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Abstract. The shape of membrane and cable-net structures is usually modeled by geometry of minimal
surfaces. Using central finite differences method, a nonlinear iterative process for finding the minimal
surface with given fixed boundary conditions is developed and implemented in Mathematica

R© . Having
in mind form-finding of membrane structures, the results are compared with the results obtained by
commercial package EASY

R© , made by Technet GmbH, Germany.

1. Introduction

Membrane structures are undoubtedly the most appropriate way to cover large areas or objects, without
thermal insulation demands. Minimal use of building materials is an invincible argument in their favor,
primarily during the lasting financial crisis. Unfortunately, in the region of South-Eastern Europe, there are
almost none representative projects of tensile structures. Due to the lack of knowledge of domestic architects
and engineers in this field, many investors and developers habitually use ”classical” stiff construction forms,
even if all indications of the project task are in favor of membrane or other tensile structural systems (eg.
cable-nets). Worldwide, tensile structures are treated completely equally to all other structure types and
there are several methods, that have been developed for form-finding and structural analysis of membranes
and cable-nets. Veenendaal and Block in [6] give an overview of the methods commonly used for form-
finding of membranes and cable-nets.

The shape of membrane and cable-net structures corresponds to the geometry of minimal surfaces,
which is a double curved surface that occupies the smallest area under certain boundary conditions - a
particular form of boundary curves. The membrane and cable-net structures are, like the soap-film, evenly
tensioned in all directions.

The experiments with minimal surfaces and soap films and their application in architecture have been
studied since 1960’s by German engineers Frei Otto and Bodo Rasch, at the University of Stuttgart, Institute
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Figure 1: Soap film experiments (Otto,Rasch [3])

for Lightweight Structures (former IL, today ILEK). The experiments were documented very detailed in [5]
(Fig. 1).

As a result of these experimental research a few experimental buildings were built, like the building of the
Institute in Vaihingen – Stuttgart, Germany – a cable-net tent-like structure.

The experimental form finding methods reached their limits very fast – though they were crucial for the
understanding of a complete new approach in architecture: “Form follows force”. Without the experimental
form finding, it would be almost impossible to define the form, which would meet the structural ideal – the
minimal surface.

The apparatus for experimenting with physical models was rather complicated, and the preservation
was an issue. Also, further calculation on the “found” initial form was almost impossible. It was necessary
to make very expensive and complicated measuring models to make a prediction of the structural behavior
of the construction. For these reasons, a few multidisciplinary groups of engineers in Germany, Great
Britain and USA made the effort on formulating mathematical methods that would offer a faster and easier
way to generate initial structural forms that could be used for further structural analysis and could be
implemented in commercial software and would simulate the soap-film form generation.

There are several research and commercial program packages for form-finding purposes. However,
due to differences in their mathematical background and solution methods, the results may vary. For a
comprehensive review of various methods, see [6]. In [7], a visual comparison of the results of different
form finding methods for the IL building in Stuttgart has been given.

A soap film over a closed boundary curve is from the mathematical point of view a minimal surface that
can be described in various theoretical mathematical settings: variational, differential-geometric, complex
analytic etc. The classical textbook on this matter is [1].

2. Solution by Force-density Method

Software which has been used for form-finding in the present work is based on the Force Density
Method. The method has been developed by Linkwitz and Schek in 1971 in the University of Stuttgart. A
detailed description of the software package can be found in [9]. Here we give a brief explanation of the
method.

The initial point for all form finding methods is the net structure of nodes and branches whose topology
is described by matrix C, branch-node matrix or Kanten-Knoten-Matrix. It is analogous to the incidence matrix
in graph theory. Nodes can be of two types: fixed (boundary) and free (interior).
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Figure 2: A single node i of the network in the state of equilibrium

Nodes’ coordinates form a coordinate vector x, and the product u = Cx represents the branches’ coor-
dinate vector, obtained as differences of coordinates of the branch ends for every rod. Branch lengths are
obtained as l = (uTu)1/2. We use the standard notational convention: small bold letters denote vectors, and
capital bold letters denote corresponding diagonal matrices. Total matrices of the cable network which
contain coordinates of nodes, branches and their lengths will be denoted by X, U and L, respectively. For
more details, see [11].

