sequences. Namely, he showed that D(un) is satisfied, but D′(un) fails, with un = 1 −
x
n

,
x > 0.

Due to the fact that a uniform AR(1) process does not satisfy the condition D′(un) (under this condition
clustering of extremes is restricted) some interesting extremal properties of this process have been expected.

Let Mn be the maximum of the first n terms of the sequence (Xn), i.e. Mn = max{X1,X2, . . . ,Xn}. Chernick
[1] derived a limit theorem for the r.v. Mn. Suppose, further, that some of the random variables X1,X2, . . . ,Xn
can be observed. Thus shows up partial sample consisted of observed terms amongst first n terms of the

sequence (Xn). Let (cn)n∈N be a non-random 0 − 1-sequence, such that lim
n→+∞

1
n

n∑
j=1

c j = p, 0 < p < 1. This

sequence of degenerate random variables is introduced with the purpose to correspond to the sequence (Xn)
in the following sense: r.v. Xk is observed if ck = 1, otherwise r.v. Xk is not observed (missing observation).
The already mentioned partial sample is simply the set {Xk : ck = 1, 1 ≤ k ≤ n}; denote its maximum term
by M̃n.

As remarked earlier, the condition D′(un) is not satisfied for uniform AR(1) process (Xn) and that is
the main reason why the general result stated in Theorem 3.2. in Mladenović and Piterbarg [10], p. 1981,
concerning the limiting distribution of the random vector (M̃n,Mn), as n→ +∞, does not apply. Considering
this process Mladenović [9] found out that for some values un < vn, events {M̃n ≤ un} and {Mn ≤ vn} are
asymptotically independent, while for other values un < vn the same events can be asymptotically perfectly
dependent; recently, Mladenović and Živadinović [11] also proved that the limiting distribution of the
random vector (M̃n,Mn), as n→ +∞, is not uniquely determined by the limit value p.

One of the new results contained in this article, in Section 2, is a limit theorem for the random vector
(M̃n,Mn), for three special choices of partial sample.

The other two new limit theorems, that will be presented in Section 3, deal with partial samples from
a negatively correlated uniform AR(1) process. This process appeared for the first time in Chernick and
Davis [2], where, actually, the existence of negatively correlated uniform sequences was shown.

Let r ≥ 2 be a positive integer; the class of strictly stationary auto-regressive processes with uniform

marginal distributions and lag one correlation equal to −
1
r

are obtained in the following way. A random
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process (Xn)n∈N from this class is defined by recursive formula

Xn = −
1
r

Xn−1 + εn, n ≥ 2, (1.2)

where X1 is distributed uniformly on the interval [0, 1]; εn’s form a sequence of i.i.d. random variables with

the discrete uniform distribution on the set
{1

r
,

2
r
, . . . , 1

}
and r.v. εn is independent of Xn−1 for each n ≥ 2.

Chernick and Davis [2] concluded that for a negatively correlated uniform AR(1) process the condition
D(un) holds, and, regarding the extremal properties, they derived a limit theorem for the maximum term of
the process. From the formulation of Theorem 3.1. [2], p. 87, it is obvious that the maximum of this random

sequence behaves as if it corresponds to a uniform AR(1) process with
1
r2 as the lag one correlation.

After the theoretical results, in the last part of this article, results of some numerical simulations will be
listed (Section 4) and a brief summary of existing results and still open questions will be given (Section 5).

2. The limit theorem - uniform AR(1) process

Let (Xn)n∈N be the uniform AR(1) process with the parameter r and let
(
c(1)

n

)
n∈N

,
(
c(2)

n

)
n∈N

,
(
c(3)

n

)
n∈N

be
three non-random 0 − 1-sequences such that:

c(1)
n = 1 if n = 3m; c(1)

n = 0 if n = 3m − 2 or n = 3m − 1, m ∈N;

c(2)
n = 1 if n = 3m − 1; c(2)

n = 0 if n = 3m − 2 or n = 3m, m ∈N;

c(3)
n = 1 if n = 3m − 2; c(3)

n = 0 if n = 3m − 1 or n = 3m, m ∈N;

the maximum of the complete sample X1,X2, . . . ,Xn is, as usual, denoted by Mn; the maximum of the
sub-sample of the complete sample, determined by the corresponding sequence

(
c(i)

n

)
, is denoted by M̃(i)

n ,

i.e. M̃(i)
n := max

{
Xk : c(i)

k = 1, 1 ≤ k ≤ n
}
, i ∈ {1, 2, 3}.

