On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space

Milan Lj. Zlatanovića ${ }^{\text {, }}$ Svetislav M. Minčićć, Ljubica S. Velimirovića ${ }^{\text {a }}$
${ }^{a}$ Faculty of Science and Mathematics, University of Niš, Serbia

Abstract

In a space L_{N} of asymmetric affine connection by equations (1.1) a submanifold $X_{M} \subset L_{N}$ is defined. On X_{M} and on pseudonormal submanifold X_{N-M}^{N} asymmetric induced connections are defined. Because of asymmetry of induced connection it is possible to define four kinds of covariant derivative. In this work we are considering integrability conditions of derivational equations [4] obtained by help of the $1^{\text {st }}$ and the $2^{\text {nd }}$ kind of covariant derivative. The corresponding Gauss-Codazzi equations are obtained too.

1. Introduction

Consider a space L_{N} of asymmetric affine connection with a torsion (in local coordinates) $T_{j k}^{i}=L_{j k}^{i}-L_{k j}^{i}$. Spaces with asymmetric affine connection and their properties were studied by many authors [1, 11]. A submanifold $X_{M} \subset L_{N}$ is defined by equations

$$
\begin{equation*}
x^{i}=x^{i}\left(u^{1}, \ldots, u^{M}\right)=x^{i}\left(u^{\alpha}\right), \quad i=\overline{1, N} \tag{1.1}
\end{equation*}
$$

Partial derivatives $B_{\alpha}^{i}=\frac{\partial x^{i}}{\partial u^{\alpha}}\left(\operatorname{rank}\left(B_{\alpha}^{i}\right)=M\right)$ define tangent vectors on X_{M}.
Consider $N-M$ contravariant vectors $C_{A}^{i}(A, B, C, \ldots, \in\{M+1, \ldots, N\})$ defined on X_{M} and linearly independent, and let the matrix $\binom{B_{i}^{\alpha}}{C_{i}^{A}}$ be inverse for the matrix $\left(B_{\alpha}^{i}, C_{A}^{i}\right)$ provided that the following conditions are satisfied [10]:
a) $B_{\alpha}^{i} B_{i}^{\beta}=\delta_{\alpha}^{\beta}$;
b) $B_{\alpha}^{i} C_{i}^{A}=0 ; \quad$ c) $B_{i}^{\alpha} C_{A}^{i}=0$;
d) $C_{A}^{i} C_{i}^{B}=\delta_{A}^{B}$;
e) $B_{\alpha}^{i} B_{j}^{\alpha}+C_{A}^{i} C_{j}^{A}=\delta_{j}^{i}$;

The magnitudes $B_{\alpha}^{i}, B_{i}^{\alpha}$ are projection factors (tangent vectors), and the magnitudes C_{A}^{i}, C_{i}^{A} are affine pseudonormals [4, 10].

[^0]The induced connection on X_{M} is $[4,10,11]$:

$$
\begin{equation*}
\widetilde{L}_{\beta \gamma}^{\alpha}=B_{i}^{\alpha}\left(B_{\beta, \gamma}^{i}+L_{j k}^{i} B_{\beta}^{j} B_{\gamma}^{k}\right), \tag{1.3}
\end{equation*}
$$

where $B_{\beta, \gamma}^{i}=\partial B_{\beta}^{i} / \partial u^{\gamma}=\partial^{2} x^{i} / \partial u^{\beta} \partial u^{\gamma}$. Because L is asymmetric by virtue of j, k, \widetilde{L} is asymmetric in β, γ too. The submanifold X_{M} endowed with \widetilde{L} becomes L_{M} and we write $L_{M} \subset L_{N}$.

The set of pseudonormals of the submanifold $X_{M} \subset L_{N}$ makes a pseudonormal bundle of X_{M}, and we note it X_{N-M}^{N}. We have defined in [4] induced connection of pseudonormal bundle with coefficients

$$
\begin{equation*}
\bar{L}_{\frac{1}{2}}^{A} \bar{B}_{i \mu}=C_{i}^{A}\left(C_{B, \mu}^{i}+\underset{k j}{L_{j k}^{i}} C_{B}^{j} B_{\mu}^{k}\right) \tag{1.4}
\end{equation*}
$$

As the coefficients $L, \widetilde{L}, \bar{L}$ are generally asymmetric, we can define four kinds of covariant derivative for a tensor, defined in the points of X_{M}. For example:

In this manner four connections $\underset{\theta}{\nabla}$ on $X_{M} \subset L_{N}$ are defined. We shall note the obtained structures ($X_{M} \subset L_{N}$, $\nabla, \theta \in\{1, \ldots, 4\})$.

