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Abstract. Based on the intrinsic definition of shape by functions continuous over a covering and corre-
sponding homotopy we will define proximate fundamental group. We prove that proximate fundamental
group is an invariant of pointed intrinsic shape of a space.

1. Introduction

The notion of shape was introduced by K. Borsuk in 1968 as a more appropriate tool than homotopy, for
study of spaces with a complicated local structure. In the past fifty years thousands of papers are published
concerning shape theory. One of the most important invariants of (pointed) shape are shape groups. Main
references about shape are the books of Borsuk [1] and of Mardešić and Segal [5]. The approaches in both
books are using external elements for describing shape of a space: neighborhoods in some external space
where the original space is embedded, or an inverse sequence (system) of ANRs or polyhedra.

From the early beginning of shape theory a question was raised regarding the intrinsic description of
shape of a space,i.e., construction without using external spaces.

In Felt [3] is described intrinsically a shape morphism between two compact metric spaces. In the same
paper is proved indirectly that this notion is the same with the original definition of [1]. The description
of [1] uses external spaces, namely embedding of compact metric space in Hilbert cube and considering a
sequence of continuous maps – fundamental sequence, between neighborhoods of the embedded metric
compacta.

In order to achieve an intrinsic definition, in [3] are considered nets of functions ( fV) indexed by
coverings, each function fV being continuous over a coveringV. However, the composition is not defined
and thus it is not formed category.

Using a slightly different approach, with ε - continuous functions, in Sanjurjo [6] is formed the category
by intrinsic approach.

In Shekutkovski et al. [7], using the fact that in compact metric space there exists a cofinal sequence of
finite coverings V1 � V2 � ... i.e., for every covering V there exists Vn such that Vn ≺ V, the intrinsic
shape is described by sequence of Vn - continuous functions ( fn). This approach enables easy definition
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of composition of shape morphisms and shape category, and for the first time intrinsic definition of strong
shape.

In the same paper is proved that definition of shape morphism coincides with definition of [3]. In
Shekutkovski et al. [12] and [13] is proved that categories of Sanjurjo and Shekutkovski coincide, and that
are the same with original Borsuk category for compact metric spaces.

For noncompact spaces, we cannot work with sequences. Instead, nets of functions ( fV) are used which
are indexed by coverings from the set of coverings CovX.

A generalization for noncompact spaces is given in Kieboom [4] with actually the same approach as
presented in this article, and it is shown that for paracompact spaces the obtained intrinsic shape coincides
with the notion of [5]. There, shape of a space is obtained by external approach with an inverse system
approximating original space. It is known that this approach and original Borsuk approach give the same
result for metric compacta.

In this paper we form the pointed intrinsic shape category of paracompact topological spaces based on
nets of functions indexed by all coverings. This category is playing the role of pointed homotopy category,
and we construct the first invariant of this category called proximate fundamental group.

2. Pointed homotopy over a covering

First we present some notions about collections of subsets from a fixed set. Let U and V are some
collections of subsets of the topological space X, U ≺ V means that U refines V, i.e., for any set U ∈ U
there exists a set V ∈ V such that U ⊂ V.

If U ∈ U, then the star of U is the set st(U,U) = ∪{x ∈W | ∀W ∈ U,W ∩U , ∅}.
By st(U) is denoted the collection of all st(U,U), U ∈ U, i.e., st(U) = {st(U,U) | U ∈ U}.
By a covering we understand an open covering, and the set of all coverings we denote by CovX.
Let consider two paracompact topological spaces X and Y. First we recall the definition ofV - continuous

function in [7] and [9].

Definition 2.1. LetV is a covering of Y. A function f : X→ Y isV - continuous at the point x ∈ X if there exists
a neighborhood Ux of x and V ∈ V such that f (Ux) ⊆ V.

A function f : X → Y is V - continuous on X if it is V - continuous at every point x ∈ X. In this case, the
family of all neighborhoods Ux form a coveringU of X. By this, the function f : X → Y isV - continuous on X if
there exists a coveringU of X, such that for any x ∈ X there exists a neighborhood U ∈ U of x, and V ∈ V such that
f (U) ⊆ V. We denote: there exists a coveringU such that f (U) ≺ V.

Remark 2.1. When X and Y are paracompact, it is enough to take U and V to be locally finite coverings, since
locally finite coverings are cofinal in the set of all coverings.

Now, we define the pointedV - homotopy.

Definition 2.2. Let f , 1 : (X, x0) →
(
Y, y0

)
are V - continuous functions and f (x0) = 1 (x0) = y0. We say that f

and 1 are pointedV - homotopic functions if there exists a function F : (X × I, x0 × I)→
(
Y, y0

)
such that:

(1) F is st (V) - continuous, which isV - continuous on X × ∂I, ∂I = {0, 1};
(2) F (x, 0) = f (x) and F (x, 1) = 1 (x) for all points x ∈ X;
(3) F (x0, s) = f (x0) = 1 (x0) = y0 for all points s ∈ I.

When twoV - continuous functions f and 1 are pointedV - homotopic we denote as f ∼
V

1 (rel {x0}).

Proposition 2.1. The relation of pointedV - homotopy f ∼
V

1 (rel {x0}) ofV - continuous functions is an equivalence

relation.

Proof. The proof is the same as the proof of the Proposition 2.4 in [7] about unpointed homotopy.
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Remark 2.2. The definition of V - homotopy between two functions f , 1 : X → Y in [4] (Definition 1.4, p. 703)
requires to exist only V - continuous function F : X × I → Y such that F (x, 0) = f (x) and F (x, 1) = 1 (x) for all
points x ∈ X.

However, this is not an equivalence relation, since the usual concatenation of homotopies given by the formula in
the proof of Proposition 2.4, of [7] is not always aV - continuous function!

