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Abstract. In this note, we define the generalized Fibonacci-Narayana sequence {Gn(a, b, c)}n∈N. After that,
we derive some relations between these sequences, and permanents and determinants of one type of upper
Hessenberg matrix.

1. Introduction

There are so many studies in the literature that concern about the generalized Fibonacci sequences (cf.
[5–9, 18, 19]). In particular, in this paper we introduce the sequence {Gn(a, b, c)}n∈N, which is defined as
follows:

Gn(a, b, c) = aGn−1(a, b, c) + bGn−c(a, b, c), 2 6 c 6 n, (1)

with initial conditions G0(a, b, c) = 0, Gi(a, b, c) = 1, for i = 1, 2, . . . , c − 1. The constants a and b are nonzero
real numbers. We call this sequence generalized Fibonacci-Narayana sequence. Note that, if a = b = 1 and c = 2,
the Fibonacci sequence is obtained, and if a = 1 = b and c = 3, the Narayana sequence is obtained [1, 12].

Other particular cases of the sequence {Gn(a, b, c)}n∈N are

• If a = b = 1, the generalized Fibonacci sequence is obtained [2].

Gn = Gn−1 + Gn−c.

• If c = 2, the generalized Fibonacci sequence is obtained.

Gn = aGn−1 + bGn−2.

• If a = k, b = 1 and c = 2, the k-Fibonacci sequence is obtained [10].

Fk,n = kFk,n−1 + Fk,n−2.
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• If a = 1 and b = c = 2, the Jacobsthal sequence is obtained [13].

Jn = Jn−1 + 2Jn−2.

On the other hand, an upper Hessenberg matrix, An, is an n× n matrix, where ai, j = 0 whenever i > j + 1
and a j+1, j , 0 for some j. That is, all entries bellow the superdiagonal are 0 but the matrix is not upper
triangular.

An =



a1,1 a1,2 a1,3 · · · a1,n−1 a1,n
a2,1 a2,2 a2,3 · · · a2,n−1 a2,n
0 a3,2 a3,3 · · · a3,n−1 a3,n
...

...
... · · ·

...
...

0 0 0 · · · an−1,n−1 an−1,n
0 0 0 · · · an,n−1 an,n


. (2)

In this paper, we consider a type of upper Hessenberg matrix whose permanent is the generalized Fibonacci-
Narayana sequence. The permanent of a matrix is similar to the determinant but all the sign used in the
Laplace expansion of minors are positive [21].

There are a lot of relations between determinants or permanents of matrices and number sequences. For
example, Yilmax and Bozkurt [27] defined the matrix

Hn =



1 1 −1 0
1 1 1 1

1 1 1 1
. . .

. . .
. . .

. . .
1 1 1 1

1 1 1 −1
1 1 1

0 1 1


, (3)

and showed that
per(Hn) = Pn,

where Pn is the n-th Pell number, i.e., Pn = 2Pn−1 + Pn−2, (n > 2), where P1 = 1,P2 = 2. In [28], the
authors obtained some relations between Padovan sequence and permanents of one type of Hessenberg
matrix. Kiliç [16] obtained some relations between the Tribonacci sequence and permanents of one type
of Hessenberg matrix. Öcal et al. [22] studied some determinantal and permanental representations of
k-generalized Fibonacci and Lucas numbers. Janjić [14] considered a particular upper Hessenberg matrix
and showed its relations with a generalization of the Fibonacci numbers. In [20], Li obtained three new
Fibonacci-Hessenberg matrices and studied its relations with Pell and Perrin sequence. More examples can
be found in [4, 11, 15, 17, 24–26].

