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On Asymptotic Efficiency of Goodness of Fit Tests for Pareto
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Abstract. In this paper we present a characterization for Pareto distribution. We propose two new
goodness of fit tests based on this characterization and two tests based on Rossberg’s characterization. We
calculate their Bahadur efficiencies against different alternatives and compare the tests. We also find a class
of locally optimal alternatives for each test.

1. Introduction

The Pareto distribution plays a very important role in probability and statistics. It is used to model
various quantities in economics, finance, actuaries, hydrology and many other fields. One of the most
important tasks in those applications is to ensure that the Pareto distribution is the appropriate for modeling,
since in many situations it is important to realize whether the underlying distribution is Pareto or some
other strongly skewed to the right. This is usually checked using goodness of fit tests.

A characterization of a family of distributions is a property that is true only for that family. See [6] for
more on characterizations and [7] for characterizations of Pareto distribution. Since the characterizations are
a good way to distinguish one family from the others, they are useful in goodness-of fit testing. However,
creating tests based on characterizations is relatively new and recently popular approach in goodness of
fit testing theory. Such tests are often free of some parameters and thus suitable for testing composite
hypotheses. Some examples of such tests can be found in [1], [4], [11], [17]. The asymptotic efficiency of the
exponentiality tests based on a characterization have been studied in [13], [16], [23], and for power function
distribution in [24]. Asymptotic efficiency of tests for Pareto distribution based on a characterization are
studied in [18].

The structure of the paper is the following. In section 2 we present the characterization theorems and
propose four test statistics. In section three we study the asymptotic behaviour of integral type test statistics.
We find the Bahadur efficiency of the tests against some common alternatives. We also find a class of locally
optimal alternatives. In section 4 we do the analogous study for Kolmogorov-Smirnov type statistics. In
section 5 we compare the Bahadur efficiencies of our new tests among each other and with some other tests
based on different characterization.
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2. The characterizations and the test statistics

Let P be the family of Pareto distributions with the distribution function

F(x) = 1 − x−α, x ≥ 1, α > 0.

We are going to test the composite null hypohesis F ∈ P against F < P.
Let X(k;n) be the k th order statistic of the sample of size n.
We now present two characterization theorems we will use to make our tests.

Theorem 2.1 (Rossberg,1972). Let X1, . . . ,Xn be non-negative i.i.d random sample. If for some j statistics
X( j+1;n)/X( j;n) and X(1;n− j) are identically distributed, then X belongs to the family P.

The proof can be found in [20]. We will use this characterization for special case of n = 3 and j = 1.

Theorem 2.2. Let X1,X2 and X3 be i.i.d. non-negative absolutely continuous random variables with strictly mono-
tone distribution function and monotonically increasing or decreasing hazard function. Then, X(3;3)/X(2;3) and
(X(2;3)/X(1;3))2 have the same distribution if and only if the distribution of X belongs to the family P.

Proof. Let Yk = ln Xk, k = 1, 2, 3. Since the logarithm is a monotonous transformation, then the statement
of the theorem can be reformulated that Y(3;3) − Y(2;3) and 2(Y(2;3) − Y(1;3)) have the same distribution. This
is a particular case of theorem of [2] (for k = 3, i = 1 and j = 2), where it was proven that this property
charaterizes the exponential distribution with some parameter α. Thus our theorem characterizes the Pareto
distribution with the same parameter α. �

The reason for choosing these special cases of characterization theorems for building our test statistics
is that they are the simplest and thus convenient for practical applications of the tests. We chose to present
these two characterizations since they are similar in the sense that they are based on ratio of consecutive
order statistics.

Let (X1, . . . ,Xn) be a sample from non-negative continuous distribution F. Let Fn(t) be the usual empirical
distribution function. Following Rossberg’s characterization theorem 2.1, we introduce some so-called V-
empirical distribution functions:

Gn(t) = n−3
n∑

i=1

n∑
j=1

n∑
k=1

I{X(2),Xi,X j,Xk/X(1),Xi,X j,Xk ≤ t}, t ≥ 1

and

Hn(t) = n−2
n∑

i=1

n∑
j=1

I{min{Xi,X j} ≤ t}, t ≥ 1,

where X(l),Xa,Xb,Xc , l = 1, 2 is the lth order statistic within sample (Xa,Xb,Xc).
We now introduce two tests statistics:

I[1]
n =

∞∫
1

(Gn(t) −Hn(t))dFn(t)

D[1]
n = sup

t≥1
|Gn(t) −Hn(t)|.