Proposition 2.2. Let X,Y,Z are topological spaces, x0 ∈ X, y0 ∈ Y, z0 ∈ Z, 1 :
(
Y, y0

)
→ (Z, z0) isW - continuous

function andV is a covering of Y, such that 1 (V) ≺ W. If twoV - continuous functions f1, f2 : (X, x0)→
(
Y, y0

)
are pointedV - homotopic functions, i.e. f1 ∼

V

f2 (rel {x0}), then 1 ◦ f1 ∼
W

1 ◦ f2 (rel {x0}).

Proof. By the conditions of the proposition, it follows that the compositions 1 ◦ f1, 1 ◦ f2 are also W -
continuous function.

Since f1, f2 : (X, x0)→
(
Y, y0

)
are pointedV - homotopic, then there exists a function F : (X × I, x0 × I)→(

Y, y0
)

such that:

(1) F is st (V) - continuous, which isV - continuous on X × ∂I;
(2) F (x, 0) = f1 (x) and F (x, 1) = f2 (x) for all points x ∈ X;
(3) F (x0, s) = f1 (x0) = f2 (x0) = y0 for all points s ∈ I.

Let consider a function K : (X × I, x0 × I) → (Z, z0) defined by K (x, s) =
(
1 ◦ F

)
(x, s). Since 1 (V) ≺ W

implies 1 (st (V)) ≺ st (W). Also, F is st (V) - continuous there exists an open covering U, such that
F (U) ≺ st (V). We conclude that

(
1 ◦ F

)
(U) = 1 (F (U)) ≺ 1 (st (V)) ≺ st (W). Therefore, the function K is

st (W) - continuous.
Since F is V - continuous on X × ∂I, 1 (V) ≺ W and 1 isW - continuous function then it follows that

K = 1 ◦ F isW - continuous on X × ∂I.
If x ∈ X is an arbitrary point, then K (x, 0) =

(
1 ◦ F

)
(x, 0) = 1 (F (x, 0)) = 1

(
f1 (x)

)
=

(
1 ◦ f1

)
(x) and

K (x, 1) =
(
1 ◦ F

)
(x, 1) = 1 (F (x, 1)) = 1

(
f2 (x)

)
=

(
1 ◦ f2

)
(x).

Let s ∈ I is an arbitrary point, then
K (x0, s) =

(
1 ◦ F

)
(x0, s) = 1 (F (x0, s)) = 1

(
f1 (x0)

)
=

(
1 ◦ f1

)
(x0) = z0 =

(
1 ◦ f2

)
(x0).

Therefore, we showed that the functions 1◦ f1, 1◦ f2 are pointedW - homotopic, i.e., 1◦ f1 ∼
W

1◦ f2 (rel {x0}).

Proposition 2.3. Let G :
(
Y × I, y0 × I

)
→ (Z, z0) be a st (W) - continuous function andW - continuous on Y×∂I.

Then there exists a covering V of Y, such that for each V - continuous function f : (X, x0) →
(
Y, y0

)
, the function

G
(

f × id
)

: (X × I, x0 × I)→ (Z, z0) is st (W) - continuous, andW - continuous on X × ∂I.

Proof. The unpointed version of this theorem is proved for compact metric case in [7], Theorem 3.0.5 and
in noncompact case the proof actually remains the same.

3. Pointed proximate nets. Pointed intrinsic shape

Let consider two paracompact topological spaces X and Y, x0 ∈ X, y0 ∈ Y. Now, we will define pointed
proximate net from (X, x0) to

(
Y, y0

)
.

Definition 3.1. A pointed proximate net from (X, x0) to
(
Y, y0

)
is a family f =

(
fV |V ∈ CovY

)
ofV - continuous

functions fV : (X, x0)→
(
Y, y0

)
, such that fW ∼

V

fV (rel {x0}) wheneverW ≺V.

Definition 3.2. Two pointed proximate nets f and 1 from (X, x0) to
(
Y, y0

)
are pointed homotopic if fV ∼

V

1V (rel {x0})

for all coveringsV ∈ CovY. We denote by f ∼ 1 (rel {x0}).

Proposition 3.1. The relation of pointed homotopy of pointed proximate nets is an equivalence relation. The pointed
homotopy class of proximate net f from (X, x0) to

(
Y, y0

)
we will denote by

[
f
]

x0
.
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Proof. Let f =
(

fV |V ∈ CovY
)

and 1 =
(
1V |V ∈ CovY

)
be pointed homotopic pointed proximate nets

from (X, x0) to
(
Y, y0

)
. Therefore, for all coverings V ∈ CovY the V - continuous functions fV and 1V are

pointedV - homotopic. For all coveringsV ∈ CovY by Proposition 2.1 the relation of pointedV - homotopy
fV ∼
V

1V (rel {x0}) ofV - continuous functions is an equivalence relation. So, by the definition the relation of

pointed homotopy of pointed proximate nets is an equivalence relation.

Now let introduce a notion of composition of pointed proximate nets f : (X, x0)→
(
Y, y0

)
and 1 :

(
Y, y0

)
→

(Z, z0).
Let f =

(
fV |V ∈ CovY

)
and 1 =

(
1W |W ∈ CovZ

)
.

Because 1W isW - continuous, then by the definition there exists an open covering V of Y such that
1W (V) ≺W.

We define hW = 1W ◦ fV : (X, x0) → (Z, z0). This function isW - continuous. Although the definition
depends on the choice of V, the next Lemma shows that for two coverings V,V′ ∈ CovY such that
1W (V) , 1W (V′) ≺W is true that 1W ◦ fV ∼

W

1W ◦ fV′ (rel {x0}).

Lemma 3.1. If f is pointed proximate net andV,V′ ∈ CovY such that 1W (V) , 1W (V′) ≺W,W ∈ CovZ. Then
1W ◦ fV ∼

W

1W ◦ fV′ (rel {x0}).