2. The Main Theorem

Definition 2.1. The permanent of an n-square matrix is defined by

perA =
∑
σ∈Sn

n∏
i=1

aiσ(i),

where the summation extends over all permutations σ of the symmetric group Sn.
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Let A = [ai j] be an m × n real matrix with row vectors r1, r2, . . . , rm. We say A is contractible on column k if
column k contains exactly two nonzero entries. Suppose A is contractible on column k with aik , 0 , a jk and
i , j. Then the (m − 1) × (n − 1) matrix Ai j:k obtained from A replacing row i with a jkri + aikr j, and deleting
row j and column k is called the contraction of A on column k relative to rows i and j. If A is contractible
on row k with aki , 0 , akj and i , j, then the matrix Ak:i j = [AT

ij:k]T is called the contraction of A on row k
relative to columns i and j.

Brualdi and Gibson [3] proved the following result about the permanent of a matrix.

Lemma 2.2. Let A be a nonnegative integral matrix of order n > 1 and let B be a contraction of A. Then

perA = perB.

Define the n-square Hessenberg matrix Dn(a, b, c) as ds+1,s = 1, for s = 1, . . . ,n − 1, di,i = a for i = 1, . . . ,n,
d1,2 = d1,3 = · · · = d1,c = b, dt,c+t−1 = b for t = 2, . . . ,n − c + 1, and otherwise 0, i.e.,

Dn(a, b, c) =



a b b · · · b 0
1 a 0 0 · · · b

. . .
. . .

. . .
. . .

. . .
1 a 0 0 · · · b

. . .
. . .

. . .
. . .

1 a 0 0
1 a 0

0 1 a


. (4)

Theorem 2.3. Let Dn(a, b, c) be an n-square matrix as in (4), then

perDn(a, b, c) = Gn+c−1(a, b, c), (5)

for all integer n ≥ c > 2.

Proof. Let Dn(a, b, c)(r) be the r-th contraction of Dn(a, b, c). By definition of the matrix Dn(a, b, c), it can be
contracted on column 1, then

Dn(a, b, c)(1) =



a2 + b b b · · · b ab 0
1 a 0 0 · · · b

. . .
. . .

. . .
. . .

. . .
1 a 0 0 · · · b

. . .
. . .

. . .
. . .

1 a 0 0
1 a 0

0 1 a


.

Dn(a, b, c)(1) also can be contracted on first column:

Dn(a, b, c)(2) =



a3 + ab + b b b · · · b ab a2b + b2 0
1 a 0 0 · · · b

. . .
. . .

. . .
. . .

. . .
1 a 0 0 b

. . .
. . .

. . .
. . .
1 a 0 0

1 a 0
0 1 a


.
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Going with this process, we obtain the n − c contraction. We have two cases. If n ≥ 2c,

Dn(a, b, c)(n−c) =



Gn(a, b, c) 1n−2c+4(a, b, c) 1n−2c+5(a, b, c) · · · 1n−c+2(a, b, c)
1 a 0 · · · 0

. . .
. . .

...
1 a 0 0

1 a 0
0 1 a


,

or if n < 2c,

Dn(a, b, c)(n−c) =



Gn(a, b, c) 12(a, b, c) · · · 12(a, b, c) 13(a, b, c) · · · 1n−c+2(a, b, c)
1 a 0 · · · 0 · · · 0

. . .
. . .

. . .
1 a 0 0

1 a 0
0 1 a


,

where
{
1n(a, b, c)

}
n∈N is the sequence defined by

10(a, b, c) = 0, 11(a, b, c) = b, 12(a, b, c) = b, and 1n(a, b, c) = bGc+n−3(a, b, c), n ≥ 3.

It is clear that

bGi(a, b, c) = 11(a, b, c) = 12(a, b, c) = b, for i = 1, 2, . . . , c − 1. (6)

Suppose that n ≥ 2c. Then from definition of the sequence
{
1n(a, b, c)

}
n∈N we have

Dn(a, b, c)(n−c) =



Gn(a, b, c) bGn−c+1(a, b, c) bGn−c+2(a, b, c) · · · bGn−1(a, b, c)
1 a 0 · · · 0

. . .
. . .

...
1 a 0 0

1 a 0
0 1 a


.

Dn(a, b, c)(n−c) also can be contracted on first column:

Dn(a, b, c)(n−c+1) =



Gn+1(a, b, c) bGn−c+2(a, b, c) bGn−c+3(a, b, c) · · · bGn−1(a, b, c)
1 a 0 · · · 0

. . .
. . .