Based on the characterization from theorem 2.2 we define in the analogous way the V-empirical distri-
bution functions:
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Jn(t) = n−3
n∑

i=1

n∑
j=1

n∑
k=1

I{X(3),Xi,X j,Xk/X(2),Xi,X j,Xk ≤ t}, t ≥ 1

and

Kn(t) = n−3
n∑

i=1

n∑
j=1

n∑
k=1

I{(X(2),Xi,X j,Xk/X(1),Xi,X j,Xk )
2
≤ t}, t ≥ 1,

and the corresponding test statistics:

I[2]
n =

∞∫
1

(Jn(t) − Kn(t))dFn(t)

D[2]
n = sup

t≥1
|Jn(t) − Kn(t)|.

For all our tests we consider large values of test statistics to be significant.

3. Integral type statistics

In this section we examine the properties of integral statistics I[1]
n and I[2]

n .
Without loss of generality we may assume that α = 1. The statistics I[1]

n is a V-statistic with the following
kernel:

Υ[1](X1,X2,X3,X4) =
1
4

∑
π( j1, j2, j3, j4)

I{X(2);X j1 ,X j2 ,X j3
/X(1);X j1 ,X j2 ,X j3

≤ X j4 } −
1
12

∑
π( j1, j2, j3)

I{min{X j1 ,X j2 } ≤ X j3 }

where π( j1, j2, j3, j4) is the set of all permutations of the set {1, 2, 3, 4} and π( j1, j2, j3) is set of all 3-
permutations of the same set.

The projection of this kernel under null Pareto hypothesis is

υ[1](s) = E(Υ[1](X1,X2,X3,X4)|X1 = s)

=
1
4

P{X(2);X2,X3,X4/X(1);X2,X3,X4 ≤ s} +
3
4

P{X(2);s,X2,X3/X(1);s,X2,X3 ≤ X4}

−
1
4

P{min{X2,X3} ≤ X4} −
1
4

P{min{X2,X3} ≤ s} −
1
2

P{min{s,X2} ≤ X3}.

The first and the fourth term are equal due to the theorem 2.1 so we get

υ[1](s) =
3
4

(2P{s < X2 < X3,
X2

s
≤ X4} + 2P{X2 < s < X3,

s
X2
≤ X4} + 2P{X2 < X3 < s,

X3

X2
≤ X4})

−
1
2

(1 − P{s > X2 > X3} − P{X2 > s > X3}) −
1
4
·

2
3

=
1
4

3 ln s − 1
2

s2 −
1

24
.
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It is easy to calculate that the mean of this projection is equal to zero. Its variance is

σ2
1 = Var(υ[1](X)) =

∞∫
1

(υ[1](s))2 1
s2 ds =

13
4500

. (1)

Since the variance of this projection is positive, the kernel Υ(X1,X2,X3,X4) is non-degenerate, so we can
apply Hoeffding theorem for U and V statistics with non-degenerate kernels, see [8]. We get the following
asymptotic distribution:

√
nI[1]

n
d
→N

(
0,

52
1125

)
.

The statistic I[2] is the V-statistic with the kernel

Υ[2](X1,X2,X3,X4) =
1
4

∑
π( j1, j2, j3, j4)

I{X(3);X j1 ,X j2 ,X j3
/X(2);X j1 ,X j2 ,X j3

≤ X j4 }

−
1
4

∑
π( j1, j2, j3, j4)

I{(X(2);X j1 ,X j2 ,X j3
/X(1);X j1 ,X j2 ,X j3

)2
≤ X j4 }.

Its projection under null hypothesis is

υ[2](s) = E(Υ[2](X1,X2,X3,X4)|X1 = s)

=
1
4

P{X(3);X2,X3,X4/X(2);X2,X3,X4 ≤ s} +
3
4

P{X(3);s,X2,X3/X(2);s,X2,X3 ≤ X4}

−
1
4

P{(X(2);X2,X3,X4/X(1);X2,X3,X4 )2
≤ s} −

3
4

P{(X(2);s,X2,X3/X(1);s,X2,X3 )2
≤ X4}.