Theorem 2.1. For every i ∈ {1, 2, 3}:

• if 0 < y ≤
x
r2 , then lim

n→+∞
P
{
M̃(i)

n ≤ 1 −
x
n
,Mn ≤ 1 −

y
n

}
= e−

r3
−1

3r3 x,

• if 0 <
x
r2 < y ≤

x
r

, then lim
n→+∞

P
{
M̃(i)

n ≤ 1 −
x
n
,Mn ≤ 1 −

y
n

}
= e−

r2
−1

3r2 x− r−1
3r y,

• if 0 <
x
r
< y ≤ x, then lim

n→+∞
P
{
M̃(i)

n ≤ 1 −
x
n
,Mn ≤ 1 −

y
n

}
= e−

r−1
3r x− 2(r−1)

3r y.

Proof.
The proof proceeds in the same manner as the one of Theorem 2.1. in Mladenović and Živadinović [11].
Therefore, it is more convenient to omit the proof here.

Remark 1. In the formulation of the Theorem 2.1, the remaining case when 0 < x < y was intentionally omitted,

because if 0 < x < y then the level 1−
x
n

is greater than the level 1−
y
n

. Hence, Mn ≤ 1−
y
n

implies M̃(i)
n ≤ 1−

y
n
< 1−

x
n

,

so that intersection
{
M̃(i)

n ≤ 1 −
x
n
,Mn ≤ 1 −

y
n

}
of these two events is just the latter one. Theorem 4.1. in Chernick

[1], p. 147, applies.

Remark 2. Between these three sequences
(
c(i)

n

)
, i ∈ {1, 2, 3}, certain relationship can be established: if e.g.

(
c(1)

n

)
is

taken as, so to say, the basic one, then terms of the other two sequences can be expressed as: c(2)
n = c(1)

n+1 and c(3)
n = c(1)

n+2,
for all n ∈N.
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3. The limit theorems - negatively correlated uniform AR(1) process

Let (Xn)n∈N be the negatively correlated uniform AR(1) as defined above by (1.2). Designate, as before,
by Mn the maximum of the first n terms of this random sequence and by M̃n the maximum on subset of
observed terms among the first n terms. A term Xk, k ∈ N, is observed if ck = 1; (cn)n∈N is a non-random
0 − 1-sequence.

The main aim is again to determine the limiting distribution of the random vector (M̃n,Mn) for some
particular partial samples. For the same reason indicated in the Remark 1. all considerations will be focused
on the case 0 < y ≤ x. Otherwise, Theorem 3.1. in Chernick and Davis [2], p. 87, applies.

Theorem 3.1. Let (cn)n∈N be the sequence given by:

cn = 1 if n = 2m; cn = 0 if n = 2m − 1, m ∈N. (3.1)

If 0 < y ≤ x, then lim
n→+∞

P
{
M̃n ≤ 1 −

x
n
,Mn ≤ 1 −

y
n

}
= e−

r2
−1

2r2 x− r2
−1

2r2 y.

Remark 3. Proofs of the Theorem 3.1. and the next theorem - Theorem 3.2. follow the same reasoning. Therefore,
only the latter theorem will be derived in details.

Theorem 3.2. Let (cn)n∈N be the sequence given by:

cn = 1 if n = 4m − 1 or n = 4m; cn = 0 if n = 4m − 3 or n = 4m − 2, m ∈N. (3.2)

• If 0 < y ≤
x
r2 , then lim

n→+∞
P
{
M̃n ≤ 1 −

x
n
,Mn ≤ 1 −

y
n

}
= e−

r4
−1

2r4 x,

• if 0 <
x
r2 < y ≤ x, then lim

n→+∞
P
{
M̃n ≤ 1 −

x
n
,Mn ≤ 1 −

y
n

}
= e−

r2
−1

2r2 x− r2
−1

2r2 y.

Proof.
The following notation will be used:

am := P
{
M̃4m ≤ 1 −

x
n
,M4m ≤ 1 −

y
n

}
. (3.3)

The first step is to determine am for 0 < y ≤ x, sufficiently large n and some 4m < n.

