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Abstract.
In this paper, we state and prove a generalization of Ćirić fixed point theorems in metric space by using

a new generalized quasi-contractive map. These theorems extend other well known fundamental metrical
fixed point theorems in the literature (Banach [1], Kannan [11], Nadler [13], Reich [15], etc.) Moreover, a
multi-valued version for generalized quasi-contraction is also established.

1. Introduction

The Banach’s contraction principle [1] which was first appeared in 1922 is one of the most useful and
important theorems in classical functional analysis. Its utility is not only to prove that, in a complete metric
space X, the contraction map T (i.e., d(Tx,Ty) ≤ αd(x, y) for some 0 ≤ α < 1 and for all x, y ∈ X) has a unique
fixed point but also to show that the Picard iteration converges to the fixed point. For the reason that the
contraction must be continuous, there are many researchers establish the fixed point theorems on various
classes of operators that are weaker than contractive conditions but are not continuous, see for example
[11, 15].

One of the most well-known results in generalizations of Banach’s contraction principle which the Picard
iteration still converges to the fixed point of map is the Ćirić fixed point theorem [4]. Before providing the
Ćirić fixed point theorem, we recall that a self-map T on a metric space (X, d), is said to be a quasi-contraction
iff there exists a nonnegative number q < 1 such that for all x, y ∈ X,

d(Tx,Ty) ≤ q ·max
{
d(x, y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)

}
. (1)

The Ćirić fixed point theorem is given by the following theorem.

Theorem 1.1 ([4], Theorem 1). Let the metric space X be T-orbitally complete and let T be a quasi-contraction.
Then we have
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1. T has a unique fixed point x∗ in X.
2. lim

n→∞
Tnx = x∗ for all x ∈ X.

3. d(Tnx, x∗) ≤
qn

1 − q
d(x,Tx) for all x ∈ X.

This result was generalized to many results, such as a common fixed point theorem of nonlinear
contraction [17, Theorem 4], a generalized ϕ-contraction [2, Section 2.6], a Ćirić almost contraction [3,
Theorem 3.2] and see also [5, 10, 12]. But from the well-known result of Rhoades [14] in 1977 to recent
surveys, in Berinde [2] and Collaco and Silva [6] for instance, there were no any other value added to
quasi-contraction condition. On the other hand, the Banach’s contraction principle has been extended to
multi-valued contractions by Nadler [13] and see also [7–9, 16].

In this paper, we define a new generalized quasi-contraction by adding four new values d(T2x, x),
d(T2x,Tx), d(T2x, y), d(T2x,Ty) to a quasi-contraction condition. Also, an example is presented. After that
we state and prove unique fixed point theorems which are the generalization of Ćirić fixed point theorem
in [4]. Moreover, we also establish fixed point theorems for multi-valued generalized quasi-contraction.

2. Preliminaries

First, we recall some notions which will be used in what follows. Let (X, d) be a metric space and A,B
be any two subsets of X. We denote

D(A,B) = inf
{
d(a, b) : a ∈ A, b ∈ B

}
ρ(A,B) = sup

{
d(a, b) : a ∈ A, b ∈ B

}
BN(X) =

{
A : ∅ , A ⊂ X and δ(A) < +∞

}
,

where δ(A) := sup
{
d(a, b) : a, b ∈ A

}
.

Definition 2.1 ([4]). Let T : X −→ X be a map on metric space. For each x ∈ X and for any positive integer n, put

OT(x,n) = {x,Tx, . . . ,Tnx} and OT(x,+∞) = {x,Tx, . . . ,Tnx, . . .}.

The set OT(x,+∞) is called the orbit of T at x and the metric space X is called T-orbitally complete if every Cauchy
sequence in OT(x,+∞) is convergent in X.

Note that every complete metric space is T-orbitally complete for all maps T : X −→ X. The following
example shows that there exists a T-orbitally complete metric space but it is not complete.

Example 2.2. Let (X, d) be a metric space which is not complete and T : X −→ X be the map defined by Tx = x0 for
all x ∈ X and some x0 ∈ X. Then (X, d) is a T-orbitally complete metric space which is not complete.

Definition 2.3 ([4]). Let F : X −→ BN(X) be a multi-valued mapping. Let x0 ∈ X, an orbit of F at x0 is a sequence{
xn : xn ∈ Fxn−1,n ∈N

}
.

A space X is called to be F-orbitally complete if every Cauchy sequence which is a subsequence of an orbit of F at x
for some x ∈ X, converges in X.

Next, the definitions of generalized quasi-contraction for single-valued and multi-valued are given as
follows;
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Definition 2.4. Let T : X −→ X be a mapping on metric space X. The mapping T is said to be a generalized
quasi-contraction iff there exists q ∈ [0, 1) such that for all x, y ∈ X,

d(Tx,Ty) ≤ q ·max
{
d(x, y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx), (2)

d(T2x, x), d(T2x,Tx), d(T2x, y), d(T2x,Ty)
}
.