The first and the third term cancel each other out due to the theorem 2.2 so we get

υ[2](s) =
3
4

(2P{s < X2 < X3,
X3

X2
≤ X4} + 2P{X2 < s < X3,

X3

s
≤ X4} + 2P{X2 < X3 < s,

s
X3
≤ X4})

−
3
4

(2P{s < X2 < X3,
(X2

s

)2

≤ X4} + 2P{X2 < s < X3,
( s

X2

)2

≤ X4} + 2P{X2 < X3 < s,
(X3

X2

)2

≤ X4})

=
3
4
·

2 ln s − 1
s

+
1
s3 −

1
4
.

The expected value of this projection is zero and its variance is

σ2
2 =

∞∫
1

(υ[2](s))2 1
s2 ds =

19
4200

.

As in the previous case, the kernel is non-degenerate and due to the Hoeffding’s theorem the asymptotic
distribution is

√
nI[2]

n
d
→N

(
0,

38
525

)
.

Since the kernels are non-degenerate we can consider instead of V-statistics I[1]
n and I[2]

n the corresponding
U-statistics with same kernels. They have the same limiting distribution and large deviation asymptotics
but U-statistics are easier for calculation.
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3.1. Bahadur efficiency
One way of measuring asymptotic efficiency is Bahadur efficiency. Its advantage over other types

of asymptotic efficiency is that it is applicable in cases where the null distribution is not normal, e.g.
Kolmogorov-Smirnov type tests.

The Bahadur theory is explained in [3], [12]. For two tests with the same null and alternative hypotheses
the asymptotic relative Bahadur efficiency is defined as the ratio of sample sizes needed to reach the same
test power when the level of significance approaches zero. It can be expressed as the ratio of Bahadur exact
slopes, provided that these functions exist.

The Bahadur exact slope (see [12]) can be evaluated as

cT(θ) = 2 f (bT(θ)), (2)

where Tn
p
−→
n→∞

bT(θ) for θ ∈ Θ1, Gn(t) = inf{Pθ{Tn < t}, θ ∈ Θ0} and f (t) = − lim
n→∞

1
n ln(1−Gn(t)) for each t from

an open interval I on which f is continuous and {bT(θ), θ ∈ Θ1} ⊂ I. For Bahadur exact slope the following
inequality holds:

cT(θ) ≤ 2K(θ),

where K(θ) is the Kullback-Leibler information number which measures the statistical distance between
the alternative and the null hypothesis. The absolute Bahadur efficiency is defined as

eT(θ) =
cT(θ)
2K(θ)

. (3)

In most cases the Bahadur efficiency is not computable for any alternative θ. However, it is possible
to calculate the limit of Bahadur efficiency when θ approaches some θ0 ∈ Θ0. This limit is called the local
asymptotic Bahadur efficiency.

Let G(x;θ) be a family of distributions such that G(x; 0) ∈ P and G(x;θ) < P for θ , 0. Then we can
reformulate our null hypothesis to be H0 : θ = 0. For close alternatives, the local asymptotic Bahadur
efficiency is

eT = lim
θ→0

cT(θ)
2K(θ)

. (4)

In what follows we shall calculate the local asymptotic Bahadur efficiency for some alternatives and
find locally optimal alternatives. Let G = {G(x;θ)} be a class of alternatives that satisfy the condition that it
is possible to differentiate along θ under integral sign in all appearing integrals. Let 1(x;θ) be a density of a

distribution which belongs toG, and let H(x) = G′θ(x; 0) and h(x) = 1′θ(x; 0). It it easy to see that
∞∫
1

h(x)dx = 0.

Let us now calculate the Bahadur exact slope for test statistic I[1]
n . The functions f(t) and bT(θ) will be

determined from the following lemmas.

Lemma 3.1. Let t > 0. For statistic I[1]
n the function f (t) is analytic for sufficiently small t > 0 and it holds

f (t) =
1125
104

t2 + o(t2), t→ 0.