...
1 a 0 0

1 a 0
0 1 a


.

Hence, the (n − 3)th contraction is

Dn(a, b, c)(n−3) =

Gn+c−3(a, b, c) bGn−2(a, b, c) bGn−1(a, b, c)
1 a 0
0 1 a


which, by contraction of Dn(a, b, c)(n−3) on column 1,

Dn(a, b, c)(n−2) =

[
Gn+c−2(a, b, c) bGn−1(a, b, c)

1 a

]
.
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Then from Lemma 2.2

perDn(a, b, c) = perDn(a, b, c)(n−2) = aGn+c−2(a, b, c) + bGn−1(a, b, c) = Gn+c−1(a, b, c).

If n < 2c the proof runs like.

Particular cases of the previous theorem are

• If a = b = 1 and c = 2 we have the matrix

Dn(1, 1, 2) =



1 1 0
1 1 1

. . .
. . .

. . .
1 1 1

. . .
. . .

. . .
1 1 1

1 1 1
0 1 1


, (7)

such that perDn(1, 1, 2) = Fn+1 for all n > 2.

• If c = 2 we have the matrix

Dn(a, b, 2) =



a b 0
1 a b

. . .
. . .

. . .
1 a b

. . .
. . .

. . .
1 a b

1 a b
0 1 a


, (8)

such that perDn(a, b, 2) = Gn+1 for all n > 2, where Gn is the n-th generalized Fibonacci sequence. For
example, if a = 3 and b = 2, we obtain that

{per
[
3 2
1 3

]
, per

3 2 0
1 3 2
0 1 3

 , per


3 2 0 0
1 3 2 0
0 1 3 2
0 0 1 3

 , per


3 2 0 0 0
1 3 2 0 0
0 1 3 2 0
0 0 1 3 2
0 0 0 1 3

 , . . . }
= {11, 39, 139, 495, . . . }

• If a = b = 1 and c = 3 we have the matrix

Dn(1, 1, 3) =



1 1 1 0
1 1 0 1

. . .
. . .

. . .
. . .

1 1 0 1
. . .

. . .
. . .

. . .
1 1 0 1

1 1 0
0 1 1


, (9)

such that perDn(1, 1, 3) = Hn+2 for all n > 3, where Hn is the n-th Narayana number, i.e., {Nn}n∈N =
{0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, . . . }.
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• If a = 1 and b = c = 2 we have the matrix

Dn(1, 2, 2) =



1 2 0
1 1 2

. . .
. . .

. . .
. . .

1 1 2
. . .

. . .
. . .

. . .
1 1 2

1 1 2
0 1 1


, (10)

such that perDn(1, 2, 2) = Jn+1 for all n > 2, where Jn is the n-th Jacobsthal number.

Finally, we find a matrix Bn(a, b, c) such that det Bn(a, b, c) = Gn+c−1(a, b, c). We use the ideas of Killiç and
Taşçi [17]. These authors introduced an n-square (1,−1) matrix S, such that perA = det(A ◦ S), where A ◦ S
denotes Hadamard product of A and S. The matrix S is defined as si, j = −1 if i = j + 1 and otherwise 1, i.e.,

S =


1 1 · · · 1 1
−1 1 · · · 1 1
1 −1 · · · 1 1
... · · ·

...
1 1 · · · −1 1


. (11)

Let Bn(a, b, c) be the matrix defined as Bn(a, b, c) = Dn(a, b, c) ◦ S. Hence,

Bn(a, b, c) =



a b b · · · b 0
−1 a 0 0 · · · b

. . .
. . .

. . .
. . .

. . .
−1 a 0 0 · · · b

. . .
. . .

. . .
. . .

−1 a 0 0
−1 a 0

0 −1 a


. (12)

Then we obtain that det Bn(a, b, c) = per(Dn(a, b, c)) = Gn+c−1(a, b, c) for all integer n ≥ c > 2.
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