2. Integrability conditions of derivational equations for tangents

2.0 From $\left(2.17,17^{\prime}\right)$ in [4], we have a derivational equations for tangents

$$
\begin{equation*}
B_{\alpha \mid \mu}^{i}=\underset{\theta}{\Omega_{\alpha \mu}^{P}} C_{P,}^{i} \quad B_{i \mid \mu}^{\alpha}=\underset{\theta}{\widehat{\Omega}_{P \mu}^{\alpha}} C_{i}^{P}, \quad \theta \in\{1,2\}, \tag{2.1}
\end{equation*}
$$

and from $\left(3.19,19^{\prime}\right)$ for pseudonormals

$$
\begin{equation*}
C_{A \mid \mu}^{i}=-\widehat{\Omega}_{\theta}^{\pi} B_{\pi}^{i} \quad C_{i \mid \mu}^{A}=-\Omega_{\theta}^{A} B_{i}^{\pi}, \quad \theta \in\{1,2\} . \tag{2.2}
\end{equation*}
$$

So, one obtains

$$
\begin{aligned}
B_{\alpha|\mu| v}^{i} & =\left(\underset{\theta}{\Omega_{\alpha \mu}^{P}} C_{P}^{i}\right)_{\omega}^{\mid v}=\underset{\theta}{\Omega_{\alpha \mu \mid v}^{P}} C_{P}^{i}+\underset{\theta}{\Omega_{\alpha \mu}^{P}} C_{P \mid v}^{i} \\
& =-\underset{\omega}{\Omega_{\alpha \mu}^{P}} \widehat{\Omega}_{\omega}^{T} B_{\pi}^{i}+\underset{\theta}{\Omega_{\alpha \mu \mid v}^{P}} C_{P}^{i}
\end{aligned}
$$

where $" \underset{(2.2)}{=}$ " signifies "equal with respect to (2.2)". In this manner
and by analogous procedure:

$$
B_{\theta|\mu| v}^{\alpha}-\underset{\omega \theta}{\alpha} \underset{\omega|\nu| \mu}{\alpha}=\left(\underset{\theta}{\Omega_{\pi \mu}^{P}} \widehat{\omega}_{P v}^{\alpha}-\underset{\omega}{\Omega_{\pi v}^{P}} \widehat{\Omega}_{P \mu}^{\alpha}\right) B_{i}^{\pi}+\left(\underset{\theta}{\widehat{\Omega}_{P \mu \mid v}^{\alpha}}-\underset{\theta}{\widehat{\Omega}} \underset{\omega}{\widehat{\Omega}} \underset{\omega}{\alpha}\right) C_{i}^{P},
$$

where [4]

$$
\begin{equation*}
\underset{\frac{1}{2}}{\Omega_{\alpha \mu}^{P}}=C_{i}^{P}\left(B_{\alpha, \mu}^{i}+\underset{p m}{i}+L_{p m}^{i} B_{\alpha}^{p} B_{\mu}^{m}\right), \tag{2.4}
\end{equation*}
$$

$$
\underset{\substack{1 \\ 2}}{\widehat{\Omega}_{P \mu}^{\alpha}}=C_{P}^{i}\left(B_{i, \mu}^{\alpha}-L_{i m i}^{p} B_{p}^{\alpha} B_{\mu}^{m}\right) .
$$

Based on the Ricci type identities [1, 2]
where

$$
\begin{align*}
& {\underset{1}{1}}_{R_{j m n}}^{i}=L_{j m, n}^{i}-L_{j n, m}^{i}+L_{j m}^{p} L_{p n}^{i}-L_{j n}^{p} L_{p m}^{i} \tag{2.6}\\
& {\underset{2}{R}}_{R_{j m n}^{i}}^{i}=L_{m j, n}^{i}-L_{n j, m}^{i}+L_{m j}^{p} L_{n p}^{i}-L_{n j}^{p} L_{m p \prime}^{i} \tag{2.7}
\end{align*}
$$

are curvature tensors of the $1^{s t}$ respectively the $2^{\text {nd }}$ kind of the L_{N} and, analogously, $\widetilde{R}_{1}^{\alpha}{ }_{\beta \mu v}, \widetilde{R}_{2 \beta \nu}^{\alpha}$ are curvature tensors of $L_{M} \subset L_{N}$, obtained in the same manner by connection $\widetilde{L}_{\beta \gamma}^{\alpha}$.
2.1 Taking (2.3) $\theta=\omega \in\{1,2\}$, equalizing the right sides of obtained equation and (2.5) and exchange $B_{\substack{\alpha \mid \pi \\ i}}^{i}$ with respect of (2.1), we get the $1^{\text {st }}$ and the $2^{\text {nd }}$ kind integrability condition of derivational equation (2.1):