Proof. Since the kernel Υ[1] is bounded, centered, and non-degenerate, applying the theorem on large
deviations for non-degenerate U-statistics (see [15], Theorem 2.3) we get the statement of the lemma. �
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Lemma 3.2. For a given alternative density 1(x;θ) whose distribution belongs to G holds

bI[1] (θ) = 4θ

∞∫
1

υ[1](x)h(x)dx + o(θ), θ→ 0. (5)

Proof. By the law of large numbers for U-statistics ([22]) we get that

bI[1] (θ) = Pθ{X(2;3)/X(1;3) ≤ X4} − Pθ{min{X1,X2} ≤ X3}

Then

bI[1] (θ) =

∞∫
1

∞∫
1

yz∫
y

6(1 − G(x;θ))1(x;θ)1(y;θ)1(z;θ)dxdydz −

∞∫
1

∞∫
x

2(1 − G(x;θ))1(x;θ)1(y;θ)dydx

= 3
(
1 −

∞∫
1

∞∫
1

(1 − G(yz;θ))2)1(y;θ)1(z;θ)dydz
)
− 2

∞∫
1

(1 − G(x;θ))21(x;θ)dx.

Since the second term is a constant its derivative is equal to zero and the first derivative of bI[1] (θ) at θ = 0 is

b′I[1] (0) = 6

∞∫
1

∞∫
1

H(yz)
y3z3 dydz − 6

∞∫
1

∞∫
1

h(y)
y2z4 dydz

= 6
( ∞∫

1

x∫
1

∞∫
x
y

h(x)
y3z3 dxdydz +

∞∫
1

∞∫
x

∞∫
1

h(x)
y3z3 dxdydz −

1
3

∞∫
1

h(y)
y2 dy

)

=

∞∫
1

h(x)
x2 (3 ln x −

1
2

)dx = 4

∞∫
1

υ[1](x)h(x)dx.

Since bI[1] (0) = 0 using Maclaurin expansion we obtain (5). �

Example 3.3. Let the alternative hypothesis be the log-Weibull distribution with distribution function

G(x;θ) = 1 − e−(ln x)θ+1
, x ≥ 1, θ ∈ (0, 1). (6)

The first derivative along θ of its density at θ = 0 is

h(x) =
α

xα+1 (−α ln x ln ln x + ln ln x + 1). (7)

From (5) and (7) we get

bI[1] (θ) = 4θ

∞∫
1

υ[1](x)
α

xα+1 (−α ln x ln ln x + ln ln x + 1)dx =
2
9
θ.

From ([18], Lemma 3.3), we get that the Kullback-Leibler upper bound can be calculated as

2K(θ) = θ2
( ∞∫

1

x2h2(x)dx −
( ∞∫

1

h(x) ln xdx
)2)

+ o(θ2), (8)
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and for log-Weibull distribution we get [18]

2K(θ) = θ2ψ′(1), (9)

where ψ(x) is digamma function. Hence, the Bahadur efficiency becomes

eI[1] =
cI[1] (θ)
2K(θ)

=
125

117ψ′(1)
≈ 0.649.

We proceed with calculation of Bahadur exact slope for statistic I[2]
n . We obtain the functions f (t) and bT(θ)

from the following lemmas. Their proofs are analogous to those of lemmas 3.1 and 3.2 so we omit them
here.

Lemma 3.4. Let t > 0. For statistic I[1]
n the function f (t) is analytic for sufficiently small t > 0 and it holds

f (t) =
525
76

t2 + o(t2), t→ 0.

Lemma 3.5. For a given alternative density 1(x;θ) whose distribution belongs to G holds

bI[2] (θ) = 4θ

∞∫
1

υ[2](x)h(x)dx + o(θ), θ→ 0. (10)

Example 3.6. Let the alternative distribution be again the log-Weibull distribution (6).
From (10) and (7) we get

bI[2] (θ) = 4θ

∞∫
1

υ[2](x)
α

xα+1 (−α ln x ln ln x + ln ln x + 1)dx =
3
4

(1 − log 2)θ,

and using (9) we get that the Bahadur efficiency is

eI[1] =
cI[2] (θ)
2K(θ)

=
4725(1 − log 2)2

608ψ′(1)
≈ 0.445.