The network is in the state of equilibrium, if in each node inner forces are balanced with external loads
p. For a single node, it is represented on the following figure:

For a chosen node i in the network, let j, k, l, m be its neighbouring nodes, a, b, c, d branches determined
by pairs of nodes i − j, i − k, i − l, i −m respectively. The force equilibrium is expressed by the equation:
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and −→ua/la is the unit vector of the branch a, we can write the equation of the equilibrium in the form
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−→ua + qb
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−→uc + qd
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where the new quantities qa = fa/la, qb = fb/lb, qc = fc/lc, qd = fd/ld form a vector q. This quantity represents
the force on the unit length of the branch, known as the force density (Schek [11]), or stress coefficient
(Barnes [12]). This equation of the equilibrium has vector character and splits into three scalar equations
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These equations are not linear, since there are squares of the coordinates of the nodes a, b, c, d in the
denominators.

The equilibrium equation of the whole cable network can be written in the following form:

Pi − Ci
Tg(u) = 0 (7)

Here,Pi contains the vectors of external forces in all interior nodes, and Ci
T represents the vector of internal

equivalent nodal forces for the whole network. Applying Taylor expansion to the second term, the system
is linearized. One arrives at linear system with indeterminate coordinates of the interior nodes

KT∆x = r (8)

where

KT = CT
i

(
∂g(u)
∂u

)
ui=u0

(9)

is the tangential stiffness matrix of the cable network, and r(u) = r(x) is non-balanced load in the network
nodes in arbitrary iteration step. Vector u = u0 contains branch coordinates of the preceding equilibrium
state of the network.

System in Eq. 8 leads to an iterative process

K(i)
T ∆x(i+1) = r(i) (10)

and the iteration is continued until the residual load is zero r(i) = 0 up to a certain given precision, which
leads to equilibrium state in all nodes of the cable network.

The system is usually solved by standard or modified Newton-Raphson iterative method.

3. Direct Non-linear Iterative Solution for Minimal Surface Problem

For the purposes of this work, we use the explicit 2-variable formulation of the problem as second
order quasi-linear partial differential equation with boundary condition, arising from the Euler-Lagrange
area-minimizing condition. For a given open domain U ⊂ R2 with compact boundary B = ∂U we are
looking for a function z = f

(
x, y

)
: U→ R which satisfies the equation(

1 + f 2
x

)
fyy +

(
1 + f 2

y

)
fxx − 2 fx fy fxy = 0. (11)

Here, standard notation for partial derivatives ( fx =
∂ f
∂x etc.) is used.

As a model example, we take a rectangular domain U = (a, b) × (c, d) bounded by a rectangle B =
{a} × (c, d)∪ {b} × (c, d)∪ (a, b)× {c} ∪ (a, b)× {d}. We use equidistant rectangular mesh with n + 1 points along
x-axis and m + 1 points along y-axis, with steps h and k respectively, division points xi = a + ih, y j = c + jk
and mesh knots Pi j = Pi j

(
xi, y j

)
(i = 0, . . . ,n, j = 0, . . . ,m).

For discretization purposes we use central finite differences – a common approximation method. Ap-
proximations of partial derivatives in the inner points of the mesh are:
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where the subscripts represent the values of the function f in mesh points fi, j = f
(
Pi j

)
= f

(
xi, y j

)
. The

approximation error has second order with respect to h, k. This gives rise to a system of (not linear, but
cubic) equations with (n − 1) × (m − 1) indeterminate values of f in the interior mesh points:(
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= 0

However, due to original discretization, this nonlinear system transforms easily into iterative process
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where, in order to find the value in one mesh point, the eight neighbouring mesh points are being used
(four horizontal and vertical, but also four diagonal points). Although this is in the spirit of the method
used in [2] and elsewhere (the Newton iteration with relaxation parameter), this one is different: it is a
non-linear, non-Newton iteration method.

As the initial value f (0) for f in the iterative process we take the solution of the Laplace’s equation

fxx + fyy = 0 (15)

with the same boundary condition. Using the same central difference formulas, this equation linearizes to
a simple linear system in the standard iterative form

fi j =
1
4

(
fi+1, j + fi−1, j + fi, j+1 + fi, j−1

)
. (16)

In calculated examples we use linear boundary conditions (BC). If the value f
(
x, y

)
is interpreted as the

height of the spatial point over
(
x, y

)
∈ B, the BC are visualized as space quadrilateral Q =

{(
x, y, f

(
x, y

))
:
(
x, y

)
∈ B

}
.