Proof. LetV′′ ∈ CovY be a common refinement ofV andV′, i.e.,V′′ ≺ V,V′. Since f is pointed proximate
net by the definition follows that fV′′ ∼

V

fV (rel {x0}) and fV′′ ∼
V′

fV′ (rel {x0}). By Proposition 2.2 it follows that

1W ◦ fV′′ ∼
W

1W ◦ fV (rel {x0}) and 1W ◦ fV′′ ∼
W

1W ◦ fV′ (rel {x0}). From the transitivity of the pointed homotopy

we conclude that 1W ◦ fV ∼
W

1W ◦ fV′ (rel {x0}).

Now, we will show that the function hW = 1W◦ fV : (X, x0)→ (Z, z0) from the discussion above generates
a pointed proximate net from (X, x0) to (Z, z0) h =

(
hW = 1W ◦ fV |W ∈ CovZ

)
, i.e., we will show that for

allW′
≺W is true that hW′ ∼

W

hW (rel {x0}).

LetW′
≺W and since 1 is a pointed proximate net then 1W′ ∼

W

1W
(
rel

{
y0

})
by a pointed homotopy G,

which is st (W) - continuous function andW - continuous on Y × ∂I.
By Proposition 2.3 there exists a V′′ of Y, such that for each V′′ - continuous function fV′′ : (X, x0) →(

Y, y0
)
, the function G

(
fV′′ × id

)
: (X × I, x0 × I) → (Z, z0) is st (W) - continuous on (X × I, x0 × I), andW -

continuous on X × ∂I .
It follows 1W′ ◦ fV′′ ∼

W

1W ◦ fV′′ (rel {x0}).

Now, consider hW′ = 1W′ ◦ fV′ and hW = 1W ◦ fV for someV′ ∈ CovY, 1W′ (V′) ≺ W′ and a covering
V ∈ CovY, 1W (V) ≺W.

By Lemma 3.1, since 1W (V) , 1W (V′′) ≺W it follows that 1W ◦ fV ∼
W

1W ◦ fV′′ (rel {x0}).

Now, consider a coveringV1 of Y, such thatV1 ≺ V
′, V′′. Since 1W′ (V1) , 1W′ (V′) ≺ W′, by Lemma

3.1, it follows that 1W′ ◦ fV1 ∼
W′

1W′ ◦ fV′ (rel {x0}).

BecauseW′
≺W then 1W′ ◦ fV′ ∼

W

1W′ ◦ fV1 (rel {x0}).

By Proposition 2.2 since f is a pointed proximate net i.el., fV1 ∼
V′′

fV′′ (rel {x0}) and 1W′ (V′′) ≺ W, then

is true that 1W′ ◦ fV1 ∼
W

1W′ ◦ fV′′ (rel {x0}).

Therefore 1W′ ◦ fV′ ∼
W

1W′ ◦ fV1 (rel {x0}) ∼
W

1W′ ◦ fV′′ (rel {x0}) ∼
W

1W ◦ fV′′ (rel {x0}), i.e., we showed that

hW′ ∼
W

hW (rel {x0}).

Now we will give the following definition:

Definition 3.3. Let
[

f
]

x0
and

[
1
]

y0
are two pointed homotopy classes of pointed proximate nets. We define a

composition of pointed homotopy classes
[

f
]

x0
and

[
1
]

y0
by

[
1
]

y0
◦

[
f
]

x0
=

[
1 ◦ f

]
x0

.
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From the discussion above in order to show that this composition is well defined we have only to show
that if f ∼ f

′

(rel {x0}) and 1 ∼ 1
′ (rel {x0}) then h ∼ h

′

(rel {x0}), where h and h
′

are the compositions of pointed

proximate nets f and 1, f
′

and 1
′

, respectively.

Since 1 ∼ 1
′ (rel

{
y0

})
by a homotopy then for every W ∈ CovZ is true that 1W ∼

W

1
′

W

(
rel

{
y0

})
and by

Proposition 2.3 there exists a coveringU ∈ CovY, 1W (U) ≺W, 1′
W

(U) ≺W such that forU - continuous
function fU : (X, x0)→

(
Y, y0

)
it is true that 1W ◦ fU ∼

W

1
′

W
◦ fU (rel {x0}).

From the definition of the composition of two pointed proximate nets there exist coverings V and V′

of Y such 1W (V) ≺W and 1
′

W
(V′) ≺W such hW = 1W ◦ fV and h′

W
= 1

′

W
◦ f ′
V′

.
Since f ∼ f

′

(rel {x0}) then fU ∼
U

f ′
U

(rel {x0}), so by this fact, Lemma 3.1 and Proposition 2.2 we can conclude

that hW = 1W ◦ fV ∼
W

1W ◦ fU (rel {x0}) ∼
W

1
′

W
◦ fU (rel {x0}) ∼

W

1
′

W
◦ f ′
V′

(rel {x0}) = h′
W

, i.e., hW ∼
W

h′
W

(rel {x0})

for allW ∈ CovZ.
Therefore, h ∼ h

′

(rel {x0}).
By the definition of the composition of pointed proximate nets andU - continuous function the following

Theorem is valid.

Theorem 3.1. Let
[

f
]

x0
: (X, x0) →

(
Y, y0

)
,
[
1
]

y0
:
(
Y, y0

)
→ (Z, z0) and

[
h
]

z0
: (Z, z0) → (W,w0) are three pointed

homotopy classes of pointed proximate nets. Then
[
h
]

z0
◦

([
1
]

y0
◦

[
f
]

x0

)
=

([
h
]

z0
◦

[
1
]

y0

)
◦

[
f
]

x0
.

In this way we proved that the topological pointed spaces and pointed homotopy classes of pointed
proximate nets form category of pointed intrinsic shape. We say that pointed topological spaces (X, x0) and(
Y, y0

)
has same pointed intrinsic shape if they are isomorphic in this category.

4. Homotopy ofU - paths

Let X be a topological space and I = [0, 1]. Now, we recall some definitions introduced in Shekutkovski
et al. [11].