Example 2.5. Let X = {1, 2, 3, 4, 5} with d defined as

d(x, y) =


0 if x = y
2 if (x, y) ∈

{
(1, 4), (1, 5), (4, 1), (5, 1)

}
1 otherwise.

Let T : X −→ X be defined by
T1 = T2 = T3 = 1,T4 = 2,T5 = 3.

Then, we have
d(Tx,Ty) = d(1, 1) = 0 if x, y ∈ {1, 2, 3};

d(T1,T4) = d(T2,T4) = d(T3,T4) = d(1, 2) = 1;

d(T1, 4) = d(T2, 4) = d(T3, 4) = d(1, 4) = 2;

d(T1,T5) = d(T2,T5) = d(T3,T5) = d(1, 3) = 1;

d(T1, 5) = d(T2, 5) = d(T3, 5) = d(1, 5) = 2;

d(T4,T5) = d(2, 3) = 1;

d(4, 5) = d(4,T4) = d(5,T5) = d(4,T5) = d(5,T4) = 1;

d(T24, 4) = d(T2, 4) = d(1, 4) = 2;

d(T25, 5) = d(T3, 5) = d(1, 5) = 2.

The above calculations show that T is not quasi-contraction for x = 4 and y = 5 because there is no a nonnegative
number q < 1 satisfying the equation (2). However, T is generalized quasi-contraction since the (2) holds for some
q ∈

[
0.5, 1

)
and for all x, y ∈ X.

3. The Main Results

On the following results, we state and prove the new fixed point theorems which are general cases of
the Ćirić fixed point theorem.

Theorem 3.1. Let (X, d) be a metric space. Suppose that T : X −→ X is a generalized quasi-contraction and X is
T-orbitally complete. Then we have

1. T has a unique fixed point x∗ in X.
2. lim

n→∞
Tnx = x∗ for all x ∈ X.

3. d(Tnx, x∗) ≤
qn

1 − q
d(x,Tx) for all x ∈ X and n ∈N.
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Proof. (1). Step 1. T has a fixed point. For each x ∈ X and 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n, we have

d(Tix,T jx) (3)
= d(TTi−1x,TT j−1x)

≤ q.max
{
d(Ti−1x,T j−1x), d(Ti−1x,TTi−1x), d(T j−1x,TT j−1x), d(Ti−1x,TT j−1x),

d(T j−1x,TTi−1x), d(T2Ti−1x,Ti−1x), d(T2Ti−1x,TTi−1x), d(T2Ti−1x,T j−1x)

d(T2Ti−1x,TT j−1x)
}

= q.max
{
d(Ti−1x,T j−1x), d(Ti−1x,Tix), d(T j−1x,T jx), d(Ti−1x,T jx),

d(T j−1x,Tix), d(Ti+1x,Ti−1x), d(Ti+1x,Tix), d(Ti+1x,T j−1x)

d(Ti+1x,T jx)
}

≤ q.δ
[
OT(x,n)

]
where δ

[
OT(x,n)

]
= max

{
d(Tix,T jx) : 0 ≤ i, j ≤ n

}
.

From (3), since 0 ≤ q < 1, there exists kn(x) ≤ n such that

d(x,Tkn(x)x) = δ
[
OT(x,n)

]
. (4)

Then we have

d(x,Tkn(x)x) ≤ d(x,Tx) + d(Tx,Tkn(x)x)

≤ d(x,Tx) + q.δ
[
OT(x,n)

]
= d(x,Tx) + q.d(x,Tkn(x)x).

It implies that

δ
[
OT(x,n)

]
= d(x,Tkn(x)x) ≤

1
1 − q

d(x,Tx). (5)

For all n,m ≤ 1 and n < m, it follows from the generalized quasi-contractive condition of T and (5) that

d(Tnx,Tmx) = d(TTn−1x,Tm−n+1Tn−1x) (6)

≤ q.δ
[
OT(Tn−1x,m − n + 1)

]
= q.d(Tn−1x,Tkm−n+1(Tn−1x)Tn−1x)

= q.d(TTn−2x,Tkm−n+1(Tn−1x)+1Tn−2x)

≤ q2.δ
[
OT(Tn−2x, km−n+1(Tn−1x) + 1)

]
≤ q2.δ

[
OT(Tn−2x,m − n + 2)

]
≤ . . .

≤ qn.δ
[
OT(x,m)

]
≤

qn

1 − q
d(x,Tx).