Note that the event
{
M̃4m ≤ 1 −

x
n
,M4m ≤ 1 −

y
n

}
is equivalent to the event (intersection of 4m events):

{
X4i−3 ≤ 1 −

y
n
,X4i−2 ≤ 1 −

y
n
,X4i−1 ≤ 1 −

x
n
,X4i ≤ 1 −

x
n
, i = 1, 2, . . . ,m

}
. (3.4)

Use the recurrence relation (1.2) from the definition of the negatively correlated uniform AR(1) process to
obtain:

Xi =
(
−

1
r

)i−1

X1 +

i∑
j=2

(
−

1
r

)i− j

ε j, i ≥ 2. (3.5)

In this way all events in (3.4) can be expressed in terms of the r.v. X1 and random variables from the
sequence (εn), so inserting the equations (3.5) to the expression am and doing some rearrangements leads to:

am = P
{
X1 ≤ 1 −

y
n
,X1 ≥ −r + rε2 +

ry
n
,X1 ≤ r2 + rε2 − r2ε3 −

r2x
n
,X1 ≥ −r3 + rε2 − r2ε3 + r3ε4 +

r3x
n
,
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X1 ≤ r4i−4 +

4i−3∑
j=2

(−1) jr j−1ε j −
r4i−4y

n
,

X1 ≥ −r4i−3 +

4i−2∑
j=2

(−1) jr j−1ε j +
r4i−3y

n
,

X1 ≤ r4i−2 +

4i−1∑
j=2

(−1) jr j−1ε j −
r4i−2x

n
,

X1 ≥ r4i−1 +

4i∑
j=2

(−1) jr j−1ε j +
r4i−1x

n
, i = 2, 3, . . . ,m

}
.

After that the law of total probability can be applied, conditioning on (4m− 1) random variables ε2, . . . , ε4m;
assumptions made about these random variables should be exploited (recall (εn) is sequence of i.i.d. random
variables with the discrete uniform distribution). Here it is convenient to take notice of the following, of

course when n is large enough so that
r4m

x
,

r4m−2

y
∈ (0, 1):

– the event Ai :=

X1 ≤ r4i−4 +

4i−3∑
j=2

(−1) jr j−1ε j −
r4i−4y

n

 is non-trivial when all random variables with

even indexes, ε2, ε4, . . . , ε4i−4, take value
1
r

, and, at the same time, all random variables with odd

indexes, ε3, ε5, . . . , ε4i−3, take value 1 - if this is the case Ai becomes
{

X1 ≤ 1 −
r4i−4y

n

}
, 2 ≤ i ≤ m;

– the event Bi :=

X1 ≥ −r4i−3 +

4i−2∑
j=2

(−1) jr j−1ε j +
r4i−3y

n

 is non-trivial when all random variables with

even indexes, ε2, ε4, . . . , ε4i−2, take value 1, and, at the same time, all random variables with odd

indexes, ε3, ε5, . . . , ε4i−3, take value
1
r

- if this is the case Bi becomes
{

X1 ≥
r4i−3y

n

}
, 1 ≤ i ≤ m;

– the event Ci :=

X1 ≤ r4i−2 +

4i−1∑
j=2

(−1) jr j−1ε j −
r4i−2x

n

 is non-trivial when all random variables with

even indexes, ε2, ε4, . . . , ε4i−2, take value
1
r

, and, at the same time, all random variables with odd

indexes, ε3, ε5, . . . , ε4i−1, take value 1 - if this is the case Ci becomes
{

X1 ≤ 1 −
r4i−2x

n

}
, 1 ≤ i ≤ m;

– the event Di :=

X1 ≥ r4i−1 +

4i∑
j=2

(−1) jr j−1ε j +
r4i−1x

n

 is non-trivial when all random variables with

even indexes, ε2, ε4, . . . , ε4i, take value 1, and, at the same time, all random variables with odd indexes,

ε3, ε5, . . . , ε4i−1, take value
1
r

- if this is the case Di becomes
{

X1 ≥
r4i−1x

n

}
, 1 ≤ i ≤ m.

Depending on which values the random variables ε2, . . . , ε4m take, it can be proceeded with reducing the
number of events of the form {X1 ≤ un} or {X1 ≥ vn} within the intersections and thus simplifying, as
much as possible, the expression am. At this point it should be obvious that two separate cases have to
be distinguished, because am will be different if 0 < r2y ≤ x or 0 < y ≤ x < r2y. Finally, in both cases all
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probabilities will be calculated using the fact that X1 is distributed uniformly on [0, 1] - the required concise
equation for am in each case is obtained.

Case 0 < r2y ≤ x.
For such values x and y and 1 ≤ i ≤ m − 1:{

X1 ≤ 1 −
r4i−2x

n

}
⊆

{
X1 ≤ 1 −

r4iy
n

}
, since 1 −

r4iy
n
≥ 1 −

r4i−2x
n

,

{
X1 ≥

r4i−1x
n

}
⊆

{
X1 ≥

r4i+1y
n

}
, since

r4i−1x
n
≥

r4i+1y
n

.