Definition 4.1. LetU be an open covering of the space X and x0, x1 ∈ X are fixed points. The st (U) - continuous
function kU : I → X which is U - continuous on ∂I = {0, 1} and kU (0) = x0,kU (1) = x1 is called U - path with
endpoints x0 and x1.

Definition 4.2. LetU be an open covering of the space X and kU , lU : I → X areU - paths with endpoints x0 and
x1. We say that theU - paths kU and lU areU - homotopic paths if there exists a function F : I × I→ X such that:

(I) F is st2 (U) - continuous;
(II) F is st (U) - continuous on ∂I2 = ∂ (I × I);

(III) F isU - continuous on ∂2I2 = {(0, 0) , (0, 1) , (1, 0) , (1, 1) };

and satisfies the usual conditions for homotopy of paths relative endpoints

(IV) F (t, 0) = kU (t) and F (t, 1) = lU (t) for all points t ∈ I;
(V) F (0, s) = kU (0) = lU (0) = x0 and F (1, s) = kU (1) = lU (1) = x1 for all elements s ∈ I.

When two U - paths kU and lU with same endpoints are U - homotopic we denote as kU ∼
U

lU (rel {0, 1}), i.e.,

kU ∼
U

lU .

Proposition 4.1. The relation ofU - homotopy kU ∼
U

lU (rel {0, 1}) ofU - paths is an equivalence relation.
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Proof. It is enough to prove transitivity of the relation. Let kU , lU , pU : I → X areU - paths in X such that
kU ∼
U

lU (rel {0, 1}) and lU ∼
U

pU (rel {0, 1}). Then there exist U - homotopies relative endpoints K : I × I → X

and L : I × I→ X connecting theU - paths kU and lU , lU and pU , respectively.
We define a function H : I × I→ X by:

H (t, s) =


K (t, 2s) = K ◦ f (t, s) , 0 ≤ s ≤

1
2

L (t, 2s − 1) = L ◦ 1 (t, s) ,
1
2
≤ s ≤ 1

,

where the continuous functions f and 1 are defined by:

f : I ×
[
0,

1
2

]
→ I × I, f (t, s) = (t, 2s) and 1 : I ×

[1
2
, 1

]
→ I × I, 1 (t, s) = (t, 2s − 1).

By Theorem 2.2 [7], since the compositions K ◦ f and L ◦ 1 are st2 (U) - continuous on I ×
[
0,

1
2

]
and

I ×
[1
2
, 1

]
, respectively and st (U) - continuous on I ×

{1
2

}
the function H is st2 (U) - continuous on I × I.

By the definition of the function H and the facts that K and L are st (U) - continuous on ∂I2 it follows
that the function H is st (U) - continuous on ∂I2. Also, considering the definition of the function H since K
and L areU - continuous at the points (0, 0) , (0, 1) , (1, 0) , (1, 1) then the function H is alsoU - continuous
at these points.

Furthermore, H (t, 0) = K (t, 0) = kU (t) and H (t, 1) = L (t, 1) = pU (t) for all t ∈ I and

H (0, s) =


K (0, 2s) , 0 ≤ s ≤

1
2

L (0, 2s − 1) ,
1
2
≤ s ≤ 1

=


kU (0) , 0 ≤ s ≤

1
2

lU (0) ,
1
2
≤ s ≤ 1

= x0,

So, kU ∼
U

pU (rel {0, 1}), i.e., the relation ofU - homotopy relative endpoints is transitive.

Let consider an open coveringU of the space X, and twoU - paths kU , lU : I→ X such that kU (1) = lU (0).
We define a concatenation by:

(kU ∗ lU)(t) =


kU(2t), 0 ≤ t ≤

1
2

lU(2t − 1),
1
2
≤ t ≤ 1.

By Theorem 2.2 in [7] the concatenation is well defined and st (U) - continuous function. Also by the
definition ofU - paths kU , lU : I → X the concatenation kU ∗ lU isU - continuous on ∂I = {0, 1}. Therefore,
kU ∗ lU isU - path.

The proofs of the following two theorems are presented in [11].

Theorem 4.1. Let k0
U
, k1
U

: I → X, l0
U
, l1
U

: I → X are U - paths such that k0
U
∼
U

k1
U

(rel {0, 1}), l0
U
∼
U

l1
U

(rel {0, 1})

and the concatenations k0
U
∗ l0
U

and k1
U
∗ l1
U

are defined. Then k0
U
∗ l0
U
∼
U

k1
U
∗ l1
U

(rel {0, 1}).

Theorem 4.2. Let kU , lU , pU : I → X are U - paths in X and the concatenations kU ∗ lU and lU ∗ pU are defined,
kU (1) = lU (0) and lU (1) = pU (0). Then (kU ∗ lU) ∗ pU ∼

U

kU ∗
(
lU ∗ pU

)
(rel {0, 1}).

Let X be a topologic space and x0 ∈ X. The constantU - path cx0 : I→ X is defined by cx0 (t) = x0 , for all
t ∈ I.

Definition 4.3. Let X be a topologic space and kU : I→ X isU - path in X. TheU - path in X, k−1
U

: I→ X, defined
by k−1

U
(t) = kU (1 − t) is called inverseU - path of theU - path kU . Notice that (k−1

U
)−1
U

= kU .
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The proofs of the following three theorems follow the line of construction of the standard fundamental
group (for example Shekutkovski [10]).

Theorem 4.3. Let kU : I→ X isU - path with endpoints x0 and x1. Then

a) kU ∗ cx1 ∼
U

kU (rel {1, 0})

b) cx0 ∗ kU ∼
U

kU (rel {1, 0}).

Proof. a) First let represent the square I × I as union of two closed sets A1 and A2, i.e I × I = A1 ∪ A2,

where A1 =
{
(t, s) | s ∈ I, 0 ≤ t ≤

s + 1
2

}
,A2 =

{
(t, s) | s ∈ I,

s + 1
2
≤ t ≤ 1

}
.