Since lim
n→∞

qn = 0, {Tnx} is a Cauchy sequence in X. Since X is T-orbitally complete, there exists x∗ ∈ X
such that

lim
n→∞

Tnx = x∗. (7)
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By using the generalized quasi-contractive condition of T again, we have

d(x∗,Tx∗) (8)
≤ d(x∗,Tn+1x) + d(Tn+1x,Tx∗)
= d(x∗,Tn+1x) + d(TTnx,Tx∗)

≤ d(x∗,Tn+1x) + q.max
{
d(Tnx, x∗), d(Tnx,TTnx), d(x∗,Tx∗), d(Tnx,Tx∗),

d(x∗,TTnx), d(T2Tnx,Tnx), d(T2Tnx,TTnx), d(T2Tnx, x∗), d(T2Tnx,Tx∗)
}

= d(x∗,Tn+1x) + q.max
{
d(Tnx, x∗), d(Tnx,Tn+1x), d(x∗,Tx∗), d(Tnx,Tx∗),

d(x∗,Tn+1x), d(Tn+2x,Tnx), d(Tn+2x,Tn+1x), d(Tn+2x, x∗), d(Tn+2x,Tx∗)
}
.

Taking the limit as n → ∞ in (8), and using (7), we get d(x∗,Tx∗) ≤ qd(x∗,Tx∗). Since q ∈ [0, 1), we obtain
d(x∗,Tx∗) = 0, that is, x∗ = Tx∗. Then T has a fixed point.

Step 2. The fixed point of T is unique. Let x∗, y∗ be two fixed points of T. Since T is generalized
quasi-contraction, we have

d(x∗, y∗) = d(Tx∗,Ty∗)

≤ q.max
{
d(x∗, y∗), d(x∗,Tx∗), d(y∗,Ty∗), d(x∗,Ty∗), d(y∗,Tx∗),

d(T2x∗, x∗), d(T2x∗,Tx∗), d(T2x∗, y∗), d(T2x∗,Ty∗)
}

= qd(x∗, y∗).

Since q ∈ [0, 1), we obtain d(x∗, y∗) = 0. That is, x∗ = y∗. Then the fixed point of T is unique.
(2). It is proved by (7).

(3). Taking the limit as m→∞ in (6), we get d(Tnx, x∗) ≤
qn

1 − q
d(x,Tx).

Corollary 3.2. Let (X, d) be a metric space and T : X −→ X be a map satisfying the following:

1. X is T-orbitally complete.
2. There exists k ∈N and q ∈ [0, 1) such that for all x, y ∈ X,

d(Tkx,Tky) ≤ q.max
{
d(x, y), d(x,Tkx), d(y,Tky), d(x,Tky), d(y,Tkx), (9)

d(T2kx, x), d(T2kx,Tkx), d(T2kx, y), d(T2kx,Tky)
}
.

Then we have

1. T has a unique fixed point x∗ in X.

2. d(Tnx, x∗) ≤
qm

1 − q
max

{
d(Tix,Ti+kx) : i = 0, 1, . . . , k − 1

}
for all x ∈ X and n ∈ N where m is the greatest

integer not exceeding
n
k

.

3. lim
n→∞

Tnx = x∗ for all x ∈ X.

Proof. (1). By the conclusion of Theorem 3.1, Tk has a unique fixed point x∗ and Tk(Tx∗) = T(Tkx∗) = Tx∗. It
implies that Tx∗ = x∗, that is, T has a fixed point x∗. The uniqueness of the fixed point of T is easy to see.

(2). Let n ∈ N. Then n = mk + j, 0 ≤ j < k and for each x ∈ X, Tnx = (Tk)mT jx. It follows from
Theorem 3.1.(3) that

d(Tnx, x∗) ≤
qm

1 − q
d(T jx,TkT jx)

≤
qm

1 − q
max

{
d(Tix,Ti+kx) : i = 0, 1, . . . , k − 1

}
.
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(3). It is a direct consequence of (2).

Corollary 3.3 ([4], Theorem 2). Let (X, d) be a metric space and T : X −→ X be a map satisfying the following:

1. X is T-orbitally complete.
2. There exists k ∈N and q ∈ [0, 1) such that for all x, y ∈ X,

d(Tkx,Tky) ≤ q.max
{
d(x, y), d(x,Tkx), d(y,Tky), d(x,Tky), d(y,Tkx)

}
. (10)

Then we have

1. T has a unique fixed point x∗ in X;

2. d(Tnx, x∗) ≤
qm

1 − q
max

{
d(Tix,Ti+kx) : i = 0, 1, . . . , k − 1

}
for all x ∈ X and n ∈ N where m is the greatest

integer not exceeding
n
k

;

3. lim
n→∞

Tnx = x∗ for all x ∈ X.