$$
\begin{align*}
& +\left(\underset{\theta}{\Omega_{\alpha \mu \mid \nu}^{P}}-\underset{\theta}{\Omega_{\alpha \nu \mid \mu}^{P}}+(-1)^{\theta-1} \widetilde{T}_{\mu \nu}^{\pi}{\underset{\theta}{\alpha \pi}}_{P}^{\Omega_{\alpha}}\right) C_{P,}^{i} \quad \theta \in\{1,2\} . \tag{2.8}
\end{align*}
$$

a) Composing that equation with B_{i}^{λ} and taking into consideration (1.2), we obtain

$$
\begin{equation*}
\widetilde{R}_{\theta}{ }_{\alpha \mu \nu}^{\lambda}={\underset{\theta}{2}}_{i}^{i} B_{i n}^{\lambda} B_{\alpha}^{p} B_{\mu}^{m} B_{v}^{n}+\underset{\theta}{\Omega_{\alpha \mu}^{P}} \widehat{\Omega}_{\theta v}^{\lambda}-{\underset{\theta}{\alpha v}}_{P}^{\widehat{\Omega}_{\theta}} \widehat{P \mu}^{\prime} \quad \theta \in\{1,2\} . \tag{2.9}
\end{equation*}
$$

which are Gauss equation of the $1^{\text {st }}$ and the $2^{\text {nd }} \boldsymbol{\operatorname { k i n }}(\theta=1,2)$ for $L_{M} \subset L_{N}$.
b) If one composes (2.8) with C_{i}^{L}, we get

$$
\begin{equation*}
\underset{\theta}{R_{p m n}^{i} C_{i}^{L} B_{\alpha}^{p} B_{\mu}^{m} B_{v}^{n}=\underset{\theta}{\Omega_{\alpha \mu \mid v}^{L}}-\underset{\theta}{\Omega_{\theta}}{ }_{\theta}^{L}}+(-1)^{\theta-1} \widetilde{T}_{\mu v}^{\pi}{\underset{\theta}{\theta}}_{\Omega_{\alpha \pi \prime}}^{L} \quad \theta \in\{1,2\} . \tag{2.10}
\end{equation*}
$$

and that are the $1^{\text {st }}$ Codazzi equation of the $1^{\text {st }}$ and the $2^{\text {nd }}$ kind $(\theta=1,2)$ for $L_{M} \subset L_{N}$.
2.1' Starting from the Ricci type identities (2.3') for $\theta \in\{1,2\}$

$$
\begin{equation*}
B_{\substack{i|\mu| v \\ \theta}}^{\alpha}-B_{\substack{i v \mid \mu \\ \alpha}}^{\alpha}=-\underset{\theta}{R_{i m n}^{p}} B_{p}^{\alpha} B_{\mu}^{m} B_{v}^{n}+\widetilde{R}_{\theta}^{\alpha} \alpha \mu v B_{i}^{\pi}+(-1)^{\theta} \widetilde{T_{\mu v}} B_{i \mid \pi}^{\alpha}, \quad \theta \in\{1,2\} . \tag{2.5'}
\end{equation*}
$$

substituting B_{i}^{α} into (2.5') by virtue of (2.1'), we get the $1^{\text {st }}$ and the $2^{\text {nd }}$ integrability condition of derivation equation (2.1'):

$$
\begin{align*}
R_{\theta}^{p}{ }_{i m n} B_{p}^{\alpha} B_{\mu}^{m} B_{v}^{n} & =\left(\widetilde{R}_{\theta \mu \nu v}^{\alpha}-\underset{\theta}{\Omega_{\pi \mu}^{P}} \widehat{\Omega}_{P v}^{\alpha}+\underset{\theta}{\Omega_{\pi v}^{P}} \widehat{\Omega}_{\theta}^{\alpha}\right) B_{i}^{\pi} \\
& +\left(-\underset{\theta}{\widehat{\Omega}_{P \mu \mid v}^{\alpha}}+\underset{\theta}{\widehat{\Omega}_{P v \mid \mu}^{\alpha}}+(-1)^{\theta} \widetilde{T}_{\mu v}^{\pi} \widehat{\Omega}_{\theta}^{\alpha}\right) C_{i}^{P}, \quad \theta \in\{1,2\} .
\end{align*}
$$