4. Results

The first model example is an asymmetric patch over the domain U = (−1, 1) × (−1, 1) with different
heights of z = 8 and z = 16 over the opposite corners (and height z = 0 in the two other corners), divided
into rectangular mesh with n = m = 21. Programming the process described in Section 3 in the package
Mathematica

R©
, we establish that it converges to a solution of the original minimal surface equation. The

initial approximation f (0) (the solution of the Laplace’s equation) is obtained in 761 iterations with iteration
precision of ε = 10−5. As expected, it is a hyperbolic-paraboloidal patch.
On Fig. 3 the minimal surface f obtained by the iterative process starting with f (0) is shown, obtained in
427 iterations with iteration precision of ε = 10−5. The maximum of the difference between f (0) and f over
the given domain is maxU

∣∣∣ f − f (0)
∣∣∣ = 0.2390. The graphical representation of this difference is practically

the same as in Fig. 5 below. The solution f should be regarded as the exact minimal surface according to
given boundary conditions.

Using the commercial software EASY
R©

, produced by Technet GmbH for form-finding in the same
example setting with the same boundary conditions without external loads,the surface 1 is obtained. This
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Figure 3: The initial approximation f (0) (left) and the minimal surface f (right)

Figure 4: The minimal surface f and the surface 1 obtained by EASY
R©
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Figure 5: The difference f − 1.

Figure 6: Example from [2] (left to right): f (0), f , mean curvature of f (0) and f − f (0).

surface is practically the same as our initial surface f (0) (see Fig. 3 left) obtained by solution of the Laplace’s
equation, the maximum difference of the two over the given domain being maxU

∣∣∣1 − f (0)
∣∣∣ = 0.00789.

Fig. 4 shows both the minimal surface f and the surface 1 found by EASY
R©

on the same graph. As it is seen,
there are differences between this solution and the minimal surface solution, which can be noted especially
in the region close to the higher corner.
The next Fig. 5 shows the difference between the minimal surface f found by our method and the surface 1,
multiplied by factor 10.0 for visibility. The maximum difference of the two solutions over the given domain
is maxU

∣∣∣ f − 1∣∣∣ = 0.23942. This amounts approximately to 1.50% of the height.
The second example is the model example from [2]. The only non-zero boundary line is the sinusoidal

arc. The initial approximation f (0) (the solution of the Laplace’s equation) is obtained in 670 iterations
with iteration precision of ε = 10−5, and the minimal surface f in 620 iterations with the same precision.
The maximum of the difference between f (0) and f over the given domain is maxU

∣∣∣ f − f (0)
∣∣∣ = 0.1990. The

graphical representation of f (0), f , the mean curvature of f (0) (which is not zero since this is not a minimal
surface) and the difference between f (0) and f multiplied by factor 10.0 are shown in Fig. 6.

In the third example we changed the boundary condition in order to have two sinusoidal arcs on
two opposite sides - a saddle-like structure. The initial approximation f (0) (the solution of the Laplace’s
equation) is obtained in 726 iterations with iteration precision of ε = 10−5, and the minimal surface f in
761 iterations with the same precision. The maximum of the difference between f (0) and f over the given
domain is maxU

∣∣∣ f − f (0)
∣∣∣ = 0.2011. The corresponding graphical representations are shown in Fig. 7.

As the last example we used one-point fixed support in the centre of the patch (tent-like structure).
In this singular case (the boundary consists of a closed line and an interior fixed point at the centre), our
approach is not applicable, and the Laplace’s equation solution gives a more plausible result (570 iterations,
ε = 10−5, Fig. 8 left), while the minimal surface solution (719 iterations, ε = 10−5, Fig. 8 right) tends to
become flat and singular with one-point discontinuity.
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Figure 7: A saddle-like structure with sinusoidal boundaries (left to right): f (0), f , mean curvature of f (0) and f − f (0).

Figure 8: The case of singular boundary.

5. Conclusion

The standard model of the soap film surface developed in architecture by Frei Otto led to a widely spread
belief that the best architectural solution for tensile structures is the minimal surface. In the present paper,
a simple iterative nonlinear process which can be used to obtain the exact minimal surface over a fixed
given quadrilateral domain is described. The commercial software used for the same purpose as its output
usually does not give the minimal surface but the surface which corresponds to the solution of the Laplace’s
equation. Four analyzed examples are shown: the asymmetric hyperboloidal patch, the Concus’ sine arc
example, the modified saddle-like structure example and the tent-like structure with singular boundary.
The difference of the two approaches did not exceed 1.50% of the height. Under standard exploiting
conditions, this does not consist a notable difference. Under heavy load circumstances, the difference might
be considered notable. The simple finite-difference approach with rectangular elements described above
does not, however, possess the flexibility of the finite-element approach (triangular elements etc.) with
flexible boundary conditions, used in the commercial software. It is also not suitable in the case of singular
boundary, as the last example shows.
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