Now, we denote the multi-valued mapping F : X −→ BN(X) of generalized quasi-contraction by

ρ(Fx,Fy) ≤ q.max
{
d(x, y), ρ(x,Fx), ρ(y,Fy),D(x,Fy),D(y,Fx), (11)

D(F2x, x),D(F2x,Fx),D(F2x, y),D(F2x,Fy)
}
,

for some q ∈ [0, 1) and for all x, y ∈ X. The following theorem presents the fixed point theorem for
multi-valued version of generalized quasi-contractive mapping.

Theorem 3.4. Let (X, d) be a metric space and F : X −→ BN(X) be a multi-valued map. Suppose that F is a
generalized quasi-contraction and X is F-orbitally complete. Then we have

1. F has a unique fixed point x∗ in X and Fx∗ = {x∗}.
2. For each x0 ∈ X, there exists an orbit {xn}n of F at x0 such that lim

n→∞
xn = x∗ for all x ∈ X, and

3. d(xn, x∗) ≤
(q1−a)n

1 − q1−ad(x0, x1) for all n ∈N, where a < 1 is any fixed positive number.

Proof. (1). Given a ∈ (0, 1) and defined a single-valued mapping T : X −→ X by the following statement:

f or each x ∈ X, Tx ∈ Fx satis f ies d(x,Tx) ≥ qaρ(x,Fx).

By the Definition 2.3 and the condition of F, we have for every x, y ∈ X,

d(Tx,Ty) ≤ ρ(Fx,Fy)

≤ q max
{
d(x, y), ρ(x,Fx), ρ(y,Fy),D(x,Fy),D(y,Fx),

D(F2x, x),D(F2x,Fx),D(F2x, y),D(F2x,Fy)
}

= qq−a max
{
qad(x, y), qaρ(x,Fx), qaρ(y,Fy), qaD(x,Fy), qaD(y,Fx),

qaD(F2x, x), qaD(F2x,Fx), qaD(F2x, y), qaD(F2x,Fy)
}

≤ q1−a max
{
d(x, y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx),

d(T2x, x), d(T2x,Tx), d(T2x, y), d(T2x,Ty)
}
.

By Theorem 3.1, we conclude that T has a unique fixed point x∗. Then ρ(x∗,Fx∗) ≤ qad(x∗,Tx∗) = 0 implies
that ρ(x∗,Fx∗) = 0. Then x∗ is a fixed point of F and Fx∗ = {x∗}. From the direct consequences of Theorem 3.1
where xn = Tnx for all n ∈N, we obtain that (2) and (3) hold.
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Corollary 3.5 ([4], Theorem 3). Let (X, d) be a metric space and F : X −→ BN(X) be a multi-valued map satisfying
the following:

1. X is F-orbitally complete.
2. There exists q ∈ [0, 1) such that for all x, y ∈ X,

ρ(Fx,Fy) ≤ q.max
{
d(x, y), ρ(x,Fx), ρ(y,Fy),D(x,Fy),D(y,Fx)

}
. (12)

Then we have

1. F has a unique fixed point x∗ in X and Fx∗ = {x∗}.
2. For each x0 ∈ X, there exists an orbit {xn}n of F at x0 such that lim

n→∞
xn = x∗ for all x ∈ X, and

3. d(xn, x∗) ≤
(q1−a)n

1 − q1−ad(x0, x1) for all n ∈N, where a < 1 is any fixed positive number.

Example 3.6. Let (X, d) and T : X −→ X be defined by Example 2.5.
It is easy to see that X is T-orbitally complete metric space. By the definition of the distance d and mapping T , we

conclude that X and T satisfy all of the conditions in Theorem 3.1. Clearly, x∗ = 1 is a unique fixed point of T.
Note that, if x ∈ {1, 2, 3} then Tnx = 1 for n = 1, 2, 3, ... and if x ∈ {4, 5} then Tnx = 1 for n = 2, 3, 4, .... That is

lim
n→∞

Tnx = x∗ for all x ∈ X.

Let q ∈
[
0.5, 1

)
be fixed by the generalized quasi-contraction of T which arises from Example 2.5. We see that the

inequality d(Tnx, x∗) ≤
qn

1 − q
d(x,Tx) holds for all x ∈ X and n ∈N.

Therefore, this example is presented to certify the results of Theorem 3.1. However, it is not applicable to Theorem
1.1.

Lemma 3.7. Example 3.6 shows that our results are proper generalizations of Ćirić fixed point theorems in [4]. Then
our results are exactly a new form of fixed point theorems in metric spaces. Moreover, we may generalized other fixed
point theorems contained at most five mentioned values in the literature to that contain d(T2x, x), d(T2,Tx), d(T2x, y),
d(T2x,Ty) in addition.
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[3] V. Berinde, General constructive fixed point theorems for Ćirić-type almost contractions in metric spaces, Carpathian J. Math. 24 (2008)

no. 2, 10 – 19.
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