a^{\prime}) By composing the previous equation with B_{λ}^{i} one gets

$$
\widetilde{R}_{\theta}^{\alpha}{ }_{\lambda \mu v}^{\alpha}={\underset{\theta}{i m n}}_{p} B_{p}^{\alpha} B_{\lambda}^{i} B_{\mu}^{m} B_{v}^{n}+{\underset{\theta}{\Omega}}_{P}^{P} \widehat{\Omega}_{\theta}^{\alpha}{ }_{P v}^{\alpha}-{\underset{\theta}{\Omega}}_{\lambda}^{P} \widehat{\Omega}_{\theta}^{\alpha}{ }_{P \mu^{\prime}} \quad \theta \in\{1,2\},
$$

and that equation by exchanges $\alpha \leftrightarrow \lambda, p \leftrightarrow i$ becomes (2.9).
b^{\prime}) Composing (2.8') with $C_{L^{\prime}}^{i}$, it follows that

$$
{\underset{\theta}{i m n}}_{p}^{R_{L}^{i}} B_{p}^{\alpha} B_{\mu}^{m} B_{v}^{n}=-\underset{\theta}{\widehat{\Omega}_{L \mu \mid v}^{\alpha}}+\underset{\theta}{\widehat{\Omega}_{L v \mid \mu}^{\alpha}}+(-1)^{\theta} \widetilde{T}_{\mu v}^{\pi} \widehat{\Omega}_{L \pi^{\prime}}^{\alpha} \theta \in\{1,2\}
$$

which is the another form of the $1^{\text {st }}$ Codazzi equation of the $1^{\text {st }}$ and the $2^{\text {nd }}$ kind for $L_{M} \subset L_{N}$.
2.2 By application of the corresponding Ricci type identity [1, 2], one obtains

$$
\begin{equation*}
\underset{\substack{\alpha|\mu| v \\ B_{2}}}{i}-B_{\substack{\alpha|v| \mu}}^{i}={\underset{3}{2}}_{i}^{i} B_{\alpha}^{p}-\widetilde{R}_{3 \alpha \nu v}^{\pi} B_{\pi,}^{i} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\underset{3}{R_{j \mu v}^{i}}=\left(L_{j m, n}^{i}-L_{n j, m}^{i}+L_{j m}^{p} L_{n p}^{i}-L_{n j}^{p} L_{p m}^{i}\right) B_{\mu}^{m} B_{v}^{n}+T_{j m}^{i}\left(B_{\mu, v}^{m}-\widetilde{L}_{v \mu}^{\pi} B_{\pi}^{m}\right), \tag{2.12}
\end{equation*}
$$

is the $3^{r d}$ kind curvature tensor of L_{N} relating to L_{M}, and

$$
\begin{equation*}
\widetilde{R}_{\beta \mu \nu}^{\alpha}=\widetilde{L}_{\beta \mu, v}^{\alpha}-\widetilde{L}_{v \beta, \mu}^{\alpha}+\widetilde{L}_{\beta \mu}^{\pi} \widetilde{L}_{v \pi}^{\alpha}-\widetilde{L}_{v \beta}^{\pi} \widetilde{\Sigma}_{\pi \mu}^{\alpha}+\widetilde{L}_{v \mu}^{\pi} \widetilde{T}_{\pi \beta}^{\alpha} \tag{2.13}
\end{equation*}
$$

is the $3^{r d}$ kind curvature tensor of the subspace $L_{M} \subset L_{N}$.
On the other hand, putting at (2.3) $\theta=1, \omega=2$, and comparing the obtained equation with (2.11), we have the $3^{r d}$ integrability condition of derivational equation (2.1).

$$
\begin{equation*}
\left.\underset{3}{R_{p \mu v}^{i}} B_{\alpha}^{p}-\widetilde{R}_{3}^{\pi}{ }_{\alpha \mu v} B_{\pi}^{i}=\left(\underset{1}{\widehat{\Omega}_{P \mu}^{r}}{\underset{2}{\alpha}}_{\alpha}^{P}-\widehat{\Omega}_{P v}^{\pi}{\underset{1}{\alpha}}_{P}^{P}\right) B_{\pi}^{i}+\underset{1}{\Omega_{\alpha \mu \mid v}^{P}}-\underset{2}{\Omega_{\alpha v \mid \mu}^{P}}\right) C_{P}^{i} \tag{2.14}
\end{equation*}
$$