Therefore, after grouping:

am =
r4m−3(r(r − 1) − 1)

r4m−1 P
{
X1 ≤ 1 −

y
n

}
+

r(r4
− 1)

r4m−1

m−1∑
i=1

r4(m−1−i)P
{
X1 ≤ 1 −

r4i−2x
n

}
+

r
r4m−1 P

{
X1 ≤ 1 −

r4m−2x
n

}
+

r4m−4(r2
− 1)

r4m−1 P
{
X1 ≤ 1 −

y
n
,X1 ≥

ry
n

}
+

r4
− 1

r4m−1

m−1∑
i=1

r4(m−1−i)P
{
X1 ≤ 1 −

y
n
,X1 ≥

r4i−1x
n

}
+

1
r4m−1 P{X1 ≤ 1 −

y
n
,X1 ≥

r4m−1x
n

}
,

and further:

am =
r2
− r − 1

r2

(
1 −

y
n

)
+

r4
− 1
r2

m−1∑
i=1

1
r4i

(
1 −

r4i−2x
n

)
+

1
r4m−2

(
1 −

r4m−2x
n

)

+
r2
− 1
r3

(
1 −

y
n
−

ry
n

)
+

r4
− 1
r3

m−1∑
i=1

1
r4i

(
1 −

y
n
−

r4i−1x
n

)
+

1
r4m−1

(
1 −

y
n
−

r4m−1x
n

)
.

Computing partial sums in the previous expression leads to:

am = 1 −
(

2(r4
− 1)

r4 (m − 1) + 2
)
·

x
n
−

2(r2
− 1)

r2 ·
y
n

;

if m→ +∞ and k :=
[ n
4m

]
→ +∞, as n→ +∞, then the following equality holds:

lim
n→+∞

ak
m = e−

r4
−1

2r4 x. (3.6)

Case 0 < y ≤ x < r2y.
For such values x and y and 1 ≤ i ≤ m − 1:{

X1 ≤ 1 −
r4i+2x

n

}
⊆

{
X1 ≤ 1 −

r4iy
n

}
⊆

{
X1 ≤ 1 −

r4i−2x
n

}
,

{
X1 ≥

r4i+1x
n

}
⊆

{
X1 ≥

r4i+1y
n

}
⊆

{
X1 ≥

r4i−1x
n

}
.

Therefore, after grouping:

am =
r4m−3(r(r − 1) − 1)

r4m−1 P
{
X1 ≤ 1 −

y
n

}
+

r(r2
− 1)

r4m−1

m−1∑
i=1

r4(m−1−i)P
{
X1 ≤ 1 −

r4iy
n

}
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+
r3(r2

− 1)
r4m−1

m−1∑
i=1

r4(m−1−i)P
{
X1 ≤ 1 −

r4i−2x
n

}
+

r
r4m−1 P

{
X1 ≤ 1 −

r4m−2x
n

}
+

r4(r2
− 1)

r4m−1

m∑
i=1

r4(m−1−i)P
{
X1 ≤ 1 −

y
n
,X1 ≥

r4i−3y
n

}
+

r2(r2
− 1)

r4m−1

m−1∑
i=1

r4(m−1−i)P
{
X1 ≤ 1 −

y
n
,X1 ≥

r4i−1x
n

}
+

1
r4m−1 P{X1 ≤ 1 −

y
n
,X1 ≥

r4m−1x
n

}
,

and proceeding similarly as above leads to:

am = 1 −
(

2(r2
− 1)

r2 (m − 1) + 2
)
·

x
n
−

2(r2
− 1)

r2 m ·
y
n

;

if m→ +∞ and k :=
[ n
4m

]
→ +∞, as n→ +∞, then the following equality holds:

lim
n→+∞

ak
m = e−

r2
−1

2r2 x− r2
−1

2r2 y. (3.7)

The last step consists in using standard arguments as in [9], p. 1419, and the fact that two level mix-
ing condition is satisfied, and the statement of the Theorem 3.2. follows straightforward.

4. Numerical simulations

After having obtained the preceding theoretical results computer simulations were performed. For this
purpose functions, written in statistical software, were executed for different suitable arguments.