3.2. Locally optimal alternatives
Here we study the problem of locally optimal alternatives, the alternatives for which our test statistics

attain the maximal efficiency. We shall determine some of those alternatives in the following theorem.

Theorem 3.7. Let 1(x;θ) be a density from G which also satisfies the condition

∞∫
1

x2h2(x)dx < ∞.

The alternative densities

1(x;θ) =
1
x2 + θ

(
C
υ[l](x)

x2 + D
ln x − 1

x2

)
, x ≥ 1, C > 0, D ∈ R,

for small θ are asymptotically optimal for the test based on I[l]
n , l = 1, 2.
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Proof. We shall prove the theorem for the first statistic (l = 1). For the second statistic it is equivalent.
Denote

h0(x) = h(x) −
(ln x − 1)

x2

∞∫
1

h(s) ln sds. (11)

It can be shown that this function satisfies the following equalities:

∞∫
1

h2
0(x)x2dx =

∞∫
1

x2h2(x)dx −
( ∞∫

1

h(x) ln xdx
)2

∞∫
1

υ[1](x)h0(x)dx =

∞∫
1

υ[1](x)h(x)dx.

From lemmas 3.1 and 3.2, using (1), we get that the local asymptotic efficiency is

eI[1] = lim
θ→0

cI[1] (θ)
2K(θ)

= lim
θ→0

2 · 1125
108 b2

I[1] (θ)

2K(θ)
= lim
θ→0

b2
I[1] (θ)

9σ2
12K(θ)

= lim
θ→0

9θ2
( ∞∫

1
υ[1](x)h(x)dx

)2

+ o(θ2)

9
∞∫
1

(υ[1])2(x)x2dx
(
θ2(

∞∫
1

x2h2(x)dx −
( ∞∫

1
h(x) ln xdx

)2
) + o(θ2)

)

=

( ∞∫
1
υ[1](x)h0(x)dx

)2

∞∫
1

(υ[1])2(x)x−2dx
∞∫
1

h2
0(x)x2dx

.

From Cauchy-Schwarz inequality we obtain that eI[1] = 1 if and only if h0(x) = Cυ[1](x)αx−2. Substituting this
equality in (11) we get the expression for h(x). Since h(x) for our alternatives is of such form, we complete
the proof. �

4. Kolmogorov-Smirnov type statistics

In this section we examine the asymptotic properties of Kolmogorov-Smirnov type statistics D[1]
n and

D[2]
n . As previously, we can assume α = 1. For t ≥ 1, the expression Gn(t)−Hn(t) is a V statistics with kernel

Ξ[1](X1,X2,X3, t) = I{X(2);X1,X2,X3/X(1);X1,X2,X3 ≤ t} −
1
3

(I{min{X1,X2} ≤ t} + I{min{X2,X3} ≤ t}

+ I{min{X1,X3} ≤ t}).

The projection of this kernel is

ξ[1](s, t) = E(Ξ[1](X1,X2,X3, t)|X1 = s)

= P{X(2);s,X2,X3/X(1);s,X2,X3 ≤ t} −
2
3

P{min{s,X2} ≤ t} −
1
3

P{min{X2,X3} ≤ t}

= 2P{X2 ≤ st, s ≤ X2 ≤ X3} + 2P{s ≤ X2t,X2 ≤ s ≤ X3} + 2P{X3 ≤ tX2,X2 ≤ X3 ≤ s}

−
2
3

(1 − I{s > t}P{X2 > t}) −
1
3

(1 − (P{X2 > t})2).
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After some calculations we get

ξ[1](s, t) =
t
s2 −

1
s2t2 +

1
3t2 −

1
3t

+ I{s < t}(
1
3t
−

t
s2 ).

It is easy to show that the expected value of this projection is zero. Its variance for fixed t is equal to

σ2
1(t) =

∞∫
1

(ξ[1](s, t))2s−2ds =
4

45
(t−3 + t−4

− 2t−6).