Let consider the following function defined by a (t, s) = kU ◦ f (t, s), where f (t, s) =
2t

s + 1
.

Now, we define a function H : I × I→ X by:

H (t, s) =

{
a (t, s) , (t, s) ∈ A1

x1, (t, s) ∈ A2.

The function f defined on A1 is continuous. The U - path kU is st (U) - continuous. So the function
a = kU ◦ f is st (U) - continuous on A1.

If (t, s) ∈ A1 ∩ A2 =
{( s + 1

2
, s

)
| s ∈ I

}
, then a (t, s) = kU (1) = x1.

By Theorem 2.2 [7] since a and constantU - path cx1 are st (U) - continuous and equal on A1 ∩ A2. The
function H is st2 (U) - continuous on I × I.

TheU - path kU and constantU - path areU - continuous on ∂I = {0, 1}. By the definition of the function
a and constantU - path cx1 areV - continuous functions at the vertices of the sets A1 and A2, respectively.

By the definition of the function H and the fact that a and constantU - path cx1 are st (U) continuous on
∂A1 and ∂A2, andU - continuous at the vertices of the sets A1 and A2, it follows that the function H is st (U)
- continuous on ∂I2.

Considering the definition of the function H since a and constantU - path cx1 areU - continuous at the
points (0, 0) , (0, 1) and (1, 0) , (1, 1), respectively, the function H isU - continuous on

∂2I2 = {(0, 0) , (0, 1) , (1, 0) , (1, 1)} .

If s = 0

H (t, 0) =


kU (2t) , 0 ≤ t ≤

1
2

x1,
1
2
≤ t ≤ 1

=
(
kU ∗ cx1

)
(t) for all t ∈ I.

If s = 1

H (t, 1) =

{
kU (t) , 0 ≤ t ≤ 1
x1, 1 ≤ t ≤ 1 = kU (t) for all t ∈ I.

Let s ∈ I is an arbitrary point. If t = 0 then H (0, s) = kU (0) = x0. If t = 1 then H (1, s) = x1. Therefore, we
showed that kU ∗ cx1 ∼

U

kU (rel {0, 1}), as required.

b) First let represent the square I × I as union of two closed sets B1 and B2, i.e., I × I = B1 ∪ B2, where

B1 =
{
(t, s) | s ∈ I, 0 ≤ t ≤

1 − s
2

}
,B2 =

{
(t, s) | s ∈ I,

1 − s
2
≤ t ≤ 1

}
.



N. Shekutkovski, A. Velkoska / Filomat 29:10 (2015), 2185–2197 2192

Let consider the following function defined by b (t, s) = kU ◦ 1 (t, s) where 1(t, s) =
2t − 1 + s

s + 1
.

Now, we define a function K : I × I→ X by:

K (t, s) =

{
x1, (t, s) ∈ B1

b (t, s) , (t, s) ∈ B2.

With similar discussion as in a) can be obtained that the function K is pointed U - homotopy relative
endpoints connecting theU - paths cx0 ∗ kU and kU .

Theorem 4.4. Let kU , lU : I→ X areU - paths in X such that kU ∼
U

lU (rel {0, 1}). Then k−1
U
∼
U

l−1
U

(rel {0, 1}).

Proof. Because kU ∼
U

lU (rel {0, 1}) there exists a function K : I × I→ X connecting theU - paths kU and lU .

Let define a function H : I × I→ X by: H(t, s) = K(1 − t, s).
All conditions (I) - (III) from the Definition 4.2 are valid for the function H by its definition.

Now, if s = 0 then H (t, 0) = K(1 − t, 0) = kU (1 − t) = k−1
U

(t) for all t ∈ I; If s = 1 then H (t, 1) = H (t, 1) =

K(1 − t, 1) = lU (1 − t) = l−1
U

(t) for all t ∈ I.
Let s ∈ I is an arbitrary point. If t = 0 then H (0, s) = K(1 − 0, s) = K(1, s) = kU (1) = k−1

U
(0). If t = 1 then

H (1, s) = K(1 − 1, s) = K(0, s) = lU (0) = l−1
U

(1).
Therefore, we showed that k−1

U
∼
U

l−1
U

(rel {0, 1}) as required.

Theorem 4.5. Let kU : I → X is U - path in X such that kU (0) = x0 and kU (1) = x1. Then is true that
kU ∗ k−1

U
∼
U

cxo (rel {0, 1}).

Proof. By the definition of concatenation:

(
kU ∗ k−1

U

)
(t) =


kU (2t) , 0 ≤ t ≤

1
2

k−1
U

(2t − 1) , 0 ≤ t ≤
1
2

=


kU (2t) , 0 ≤ t ≤

1
2

kU (2 − 2t) , 0 ≤ t ≤
1
2
.

Let represent the square I × I as union of two closed sets A and B, i.e I × I = A ∪ B, where

A =
{
(t, s) | s ∈ I, 0 ≤ t ≤

1
2

}
,B =

{
(t, s) | s ∈ I,

1
2
≤ t ≤ 1

}
.

We consider the following functions defined by:
a (t, s) = kU ◦ f (t, s), where f (t, s) = 2t (1 − s) and b (t, s) = kU ◦ 1 (t, s), where 1(t, s) = (2 − 2t) (1 − s).

Now define a function H : I × I→ X by:

H (t, s) =

{
a (t, s) , (t, s) ∈ A
b (t, s) , (t, s) ∈ B.

We can verify all conditions (I) - (III) from the Definition 4.2 for the function H with similar discussion
as the proof of the Theorem 4.3.
Now, if s = 0 then

H (t, 0) =


kU (2t) , 0 ≤ t ≤

1
2

kU (2 − 2t) ,
1
2
≤ t ≤ 1

=
(
kU ∗ k−1

U

)
(t) for all t ∈ I.