a) By composing with B_{i}^{λ}, from here is obtained

$$
\begin{equation*}
\widetilde{R}_{3}^{\lambda}{ }_{\alpha \mu \nu}={\underset{3}{2}}_{p \mu \nu}^{i} B_{i}^{\lambda} B_{\alpha}^{p}+{\underset{1}{\Omega}}_{\alpha}^{P} \widehat{\Omega}_{2}^{\lambda}-{\underset{2}{\alpha v}}_{P}^{\Omega_{1}} \widehat{\Omega}_{P \mu^{\prime}}^{\lambda} \tag{2.15}
\end{equation*}
$$

which is Gauss equation of the $3^{r d}$ kind for $L_{M} \subset L_{N}$.
b) Composing (2.14) with C_{i}^{L}, one gets

$$
\begin{equation*}
\left.{\underset{3}{ }}_{R_{p \mu \nu}^{i}}^{i} C_{i}^{L} B_{\alpha}^{p}=\underset{1}{\Omega_{\alpha \mu \mid v}^{L}}\right)_{2}^{\Omega_{\alpha \mu \mid v}^{\prime}} \tag{2.16}
\end{equation*}
$$

and this is $1^{\text {st }}$ Codazzi equation of the $3^{r d}$ kind for $L_{M} \subset L_{N}$.
2.2' For B_{i}^{α}, using the Ricci type identity [1, 2], it is

$$
B_{\substack{i|\mu| v \\ 1 / 2}}^{\alpha}-B_{\substack{i|\nu| \mu \\ 2}}^{\alpha}=-R_{3}^{p}{ }_{i \mu v}^{\alpha} B_{p}^{\alpha}+\widetilde{R}_{3 \pi \nu v}^{\alpha} B_{i}^{\pi},
$$

Putting into (2.3') $\theta=1, \omega=2$, by comparing the obtained equation and (2.11'), we obtain the $3^{r d}$ integrability condition of derivational equation (2.1').

$$
-R_{3}^{p}{ }_{i \mu v} B_{p}^{\alpha}+\widetilde{R}_{3}^{\alpha}{ }_{\pi \mu v} B_{i}^{\pi}=\left(\widehat{\Omega}_{\pi \mu \mu}^{P} \widehat{\Omega}_{P v}^{\alpha}-\underset{2}{\Omega_{2 v}^{P}} \widehat{\widehat{\Omega}}_{P \mu}^{\alpha}\right) B_{i}^{\pi}+\left(\widehat{\Omega}_{P \mu \mid v}^{\alpha}-\underset{2}{\widehat{\Omega}_{P v \mid \mu}^{\alpha}}\right) C_{i}^{P} .
$$

Therefrom, analogously to previous case, we have

$$
\widetilde{R}_{3}^{\alpha}{ }_{\lambda \mu v}={ }_{3}^{p}{ }_{i \mu v} B_{p}^{\alpha} B_{\lambda}^{i}+\underset{1}{\Omega_{\lambda \mu}}{ }_{2}^{P} \widehat{\Omega}_{P v}^{\alpha}-\underset{2}{\Omega_{\lambda v}^{P}} \widehat{\Omega}_{P \mu}^{\alpha} .
$$

Doing an exchange of indices $\alpha \leftrightarrow \lambda, p \leftrightarrow i$, we see that this equation reduce to (2.15).
By composing (2.14') with C_{α}^{i}, one obtains

$$
{ }_{3}{ }_{3}^{p}{ }_{i \mu v} C_{L}^{i} B_{p}^{\alpha}=-\widehat{\Omega}_{L \mu \mid v}^{\alpha}-\underset{2}{\widehat{\Omega}_{L \mu \mid v}^{\prime}} \alpha
$$

and this is another form of the $1^{\text {st }}$ Codazzi equation of the $3^{r d}$ kind for $L_{M} \subset L_{N}$.
Based on exposed, the following theorems are valid.
Theorem 2.1. The $1^{\text {st }}$ and $2^{\text {nd }}$ kind integrability conditions of derivational equations (2.1) and (2.1') for submanifold $X_{M} \subset L_{N}$ with the structure $\left(X_{M} \subset L_{N}, \underset{\theta}{\nabla}, \theta \in\{1,2\}\right)$, where the connections ∇_{θ} are defined in (1.5), are given in (2.8) and (2.8') respectively. The $3^{\text {rd }}$ kind integrability conditions for the mentioned equations are (2.14) and (2.14').