The function σ2
1(t) reaches its maximum for t1 = 1.245 and σ2

1(t2) = 0.0353. Hence, the family of kernels
Ξ[1](X1,X2,X3, t) is non-degenerate according to the argumentation [14]. The V-empirical process

ρ[1]
n (t) =

√
n(Gn(t) −Hn(t)), t ≥ 1

converges in distribution to some Gaussian process following the argumentation of [21]. The covariance of
this process is calculable but complicated, while the distribution of statistics D[1]

n is unknown.
Similarly, for fixed t ≥ 1, the expression Jn(t) − Kn(t) is a V-statistic with the kernel

Ξ[2](X1,X2,X3, t) = I{X(3);X1,X2,X3/X(2);X1,X2,X3 ≤ t} − I{(X(2);X1,X2,X3/X(1);X1,X2,X3 )2
≤ t}.

Performing analogous calculations as in the previous case we derive that the projection of this kernel is

ξ[2](s, t) =
1

s2t
(2 − 2s + s2t

1
2 − s2t − t

3
2 + 2st2

− t3 + I{s < t
1
2 }t

1
2 (t − s2) + I{s < t}t(t − s)2).

Its variance is

σ2
1(t) =

1
15

(3t−1
− 2t−

3
2 + 2t−2

− 14t−
5
2 + 13t−3

− 2t−4)

which has maximum equal to 0.0265 for t2 = 3.160. This kernel is also non-degenerate, and all the arguments
and conclusions about the asymptotic distribution of the statistic D[2]

n are equivalent to those of D[1]
n .

4.1. Bahadur efficiency

We now proceed with calculations of Bahadur efficiency for statistics D[1]
n and D[2]

n . The functions f1 and
f2 from (2) can be determined from the following theorem.

Theorem 4.1. Let a ≥ 0. Then f1(a) and f2(a) are analytic for sufficiently small a and it holds

f1(a) =
a2

18
σ2

1(t1) + o(a2) ≈ 1.58a2, a→ 0

f2(a) =
a2

18
σ2

2(t2) + o(a2) ≈ 2.10a2, a→ 0

The proof of this theorem can be found in [14]. The limit in probability of statistics D[l]
n , l = 1, 2 is determined

from the following lemma.

Lemma 4.2. For a given alternative density 1(x;θ) from G holds

bD[l] (θ) = 3θ sup
t≥1

∣∣∣∣∣
∞∫

1

ξ[l](x, t)h(x)dx
∣∣∣∣∣ + o(θ), θ→ 0. (12)
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Proof. We shall prove the theorem for the first statistics (l = 1). The other case is equivalent. Using
Glivenko-Cantelli theorem for U and V empirical distribution functions (see [9]) we get

bD[1] (θ) = sup
t≥1

∣∣∣∣∣Pθ{X(2;3)/X(1;3) ≤ t} − Pθ{min{X1,X2} ≤ t}
∣∣∣∣∣.

Denote a(θ) = Pθ{X(2;3)/X(1;3) ≤ t} − Pθ{min{X1,X2} ≤ t}. Then we have

a(θ) =

∞∫
1

tx∫
1

6(1 − G(x;θ))1(x;θ)1(y;θ)dxdy − (1 − (Pθ{X1 > t})2)

= 3

∞∫
1

(1 − G(tx;θ))21(x;θ)dx − (1 − (1 − G(t;θ))2).

The first derivative of a(θ) at θ = 0 is

a′(θ) = 6

∞∫
1

H(tx)
tx3 dx − 3

∞∫
1

h(x)
t2x2 dx +

2
t

H(t)

=
6
t

t∫
1

∞∫
1

h(y)
x3 dxdy +

6
t

∞∫
t

∞∫
y
t

h(y)
x3 dxdy − 3

∞∫
1

h(x)
t2x2 dx +

2
t

t∫
1

h(y)dy

=

∞∫
1

h(y)(−
3
t

I{y < t} +
3t
y2 I{y > t} −

3
t2y2 +

2
t

I{y < t})dy

= 3

∞∫
1

ξ[1](y; t)h(y)dy.

Applying the Maclaurin’s expansion on the function a(θ) we get the statement of the theorem. �

As in the previous section in the following example we show the calculation of Bahadur efficiency for
log-Weibull alternative.