If s = 1 then

H (t, 1) = kU (0) = x0 for all t ∈ I.

Let s ∈ I is an arbitrary point. If t = 0 then H (0, s) = kU (0) = x0, and if t = 1 then H (1, s) = kU (0) =(
kU ∗ k−1

U

)
(1).

Therefore, we showed that kU ∗ k−1
U
∼
U

cx0 (rel {0, 1}), as required.



N. Shekutkovski, A. Velkoska / Filomat 29:10 (2015), 2185–2197 2193

5. Proximate fundamental group

Proximate fundamental group is definied in [11]. Now, we recall the definition and prove that it is
invariant of pointed shape cathegory.

Definition 5.1. LetU is an open covering of the space X and x0 ∈ X is a fixed point. TheU - path kU : I→ X such
that kU (0) = kU (1) = x0 is calledU - loop in x0.

The homotopy class ofU - loops in x0, kU : I→ X we will denote by [kU]x0
.

Definition 5.2. A proximate loop in x0 (over CovX) is a family k = (kU |U ∈ CovX ) such that kV ∼
U

kU (rel {0, 1})

for allV ≺ U.

We can denote the proximate loop also by k = (kU)U∈CovX.

Definition 5.3. Two proximate loops k and l in x0 are homotopic over all coverings if kU ∼
U

lU (rel {0, 1}) for all

U ∈ CovX. We denote that by k ∼ l (rel {0, 1}).

Proposition 5.1. The relation k ∼ l (rel {0, 1}) is an equivalence relation. The homotopy class of proximate loop k in
x0 is denoted by

[
k
]

x0
.

Proof. Let k = (kU |U ∈ CovX ) and l = (lU |U ∈ CovX ) be two homotopic proximate loops in x0. Therefore,
kU ∼
U

lU (rel {0, 1}) for all coveringsU ∈ CovX. For all coveringsU ∈ CovX by Proposition 4.1 the relation of

U - homotopy relative endpoints kU ∼
U

lU (rel {0, 1}) ofU - loops is an equivalence relation. So, the relation

of homotopy of proximate loops is an equivalence relation.

We consider the following set:

proxπ1 (X, x0) =
{[

k
]

x0

∣∣∣ k is proximate loop in x0

}
.

In this set we define an operation “∗” by:
[
k
]

x0
∗

[
l
]

x0
=

[
k ∗ l

]
x0

, where k ∗ l is defined as: k ∗ l =

(kU ∗ lU |U ∈ CovX ).
We will show that this operation is well defined.
First we will find that k ∗ l is proximate loop in x0. By the definition of the composition of twoU - loops

for all U ∈ CovX the function kU ∗ lU is U - loop in x0. Now, let consider any V ≺ U. Since k and l are
proximate loops then kV ∼

U

kU (rel {0, 1}) and lV ∼
U

lU (rel {0, 1}), so by Proposition 1.3 (iii) [4] and Theorem 4.1

is true that kV ∗ lV ∼
U

kU ∗ lU (rel {0, 1}). Therefore, k ∗ l is proximate loop in x0.

Now, by Theorem 4.1 if k0
U
, k1
U

: I → X, l0
U
, l1
U

: I → X are U - loops in x0 such that k0
U
∼
U

k1
U

(rel {0, 1}),

l0
U
∼
U

l1
U

(rel {0, 1}) then is true that k0
U
∗ l0
U
∼
U

k1
U
∗ l1
U

(rel {0, 1}).

Therefore, the operation “∗” in the set proxπ1 (X, x0) is well defined.

Theorem 5.1. The set proxπ1 (X, x0) with the operation “∗” is group. This group proxπ1 (X, x0) is called proximate
fundamental group.

Proof. Associativity: Let
[
k
]

x0
,
[
l
]

x0
and

[
p
]

x0
are homotopy class of proximate loops in x0. We should show

that: ([
k
]

x0
∗

[
l
]

x0

)
∗

[
p
]

x0
=

[
k
]

x0
∗

([
l
]

x0
∗

[
p
]

x0

)
(1)
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For the left side of the equation (1) is true the following identity:([
k
]

x0
∗

[
l
]

x0

)
∗

[
p
]

x0
=

[
k ∗ l

]
x0
∗

[
p
]

x0
=

[(
k ∗ l

)
∗ p

]
x0
, (2)

and for the right side of (1) is true:[
k
]

x0
∗

([
l
]

x0
∗

[
p
]

x0

)
=

[
k
]

x0
∗

[
l ∗ p

]
x0

=
[
k ∗

(
l ∗ p

)]
x0
. (3)

So, to show that the equation (1) is true is enough to show that
[(

k ∗ l
)
∗ p

]
x0

=
[
k ∗

(
l ∗ p

)]
x0

, i.e., that the

proximate loops
(
k ∗ l

)
∗ p and k ∗

(
l ∗ p

)
are homotopic over all coverings.

Let kU , lU and pU are U - loops in x0 for an arbitrary covering U ∈ CovX. Then by Theorem 4.2
(kU ∗ lU)∗pU ∼

U

kU ∗
(
lU ∗ pU

)
(rel {0, 1}) for any coveringU ∈ Cov (X). Therefore,

(
k ∗ l

)
∗p ∼ k∗

(
l ∗ p

)
(rel {0, 1}),

i.e.,
[(

k ∗ l
)
∗ p

]
x0

=
[
k ∗

(
l ∗ p

)]
x0

.

So, the associative law for the operation “∗” in the set proxπ1 (X, x0) is true.
Identity element : It is the homotopy class

[
cx0

]
x0

of the constant proximate loop in x0 defined by the
constantU - loop cx0 in x0.

Let kU isU - loop in x0 for an arbitrary coveringU ∈ CovX. Then for an arbitrary coveringU ∈ CovX
by Theorem 4.3 kU ∗ cx0 ∼

U

kU (rel {0, 1}) and cx0 ∗ kU ∼
U

kU (rel {0, 1}).