Theorem 2.2. Gauss equations of the $1^{\text {st }}$ and the $2^{\text {nd }}$ kind are given in (2.9), and of the $3^{\text {rd }}$ one in (2.15). The $1^{\text {st }}$ Codazzi equations of the $1^{\text {st }}$ and the $2^{\text {nd }}$ kind are given in (2.10), and of the $3^{\text {rd }}$ kind in (2.16). The equations (2.10'), (2.16') are another forms of (2.10) and (2.16) respectively.

3. Integrability conditions of derivational equations for pseudonormals

3.0 In order to obtain integrability conditions for derivational equations of pseudonormals, we treat analogously to the case of tangents. From $(2.2,1)$ one obtains
and from $\left(2.2^{\prime}, 1^{\prime}\right)$:

By virtue of the Ricci type identity from [2] is

$$
\begin{equation*}
\underset{\theta}{C_{A|\mu| v}^{i}}-C_{A|v| \mu}^{i}=\underset{\theta}{R_{\theta}} i{ }_{p m n} C_{A}^{p} B_{\mu}^{m} B_{v}^{n}-\bar{R}_{\theta}^{p}{ }_{A \mu v} C_{P}^{i}+(-1)^{\theta} \widetilde{T}_{\mu \nu}^{\pi} C_{A \mid \pi^{\prime}}^{i} \quad \theta \in\{1,2\}, \tag{3.2}
\end{equation*}
$$

and also one can prove based on (1.5) that

$$
C_{\substack{i|\mu| v \\ \theta}}^{A}-C_{i|\theta| \mu}^{A}=-\underset{\theta}{A} R_{i m n}^{p} C_{p}^{A} B_{\mu}^{m} B_{v}^{n}+\bar{R}_{\theta}^{A} A C_{i v}^{P}+(-1)^{\theta} \widetilde{T}_{\mu \nu}^{\pi} C_{i \mid \pi}^{A} \quad \theta \in\{1,2\}
$$

where [1]
are the $1^{\text {st }}$ and the $2^{\text {nd }}$ kind curvature tensors of L_{N} with respect to the pseudonormal submanifold X_{N-M}^{N}.
3.1 If one substitutes $\theta=\omega \in\{1,2\}$ into (3.1) and equalizes the right sides of obtained equation and (3.2), exchanging previously $C_{A \mid \pi}^{i}$ with help of (2.2), one obtains

$$
\begin{align*}
& \underset{\theta}{R_{p m n}^{i}} C_{A}^{p} B_{\mu}^{m} B_{v}^{n}=\left[(-1)^{\theta} \widetilde{T}_{\mu \nu}^{\sigma} \widehat{\Omega}_{\theta}^{\widehat{\Omega}_{A \sigma}}-\underset{\theta}{\widehat{\Omega}_{A \mu \mid v}}+\underset{\theta}{\widehat{\Omega}_{A \nu \mid \mu}}\right] B_{\pi}^{i} \tag{3.4}\\
& +\left(\bar{R}_{\theta}^{P}{ }_{A \mu v}-\widehat{\Omega}_{\theta}^{\pi} \pi \mu_{\theta}^{\Omega_{\pi v}^{P}}+\widehat{\Omega}_{\theta}^{\pi}{ }_{A v} \Omega_{\theta}^{P}{ }_{\pi \mu}\right) C_{P}^{i}, \quad \theta \in\{1,2\},
\end{align*}
$$

and this are the $1^{\text {st }}$ and $2^{\text {nd }}$ kind integrability conditions for pseudonormals of derivational equation (2.2).
a) If one composes (3.4) with B_{i}^{λ}, it is obtained that by virtue of (1.2):

$$
\underset{\theta}{R_{p m n}^{i}} B_{i}^{\lambda} C_{A}^{p} B_{\mu}^{m} B_{v}^{n}=(-1)^{\theta} \widetilde{T}_{\mu \nu}^{\sigma} \widehat{\widehat{\Omega}}_{\theta}^{\lambda}-\widehat{\Omega}_{\theta}^{\widehat{A}_{\theta \mid \nu}}+\underset{\theta}{\widehat{\Omega}_{A v \mid \mu}^{\lambda}} .
$$

Exchanging here $i \leftrightarrow p, A \leftrightarrow L, \lambda \leftrightarrow \alpha, \sigma \leftrightarrow \pi$, we obtain (2.10').
b) Composing (3.4) with C_{i}^{L} and using (1.2) it follows that