Example 4.3. For statistic D[1]
n from (12) and (7) we get

bD[1] (θ) = 3θ sup
t≥1

∣∣∣∣∣
∞∫

1

ξ[1] 1
x2 (− ln x ln ln x + ln ln x + 1)dx

∣∣∣∣∣ = 0.4088θ

and using (9) we get that the Bahadur efficiency is

eD[1] =
cD[1] (θ)
2K(θ)

≈ 0.320.

Similarly, for statistic D[2]
n we have
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bD[2] (θ) = 3θ sup
t≥1

∣∣∣∣∣
∞∫

1

ξ[2] 1
x2 (− ln x ln ln x + ln ln x + 1)dx

∣∣∣∣∣ = 0.3309θ,

and

eD[2] =
cD[2] (θ)
2K(θ)

≈ 0.280.

4.2. Locally optimal alternatives
As in the previous section, we shall determine some of locally optimal alternatives in the following

theorem.

Theorem 4.4. Let 1(x;θ) be a density from G which also satisfies the condition

∞∫
1

x2h2(x)dx < ∞.

The alternative densities

1(x;θ) =
1
x2 + θ

(
C
ξ[l](x; tl)

x2 + D
ln x − 1

x2

)
, x ≥ 1, C > 0, D ∈ R,

where t1 = 1.245, t2 = 3.16, for small θ are asymptotically optimal for the test based on D[l]
n , l = 1, 2.

The proof is analogous to that of theorem 3.7, so we omit it here.

5. Comparison of asymptotic efficiencies

In this section we compare the Bahadur efficiencies of our tests against each other and the statistics Tn
and Vn from [18]. The common alternatives we consider for the comparison are:

• log-Weibull distribution with density

11(x;θ) = (1 + θ)x−1(ln x)θe−(ln x)1+θ
, x ≥ 1, θ ∈ (0, 1),

• log-gamma distribution with density

12(x; β, θ) =
(ln x)θ

x2Γ(1 + θ)
, x ≥ 1, θ ∈ (0, 1),

• distribution considered in [18] with density

13(x;θ) =
1
x2 (e−θ(ln x)β + θβ(ln x)β−1e−θ(ln x)β ), x ≥ 1, β > 1, θ ∈ (0, 1)

for β = 1.5 and β = 2,

• inverse-beta distribution with density

14(x;θ) =
1 + θ

x2

(
1 −

1
x

)θ
, x ≥ 1, θ ∈ (0, 1),
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• Pareto distribution with so-called ’tilt’ parameter (see [10]) with density

15(x;θ) =
1 + θ

(x + θ)2 , x ≥ 1, θ ∈ (0, 1),

• mixture of two Pareto distributions with density

16(x; β, θ) =
1 − θ

x2 +
βθ

xβ+1 , x ≥ 1, β > 1, θ ∈ (0, 1)

for β = 1.5, β = 4 and β = 8.

The Bahadur efficiencies are presented in table 1 for integral type statistics and in table 2 for Kolmogorov-
Smirnov type.

As a general rule, we can see that, as usual, the efficiencies for integral type statistics are higher than
those of Kolmogorov-Smirnov type ones. However, the integral type tests have a drawback in the sense
that are not consistent against all alternatives and cannot be used in such circumstances. The example here
is the mixture alternative 16 against which neither of our integral type statistics is consistent since the values
of b(θ) (limit in probability under alternative 16) turn out to be negative and only (large) positive values of
tests statistics are considered significant.

We can see that each test has at least one alternative against which it can be considered reasonably
efficient. Comparing our two proposed integral type tests we can see that based on our results we cannot
decide that one is better than the other. Log-Weibull, log-gamma and inverse-beta alternatives favour test
based on I[1]

n , while the others favour I[2]
n . It is interesting to note that although the tests are based on similar

order statistics ratio characterizations, the efficiencies of the corresponding tests are quite different.
The test based on Tn seems to be the best overall, however all our tests have at least one common

alternative for which they are most efficient of the three.
For Kolmogorov-Smirnov type tests we can notice the similar pattern, but the ordering of the efficiencies

of the tests is not identical for every alternative. We can see that the test based on D[2]
n is now the most

efficient for ’tilt’ and 13 for both value of the parameters. The alternative 16 shows us an interesting
phenomenon. Depending on the value of parameter β the ordering of the tests changes and each test is the
most efficient at some point. This shows that when we suspect a contamination to be present in the sample,
we should choose the appropriate test based on the suspected ratio of the shape parameters of mixture
components. If it is high, we should choose D[1]

n , if low, D[2]
n and if moderate, Vn.