Therefore, k ∗ cx0 ∼ k (rel {0, 1}) and cx0 ∗ k ∼ k (rel {0, 1}), i.e.,
[
k ∗ cx0

]
x0

=
[
k
]

x0
and

[
cx0 ∗ k

]
x0

=
[
k
]

x0
.

By the definition of the operation “∗” in the set proxπ1 (X, x0) the following identities are true:[
k
]

x0
∗

[
cx0

]
x0

=
[
k ∗ cx0

]
x0

=
[
k
]

x0
and

[
cx0

]
x0
∗

[
k
]

x0
=

[
cx0 ∗ k

]
x0

=
[
k
]

x0
.

Inverse element: An inverse element of a homotopy class
[
k
]

x0
of a proximate loop in x0 is the homotopy

class
[
k−1

]
x0

of the proximate loop k−1 =
(
k−1
U
|U ∈ CovX

)
defined by the inverse U - loop of the U - loop

kU in x0. For any coveringU ∈ CovX by Theorem 4.5 kU ∗ k−1
U
∼
U

cx0 (rel {0, 1}) and k−1
U
∗ kU ∼

U

cx0 (rel {0, 1}).

So,
[
k
]

x0
∗

[
k−1

]
x0

=
[
k ∗ k−1

]
=

[
cxo

]
x0

and
[
k−1

]
x0
∗

[
k
]

x0
=

[
k−1
∗ k

]
=

[
cxo

]
x0

.

Therefore, the set proxπ1 (X, x0) with the operation “∗” is a group.

Let X and Y be topological spaces, and f =
(

fV |V ∈ CovY
)

is a pointed proximate net from (X, x0) to(
Y, y0

)
.

Now, to the proximate net f we can associate an induced function fprox : proxπ1(X, x0) → proxπ1(Y, y0)
defined in the following way:

Let [k]x0 ∈ proxπ1 (X, x0), where k = (kU |U ∈ CovX ) is a proximate loop in x0. Since the proximate
loop is a proximate net, if we define a proximate net p =

(
pV |V ∈ CovY

)
as a composition of proximate

nets k = (kU |U ∈ CovX ) and f =
(

fV |V ∈ CovY
)
, i.e., p = f ◦ k =

(
pV = fV ◦ kU |V ∈ CovY

)
, we obtain a

proximate loop in y0. Finally, we define:

fprox([k]x0 ) = [p]y0 .

Let k0 and k1, are proximate loops in x0 from the same homotopy class of proximate loop
[
k
]

x0
. So there

exists a homotopy K between the proximate loops k0 and k1. Then the proximate loops f ◦ k0 and f ◦ k1 are
homotopic by a homotopy f ◦ K. Therefore the induced function fprox is well defined.

Theorem 5.2. Let X and Y are topological spaces, f =
(

fV |V ∈ CovY
)

is a pointed proximate net from (X, x0) to(
Y, y0

)
. Then the induced function fprox : proxπ1(X, x0)→ proxπ1(Y, f (x0)) is homomorphism.
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Proof. Let [k]x0 , [l]x0 ∈ proxπ1 (X, x0). We should show that:

fprox

([
k
]

x0
∗

[
l
]

x0

)
= fprox

([
k
]

x0

)
∗ fprox

([
l
]

x0

)
Because

fprox

([
k
]

x0
∗

[
l
]

x0

)
= fprox

([
k ∗ l

]
x0

)
= fprox

[
(kU ∗ lU)U∈CovX

]
x0

=
[(

fV (kU ∗ lU)
)
V∈CovY

]
y0

and

fprox

([
k
]

x0

)
∗ fprox

([
l
]

x0

)
=

[(
fV ◦ kU

)
V∈CovY

]
y0
∗

[(
fV ◦ lU

)
V∈CovY

]
y0

=
[((

fV ◦ kU
)
∗
(

fV ◦ lU
))
V∈CovY

]
y0
,

we should show that
[(

fV (kU ∗ lU)
)
V∈CovY

]
y0

=
[((

fV ◦ kU
)
∗
(

fV ◦ lU
))
V∈CovY

]
y0
.

The equality follows since
((

fV ◦ kU
)
∗
(

fV ◦ lU
))

(t) =
(

fV ◦ kU
)

(2t), 0 ≤ t ≤
1
2(

fV ◦ lU
)

(2t − 1),
1
2
≤ t ≤ 1

=


fV (kU(2t)) , 0 ≤ t ≤

1
2

fV (lU(2t − 1)) ,
1
2
≤ t ≤ 1

= fV ((kU ∗ lU) (t)).

Since the proximate loop is a proximate net by Theorem 3.1 the following Theorem is valid:

Theorem 5.3. Let f =
(

fV |V ∈ CovY
)
, fV : (X, x0) →

(
Y, y0

)
is V - continuous, and 1 =

(
1W |W ∈ CovZ

)
,

1W :
(
Y, y0

)
→ (Z, z0) isW - continuous, are two proximate nets. For any [k]x0 ∈ proxπ1 (X, x0) is true that:(

1 ◦ f
)

prox

(
[k]x0

)
= 1prox

(
fprox

(
[k]x0

))
Theorem 5.4. Let f =

(
fV |V ∈ CovY

)
, fV : (X, x0) →

(
Y, y0

)
is V - continuous, and f ′ =

(
f ′
V
|V ∈ CovY

)
,

f ′
V

: (X, x0) →
(
Y, y0

)
is V - continuous, are two proximate nets. For any proximate loop in x0 if f and f ′ are

homotopic then proximate loops in y0, f ◦ k and f ′ ◦ k are homotopic.