There were made NS simulations of the first n terms of the random sequence (Xn) and counted the

number of the realizations of the event
{
M̃n ≤ 1−

x
n
,Mn ≤ 1−

y
n

}
, for some values of x and y. Hence, it was

possible to get an estimate P̂ = P̂(x, y) of the probability of this event (P̂ was computed simply as a ratio of
the number of realizations of this event and NS). Described procedure was used several times so several
estimates P̂ j = P̂ j(x, y) were obtained.

Of course, the direct comparison of estimated probabilities P̂ j(x, y) to those calculated by using the
equations from the limit theorems - further labeled with G(x, y), was possible, as shown in tables below.
The following three tables are associated with examples of partial samples, that appear in the Theorem 2.1,
3.1, 3.2, respectively.

In order to illustrate the quality of results obtained from simulation runs the maximum absolute differ-
ences of limiting and estimated probabilities are computed.



L. Glavaš / Filomat 29:10 (2015), 2289–2299 2296

Table 1: The examples of partial samples determined by the sequences
(
c(i)

n

)
, i ∈ {1, 2, 3}, as in the Theorem 2.1.

r = 2, NS = 5000, n = 12000

x y G(x, y) P̂(1)
1 P̂(1)

2 P̂(1)
3 P̂(2)

1 P̂(2)
2 P̂(2)

3 P̂(3)
1 P̂(3)

2 P̂(3)
3

1 0.8 0.6483443 0.6492 0.6484 0.6556 0.6532 0.6552 0.6486 0.6292 3 0.6440 0.6518

1 0.6 0.6930406 0.6912 0.6944 0.6938 0.6938 0.6778 2 0.6918 0.6872 0.6850 0.7088

1 0.4 0.7285736 0.7284 0.7304 0.7262 0.7352 0.7308 0.7366 0.7264 0.7112 0.7246

1 0.3 0.7408182 0.7456 0.7474 0.7434 0.7332 0.7360 0.7342 0.7540 0.7412 0.7284

1 0.2 0.7470175 0.7394 0.7344 1 0.7388 0.7548 0.7400 0.7424 0.7484 0.7352 0.7394

1 0.1 0.7470175 0.7550 0.7436 0.7518 0.7502 0.7396 0.7498 0.7410 0.7438 0.7360

The maximum absolute differences (that appear for the values in shaded cells of the table) are:

1 max
x,y, j

∣∣∣∣G(x, y) − P̂(1)
j

∣∣∣∣ = 0.0126175

2 max
x,y, j

∣∣∣∣G(x, y) − P̂(2)
j

∣∣∣∣ = 0.0152406

3 max
x,y, j

∣∣∣∣G(x, y) − P̂(3)
j

∣∣∣∣ = 0.0191443.

Table 2: The example of partial sample determined by the sequence (cn), defined by (3.1)

r = 2, NS = 5000, n = 10000

x y G(x, y) P̂1 P̂2 P̂3 P̂4 P̂5

1 0.8 0.5091564 0.5134 0.5056 0.5028 0.5144 0.4946

1 0.4 0.5915554 0.5898 0.5800 0.5970 0.5918 0.6026

1 0.2 0.6376282 0.6408 0.6324 0.6346 0.6422 0.6308

1 0.1 0.6619932 0.6468 0.6604 0.6568 0.6676 0.6696

2 1.6 0.2592403 0.2642 0.2590 0.2580 0.2494 0.2662

2 0.8 0.3499377 0.3536 0.3394 0.3446 0.3664 1 0.3456

2 0.4 0.4065697 0.4142 0.3950 0.4174 0.4122 0.4210

2 0.2 0.4382350 0.4310 0.4332 0.4340 0.4304 0.4290

The maximum absolute difference (that appears for the value in shaded cell of the table) is:

1 max
x,y, j

∣∣∣∣G(x, y) − P̂ j

∣∣∣∣ = 0.0164623.
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Table 3: The example of partial sample determined by the sequence (cn), defined by (3.2)

r = 2, NS = 5000, n = 10000

x y G(x, y) P̂1 P̂2 P̂3 P̂4 P̂5

1 0.8 0.5091564 0.5060 0.5170 0.4946 0.4996 0.5000

1 0.4 0.5915554 0.5922 0.6012 0.5964 0.5944 0.5930

1 0.2 0.6257840 0.6272 0.6282 0.6130 0.6202 0.6264

1 0.1 0.6257840 0.6236 0.6154 0.6278 0.6318 0.6300

2 1.6 0.2592403 0.2548 0.2628 0.2382 1 0.2716 0.2612

2 0.8 0.3499377 0.3620 0.3438 0.3570 0.3436 0.3626

2 0.4 0.3916056 0.3966 0.4042 0.3954 0.3954 0.3874

2 0.2 0.3916056 0.3978 0.3912 0.3836 0.3994 0.3772

The maximum absolute difference (that appears for the value in shaded cell of the table) is:

1 max
x,y, j

∣∣∣∣G(x, y) − P̂ j

∣∣∣∣ = 0.0210403.