The equation (3.5) is the $2^{n d}$ Codazzi equation of the $1^{\text {st }}$ and the $2^{\text {nd }}$ kind for $X_{M} \subset L_{N}$.
3.1 ${ }^{\prime}$ Taking $\theta=\omega \in\{1,2\}$ in (3.1'), substituting in (3.2') the corresponding value of $C_{\substack{i \mid \pi \\ A}}$ and equalizing the right sides of mentioned equations we have

$$
\begin{align*}
& \left.\underset{\theta}{R_{i m n}^{p}} C_{p}^{A} B_{\mu}^{m} B_{v}^{n}=\left[-(-1)^{\theta} \widetilde{T_{\mu v}^{\sigma}}{ }_{\theta}^{\Omega_{\pi \sigma}}+\underset{\theta}{\Omega_{\theta \mu \mid v}}{ }_{\theta}-\underset{\theta}{\Omega_{\theta v \mid \mu}}\right]_{i}\right] B_{i}^{\pi} \\
& +\left(\bar{R}_{\theta}^{A} A+\Omega_{\theta}^{A} A \widehat{\Omega}_{\theta}^{\pi}-\Omega_{\theta}^{A} \widehat{\Omega}_{\theta}^{\pi}{ }_{P \mu}\right) C_{i}^{P}, \quad \theta \in\{1,2\},
\end{align*}
$$

which is the $1^{\text {st }}$ and the $2^{\text {nd }}$ kind integrability conditions $(\theta=1,2)$ of derivational equation (2.2^{\prime}). a) Composing the previous equation with B_{λ}^{i} we get

$$
{ }_{\theta}{ }_{\theta}^{p}{ }_{i m n} C_{p}^{A} B_{\lambda}^{i} B_{\mu}^{m} B_{v}^{n}=-(-1)^{\theta} \widetilde{T}_{\mu v}^{\sigma}{\underset{\theta}{\lambda}}_{\Omega_{\lambda \sigma}}^{A}+\underset{\theta}{\Omega_{\lambda \mu \mid v}^{A}}-\underset{\theta}{\Omega_{\lambda \nu \mid \mu}}
$$

and that is, exchanging some indices, the equation (2.10).
b) If one composes (3.4') with $C_{L^{\prime}}^{i}$, it follows that
and that is (3.5).
3.2 With respect of (3.9) in [11] is

$$
\begin{equation*}
C_{A|\mu| v}^{i}-C_{A|v| \mu}^{i}={\underset{3}{2 \mid}}_{i}^{i} C_{P \nu}^{p}-\bar{R}_{A \mu v}^{p} C_{P}^{i}, \tag{3.6}
\end{equation*}
$$

where R_{3} is given in (2.12) and ([11], the equation (3.10)):

$$
\begin{equation*}
\bar{R}_{3}^{A} A{ }_{B \nu}^{A}=\bar{L}_{1}^{B \mu, v} A-\bar{L}_{2}^{A} A, \bar{L}_{1}^{P} P \bar{L}_{2}^{P} \bar{L}_{P v}^{A}-\bar{L}_{2}^{P}{ }_{1}^{P} \bar{L}_{P \mu}^{A}+\bar{L}_{v \mu}^{\pi}\left(\bar{L}_{2}^{A} A-\bar{L}_{1}^{A}\right) \tag{3.7}
\end{equation*}
$$

is the third kind curvature tensor of the space L_{N} with respect of X_{N-M}^{N}.
On the other hand, putting at (3.1) $\theta=1, \omega=2$, and equalizing the right sides of the obtained equation and (3.6), we get
and that is the $3^{r d}$ kind integrability condition for pseudonormals of derivational equation (2.2).
a) By composing (3.8) with B_{i}^{λ}, we get

$$
\begin{equation*}
\underset{3}{R_{p \mu \nu}^{i}} C_{A}^{p} B_{i}^{\lambda}=-\left(\widehat{\Omega}_{1}^{A} \widehat{2}_{2}^{\pi}-\widehat{\Omega}_{2}^{\pi}{ }_{1}^{\pi}\right), \tag{3.9}
\end{equation*}
$$

and by substitution $p \leftrightarrow i, \lambda \leftrightarrow \alpha$, one obtains (2.16').
b) Composing (3.8) with C_{i}^{L}, we have

$$
\begin{equation*}
\bar{R}_{3}^{L}{ }_{A \mu v}=R_{3}^{i} i v \nu C_{i}^{L} C_{A}^{p}+\widehat{\Omega}_{A \mu}^{\pi} \Omega_{2}^{L}-\widehat{\Omega}_{A}^{\pi} \Omega_{1}^{L} \tag{3.10}
\end{equation*}
$$