Proof. If f and f ′ are homotopic there exists a homotopy F connecting f and f ′. For a coveringV of Y we
choose a covering U of X as in Proposition 2.3. Then L = (LV), where LV = FV(kU × id) : I × I → Y is a
proximate net. Since
LV(t, 0) = FVkU(t) and LV(t, 1) = FVk′

U
(t) for all t ∈ I, and LV(0, s) = FV(x0, s) = y0 and LV(1, s) = FV(x0, s) =

y0 for all s ∈ I, we have only to check the conditions (I), (II), (III) of Definition 4.2.

(I) By Proposition 2.3 the function kU × id : I × I → X × I is st (U) - continuous. And FV : X × I → Y is
st (V) - continuous. It follows LV is st2 (V) - continuous.

(II) For (0, s) from ∂I2 = ∂ (I × I), since kU × id isU - continuous at point (0, s) and FV is st (V) - continuous
at (x0, s) = (kU × id) (0, s), it follows LV is st (V) - continuous at point (0, s). Similar for (1, s).
For (t, 0) from ∂I2 = ∂ (I × I), since kU × id is st (U) - continuous at point (t, 0) and FV isV - continuous
at (kU (t) , 0) = (kU × id) (t, 0) it follows LV is st (V) - continuous at point (t, 0). Similar for (t, 1).

(III) For (0, 0) from ∂2I2, since kU × id is U - continuous at point (0, 0) and FV is V - continuous at
(x0, 0) = (kU × id) (0, 0), it follows LV isV - continuous at (0, 0). Similar for all other points (1, 0), (0, 1)
and (1, 1) from ∂∂2I2.

We proved that L = (LV) is homotopy connecting f ◦ k and f ′ ◦ k as required.

By Theorems 5.2, 5.3 and 5.4 we obtain the following result

Theorem 5.5. Associating proxπ1 (X, x0) to a pointed topological space (X, x0) and associating to a proximate net
[ f ]x0 the homomorphism fprox : proxπ1(X, x0) → proxπ1(Y, f (x0)) we obtain a functor from category of pointed
intrinsic shape to category of groups.
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Proof. Let consider the functor defined above from the category of pointed intrinsic shape to the category
of groups.

By Theorems 5.2 and 5.4 this functor is well defined. By Theorem 5.3 it preserves composition of
morphisms.

At last, we have to show that it preserves the identity morphisms.
Let

[
f
]

x0
be an arbitrary morphism in the category of pointed intrinsic shape from (X, x0) to

(
Y, y0

)
. We

consider the pointed homotopy class
[
1X

]
x0

of pointed proximate net 1X defined with the identity function
1X. By Definition 3.3 the following identities are true:[

f
]

x0
◦

[
1X

]
x0

=
[

f ◦ 1X

]
x0

=
[

f
]

x0

So, an identity morphism in the category of pointed intrinsic shape is the pointed homotopy class of[
1X

]
x0

pointed proximate net 1X defined with the identity function 1X in the topological space X.
The induced function 1prox : proxπ1(X, x0)→ proxπ1(X, x0) associated to the identity morphism is defined

in the following way: 1prox([k]x0 ) = [1X ◦ k]x0 , where [k]x0 ∈ proxπ1 (X, x0) is the homotopy class of the

proximate loop k = (kU |U ∈ CovX ) in x0. Since 1prox([k]x0 ) = [1X ◦ k]x0 = [k]x0 = 1proxπ1(X,x0)

(
[k]x0

)
we

conclude that the function from the category of pointed intrinsic shape to category of groups preserves the
identity morphisms.

By this theorem we proved that proxπ1 (X, x0) is an invariant of pointed intrinsic shape of a pointed space
(X, x0). If (X, x0) and

(
Y, y0

)
have same pointed intrinsic shape then their proximate fundamental groups are

isomorphic.

Example 5.1. The proximate fundamental group of a circle and Warsaw circle are isomorphic to additive group of
integers.

Proof. Notions of shape and homotopy for finite polyhedra coincide. So, there is 1 – 1 corespondence
between homotopy classes of pointed maps (S1, 1) → (S1, 1) and homotopy classes of pointed proximate
nets (S1, 1)→ (S1, 1).

We consider the unit circle S1 in the complex plain and define maps f n : (S1, 1) → (S1, 1) by f n(z) = zn,
n ∈ Z.

Then, the only classes of pointed homotopy of maps (S1, 1)→ (S1, 1) are [ f n], n ∈ Z, and these are exactly
the elements of the fundamental group of the circle, i.e., π1(S1) = {[ f n] | n ∈ Z}.

Since there is 1 – 1 corespondence between homotopy classes of pointed maps (S1, 1) → (S1, 1) and
homotopy classes of pointed proximate nets (S1, 1)→ (S1, 1), the only pointed homotopy classes of pointed
proximate nets (S1, 1) → (S1, 1) are [( f n

V
)], n ∈ Z, where the proximate net ( f n

V
) is defined by f n

V
= f n for

all coverings V. The pointed homotopy classes of pointed proximate nets [( f n
V

)], n ∈ Z, are exactly the
elements of the proximate fundamental group of the circle, i.e., proxπ1(S1) = {[( f n

V
)] | n ∈ Z}.

The operation “∗” in fundamental group of a circle is defined by concatenation of paths. It is well
known that the definition leads to [ f n] ∗ [ f m] = [ f n+m], i.e., the fundamental group of a circle is isomorphic
to additive group of integers ( for example, see [10] ).

Since the operation ∗ in proximate fundamental group of a circle is defined also by concatenation of
paths then the operation in proxπ1(S1) is given by

[( f n
V

)] ∗ [( f m
V

)] = [( f n+m
V

)].

Then, with [ f n] → [( f n
V

)] is defined a natural isomorphism π1(S1) → proxπ1(S1), between fundamental
group and proximate fundamental group of the circle.

Finally, by Theorem 5.5 the proximate fundamental group is an invariant of pointed intrinsic shape.
Since a circle and Warsaw circle have the same shape, they also have the same intrinsic shape and isomorphic
proximate fundamental groups.
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