5. Discussion and conclusions

1. The Theorem 2.1. shows that the limiting distribution of random vector, whose components are
maximum of partial (aforementioned - specific, regular) sample and maximum of the whole sample,
remains the same even if the indexes of observed random variables are, so to say, translated by one or two
places (see Remark 2).

2. The non-random 0 − 1-sequences (cn)n∈N, defined by (3.1) and (3.2), that determine partial samples
from negatively correlated uniform AR(1) process in the Theorem 3.1. and the Theorem 3.2, have already
been used in Theorem 3.1. [9], p. 1415, and in Theorem 2.1. [11], respectively, also for determining partial
samples, but from ordinary uniform AR(1) process. Comparing the new limit results for the random vector
(M̃n,Mn) with those previous ones, the following can be noted:

� if (cn) is defined by (3.1) and

– the underlying random sequence (Xn) is negatively correlated uniform AR(1) process - for all
values x and y such that 0 < y ≤ x, the limiting distribution of (M̃n,Mn) is the one from the
Theorem 3.1; the events

{
M̃n ≤ 1 − x/n

}
and

{
Mn ≤ 1 − y/n

}
are asymptotically independent

– the underlying random sequence (Xn) is ordinary uniform AR(1) process - the region in R2 that
consists of all the points (x, y), such that 0 < y ≤ x, splits in two parts - in this parts appear
different expressions for the limiting probability; the events

{
M̃n ≤ 1 − x/n

}
and

{
Mn ≤ 1 − y/n

}
are asymptotically independent if 0 < x/r < y ≤ x, and if 0 < y ≤ x/r these two events are
asymptotically perfectly dependent;

� if (cn) is defined by (3.2) and

– the underlying random sequence (Xn) is negatively correlated uniform AR(1) process - the
limiting distribution of (M̃n,Mn) is the one from the Theorem 3.2; the events

{
M̃n ≤ 1 − x/n

}
and{

Mn ≤ 1 − y/n
}

are asymptotically independent if 0 < x/r2 < y ≤ x, and if 0 < y ≤ x/r2 these two
events are asymptotically perfectly dependent
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– the underlying random sequence (Xn) is ordinary uniform AR(1) process - the region in R2 that
consists of all the points (x, y), such that 0 < x/r2 < y ≤ x, splits in two parts - in this parts and
in the region where 0 < y ≤ x/r2 appear different expressions for the limiting probability; the
events

{
M̃n ≤ 1 − x/n

}
and

{
Mn ≤ 1 − y/n

}
are asymptotically independent if 0 < x/r2 < y ≤ x,

and if 0 < y ≤ x/r2 these two events are asymptotically perfectly dependent.

This is shown on the illustrations below. In the regions labeled with D1 Chernick’s limit results apply; in the
regions labeled with D3 the asymptotic perfect dependence is present while the asymptotic independence
appears in the regions labeled with D2; the region where the events are also asymptotically independent,
but the expression for the limiting probability differs from the one in the region labeled with D2, is labeled
with D4.

(a) negatively corr. uniform AR(1) process (b) ordinary uniform AR(1) process

Figure 1: The example of partial sample determined by the sequence (cn), defined by (3.1); r = 2

(a) negatively corr. uniform AR(1) process (b) ordinary uniform AR(1) process

Figure 2: The example of partial sample determined by the sequence (cn), defined by (3.2); r = 2

3. It turned out that computer simulations provide quite good approximations of the limiting probability
lim

n→+∞
P
{
M̃n ≤ 1 − x/n,Mn ≤ 1 − y/n

}
. At the same time, writing functions (in statistical software) for this
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purpose is not too complicated. Therefore, numerical simulations may prove very useful and, in the
situations in which theoretical results are not available, even indispensable.

4. The question about determining (a class of) limiting distributions of the random vector (M̃n,Mn),
when partial sample of observed random variables from the uniform AR(1) process is determined by the
sequence (In) of indicator random variables instead by the non-random 0− 1-sequence (cn), is still open. At
this point just approximations of limiting probabilities can be made, using computer simulations.
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