what, comparing with (3.5) we call the $2^{\text {nd }}$ Codazzi equation of the $3^{r d}$ kind.
3.2' Analogically to (3.6), can be proved that the Ricci-type identity

$$
C_{\substack{i|\mu| v \\ 112}}^{A}-C_{\substack{i|v| \mu \\ 2}}^{A}=\bar{R}_{3}{\underset{P}{\mu \nu}}_{A} C_{i}^{P}-{\underset{3}{i \mu v}}_{p}^{p} C_{p}^{A}
$$

is valid, where \bar{R}, R_{3} are given in (3.7) and (2.12) respectively.
If one takes $\theta=1, \omega=2$ in (3.1') and compares the obtained equations with (3.6'), one obtains
which is $3^{r d}$ kind integrability condition of derivational equation (2.2').
As in previous cases, from (3.8') one gets

$$
\underset{3}{R_{i \mu v}^{p}} C_{p}^{A} B_{\lambda}^{i}=\underset{1}{\Omega_{\lambda \mu \mid v}} A-{\underset{2}{2}}_{\underset{\lambda \nu \mid \mu^{\prime}}{A}}^{A}
$$

Further, from (3.8'), we obtain (3.10).
Based on exposed in this section, we have following theorems:
Theorem 3.1. The $1^{\text {st }}$ and the $2^{\text {nd }}$ kind integrability conditions of derivational equations (2.2), and (2.2') for pseudonormals of a submanifold $X_{M} \subset L_{N}$ with structure $\left(X_{M} \subset L_{N}, \nabla, \theta \in\{1,2\}\right)$, where the connections ∇_{θ}^{∇} are defined in (1.5), are given in (3.4) and (3.4') respectively. The $3^{\text {rd }}$ kind integrability conditions for these equations are (3.8), (3.8').

Theorem 3.2. The $2^{\text {nd }}$ Codazzi equation of the $1^{\text {st }}$ and the $2^{\text {nd }}$ kind is given by (3.5), and of the $3^{\text {rd }}$ one by (3.10).

References

[1] S. M. Minčić, Ricci type identities in a subspace of a space of non-summetric affine connexion, Publ. Inst. Math. (Beograd), N.S., 18(32), (1975), 137-148.
[2] S. M. Minčić, Lj. S. Velimirović, M. S. Stanković, Integrability conditions of derivational equations of a subminifold in a generalized Riemannian space, Applied Mathematics and Computation, 01(2014) 226:39.
[3] S. M. Minčić, Lj. S. Velimirović, M. S. Stanković, New integrability conditions of derivational equations of a subminifold in a generalized Riemannian space, Filomat 24:2 (2010), 137-146.
[4] S. M. Minčić, Derivational equations of submanifolds in an asymmetric affine connection space, Kragujevac Journal of Math., Vol. 35, No. 2 (2011), 265-276.
[5] M. S. Stanković, First type almost geodesic mappings of general affine connection spaces, Novi Sad J. Math. 29, No. 3 (1999), 313-323.
[6] M. S. Stanković, On a canonic almost geodesic mappings of the second type of affine spaces, Filomat 13, (1999), 105-114.
[7] M. S. Stanković, On a special almost geodesic mappings of the third type of affine spaces, Novi Sad J. Math. 31, No. 2 (2001), 125-135.
[8] M. S. Stanković, Special equitorsion almost geodesic mappings of the third type of non-symmetric affine connection spaces, Applied Mathematics and Computation, 244, (2014), 695-701.
[9] Lj. S. Velimirović, M. S. Cirić, N. M. Velimirović, On the Willmore energy of shells under infinitesimal deformations, Computers \& Mathematics with Applications 61(11), (2011), 3181-3190.
[10] K., Yano, Sur la théorie des deformations infinitesimales, Journal of Fac. of Sci. Univ. of Tokyo, 6, (1949), 1-75.
[11] K., Yano, Notes on infinitesimal variations of submanifolds, J. Math. Soc. Japan, Vol. 32, No. 4, (1980), 45-53.

[^0]: 2010 Mathematics Subject Classification. Primary 53B05; Secondary 53C25, 53A45
 Keywords. Derivation equations, submanifold, asymmetric connection, induced connection, integrability conditions
 Received: 23 February 2015; Accepted: 24 April 2015
 Communicated by Mića Stanković
 Research supported by MNTR grant 174012
 Email addresses: zlatmilan@pmf.ni.ac.rs (Milan Lj. Zlatanović), svetislavmincic@yahoo.com (Svetislav M. Minčić), vljubica@pmf.ni.ac.rs (Ljubica S. Velimirović)