Alternative density
Statistic 11 12 13(1.5) 13(2) 14 15

I[1]
n 0.649 0.757 0.326 0.119 0.778 0.451

I[2]
n 0.445 0.277 0.610 0.486 0.244 0.737
Tn 0.821 0.788 0.618 0.338 0.777 0.800

Table 1: Bahadur efficiencies for integral type statistics

Alternative density
Statistic 11 12 13(1.5) 13(2) 14 15 16(1.5) 16(4) 16(8)

D[1]
n 0.320 0.414 0.141 0.047 0.436 0.207 0.124 0.462 0.632

D[2]
n 0.280 0.174 0.410 0.362 0.156 0.513 0.500 0.323 0.116

Vn 0.437 0.448 0.331 0.192 0.455 0.473 0.359 0.631 0.581

Table 2: Bahadur efficiencies for Kolmogorov-Smirnov type statistics
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6. Critical values and application to real data

In this section we present the critical values of our tests for small samples and give an example of real
data to see their performance.

The critical values at level of significance 0.05 are given in the table 3. They have been obtained using
Monte Carlo simulation with 10000 replicates.

n I[1]
n I[2]

n D[1]
n D[2]

n
10 0.11 0.24 0.57 0.47
20 0.08 0.14 0.37 0.29
30 0.06 0.11 0.29 0.22
40 0.05 0.09 0.25 0.19
50 0.05 0.08 0.22 0.17

100 0.03 0.05 0.15 0.11

Table 3: Critical values of the tests at level of significance 0.05

In table 4 we present the data of Norwegian fire claims from 1975 (see [5], Appendix I). This is a well-
known example of Pareto distributed data. It has often been used for demonstrating the quality of tests for
Pareto distribution. The scale parameter is considered known and equal to 500 (see e.g. [19]).

500 550 586 620 680 798 927 1038 1291 1515 2497 4585
500 550 593 622 700 800 940 1041 1293 1519 2690 4810
500 551 596 632 725 800 940 1104 1298 1587 2760 6855
502 552 596 635 728 800 948 1108 1300 1700 2794 7371
515 557 600 635 736 826 957 1137 1305 1708 2886 7772
515 558 600 640 737 835 1000 1143 1327 1820 2924 7834
528 570 600 650 740 862 1002 1180 1387 1822 2953 13000
530 572 605 650 748 885 1009 1243 1455 1848 3289 13484
530 574 610 650 752 900 1013 1248 1475 1906 3860 17237
530 579 610 650 756 900 1020 1252 1479 2110 4016 52600
540 583 613 672 756 910 1024 1280 1485 2251 4300
544 584 615 674 777 912 1033 1285 1491 2362 4397

Table 4: Norwegian Fire Claims (1975) (1000 Norwegian Krones)

We test the data at level of significance 0.05. The p-values of our tests are given below.

test I[1]
n I[2]

n D[1]
n D[2]

n
p-value 0.58 0.59 0.66 0.96

As we can see, all our tests do not reject the null Pareto hypothesis.

7. Conclusion

In this paper we gave a characterization of Pareto distribution. We also proposed four new goodness of
fit tests, two of them based on this characterization and two more based on Rossberg’s characterization. All
tests are free of shape parameter which enables us to test a composite null hypothesis without estimating
it.

The Bahadur efficiencies for some common alternatives have been calculated and quite a few of them
are reasonably high. Also, for each test we found a class of locally optimal alternatives against which the
test is asymptotically optimal.
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We compared our tests with two similar tests from [18] and we concluded that no test dominates the
others. On the contrary, for each proposed there are common alternatives for which the test is better than
its competitors, not even taking into account locally optimal alternatives.

The conclusion is that all proposed tests can be useful in practice. There is no simple rule in deciding
which test to choose. If we do not suspect a particular alternative distribution, but only want to be sure of
our null hypothesis, then we suggest to try all proposed tests. Otherwise we should choose the test that
gives the best performance against suspected alternative distribution.
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