Fixed Points of Integral Type Contractions in Uniform Spaces

Aris Aghanians ${ }^{\text {a }}$, Kourosh Nourouzi ${ }^{\text {a }}$
${ }^{a}$ Faculty of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran

Abstract

In this paper, we discuss the existence of fixed points for integral type contractions in uniform spaces endowed with both a graph and an E-distance. We also give two sufficient conditions under which the fixed point is unique. Our main results generalize some recent metric fixed point theorems.

1. Introduction and preliminaries

In [9], Branciari discussed the existence and uniqueness of fixed points for mappings from a complete metric space (X, d) into itself satisfying a general contractive condition of integral type. The result therein is a generalization of the Banach contraction principle in metric spaces. In fact, Branciari considered mappings $T:(X, d) \rightarrow(X, d)$ satisfying

$$
\int_{0}^{d(T x, T y)} \varphi(t) \mathrm{d} t \leq \alpha \int_{0}^{d(x, y)} \varphi(t) \mathrm{d} t \quad(x, y \in X)
$$

where $\alpha \in(0,1)$ and $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ is a Lebesgue-integrable function on $[0,+\infty)$ whose Lebesgueintegral is finite on each compact subset of $[0,+\infty)$, and satisfies $\int_{0}^{\varepsilon} \varphi(t) \mathrm{d} t>0$ for all $\varepsilon>0$. Recently, an integral version of Ćirić's contraction was given in [14].

In 2008, Jachymski [12] generalized the Banach contraction principle in metric spaces endowed with a graph. This idea was followed by the authors in uniform and modular spaces (see [3, 5-7]). In [1], the concept of an E-distance was introduced in uniform spaces as a generalization of a metric and a w-distance and then many different nonlinear contractions were generalized from metric to uniform spaces (see, e.g., [2, 4, 13]).

The aim of this paper is to study the existence and uniqueness of a fixed point for integral type contractions in uniform spaces endowed with both a graph and an E-distance. Our results generalize Theorem 2.1 in [9] as well as Corollary 3.1 in [12] by replacing metric spaces with uniform spaces endowed with a graph and by considering a weaker contractive condition. We also prove an integral version of [12, Theorems 3.2 and 3.3].

We begin with notions in uniform spaces that are needed in this paper. For more detailed discussion, the reader is referred to, e.g., [15].

[^0]By a uniform space (X, \mathcal{U}), shortly denoted here by X, it is meant a nonempty set X together with a uniformity \mathcal{U}. For instance, if d is a metric on a nonempty set X, then it induces a uniformity, called the uniformity induced by the metric d, in which the members of \mathcal{U} are all the supersets of the sets

$$
\{(x, y) \in X \times X: d(x, y)<\varepsilon\}
$$

where $\varepsilon>0$.
It is well-known that a uniformity \mathcal{U} on a nonempty set X is separating if the intersection of all members of \mathcal{U} is equal to the diagonal of the Cartesian product $X \times X$, that is, the set $\{(x, x): x \in X\}$ which is often denoted by $\Delta(X)$. If \mathcal{U} is a separating uniformity on a nonempty set X, then the uniform space X is said to be separated.

We next recall the definition of an E-distance on a uniform space X as well as the notions of convergence, Cauchyness and completeness with E-distances.

Definition 1.1 ([1]). Let X be a uniform space. A function $p: X \times X \rightarrow[0,+\infty)$ is called an E-distance on X if
i) for each member V of \mathcal{U}, there exists a $\delta>0$ such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ imply $(x, y) \in V$ for all $x, y, z \in X$;
ii) the triangular inequality holds for p, that is,

$$
p(x, y) \leq p(x, z)+p(z, y) \quad(x, y, z \in X)
$$

Let p be an E-distance on a uniform space X. A sequence $\left\{x_{n}\right\}$ in X is said to be p-convergent to a point $x \in X$, denoted by $x_{n} \xrightarrow{p} x$, if it satisfies the usual metric condition, that is, $p\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$, and similarly, p-Cauchy if it satisfies $p\left(x_{m}, x_{n}\right) \rightarrow 0$ as $m, n \rightarrow \infty$. The uniform space X is called p-complete if every p-Cauchy sequence in X is p-convergent to some point of X.

In the next lemma, an important property of E-distances in separated uniform spaces is formulated.
Lemma 1.2 ([1]). Let p be an E-distance on a separated uniform space X and $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two arbitrary sequences in X. If $x_{n} \xrightarrow{p} x$ and $x_{n} \xrightarrow{p} y$, then $x=y$. In particular, if $x, y \in X$ and $p(z, x)=p(z, y)=0$ for some $z \in X$, then $x=y$.

Finally, we recall some concepts about graphs. For more details on graph theory, see, e.g., [8].
Let X be a uniform space and consider a directed graph G without any parallel edges such that the set $V(G)$ of its vertices is X, that is, $V(G)=X$ and the set $E(G)$ of its edges contains all loops, that is, $E(G) \supseteq \Delta(X)$. So the graph G can be simply denoted by $G=(V(G), E(G))$. By \widetilde{G}, it is meant the undirected graph obtained from G by ignoring the direction of the edges of G, that is,

$$
V(\widetilde{G})=X \quad \text { and } \quad E(\widetilde{G})=\{(x, y) \in X \times X: \text { either }(x, y) \text { or }(y, x) \text { belongs to } E(G)\} .
$$

A subgraph H of G is itself a directed graph such that $V(H)$ and $E(H)$ are contained in $V(G)$ and $E(G)$, respectively, and $(x, y) \in E(H)$ implies $x, y \in V(H)$ for all $x, y \in X$.

We need also a few notions about connectivity of graphs. Suppose that x and y are two vertices in $V(G)$. A finite sequence $\left(x_{i}\right)_{i=0}^{N}$ consisting of $N+1$ vertices of G is a path in G from x to y if $x_{0}=x, x_{N}=y$ and $\left(x_{i-1}, x_{i}\right) \in E(G)$ for $i=1, \ldots, N$. The graph G is weakly connected if there exists a path in \widetilde{G} between each two vertices of \widetilde{G}.

2. Main results

In this section, we consider the Euclidean metric on $[0,+\infty)$ and denote by λ the Lebesgue measure on the Borel σ-algebra of $[0,+\infty)$. For a Borel set $E=[a, b]$, we will use the notation $\int_{a}^{b} \varphi(t) \mathrm{d} t$ to show the Lebesgue integral of a function φ on E. We employ a class Φ consisting of all functions $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ satisfying the following properties:
(Ф1) φ is Lebesgue-integrable on $[0,+\infty)$;
(Ф2) The value of the Lebesgue integral $\int_{0}^{\varepsilon} \varphi(t) \mathrm{d} t$ is positive and finite for all $\varepsilon>0$.
The next lemma embodies some important properties of functions of the class Φ which we need in the sequel.

Lemma 2.1. Let $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ be a function in the class Φ and $\left\{a_{n}\right\}$ be a sequence of nonnegative real numbers. Then the following statements hold:

1. If $\int_{0}^{a_{n}} \varphi(t) \mathrm{d} t \rightarrow 0$ as $n \rightarrow \infty$, then $a_{n} \rightarrow 0$ as $n \rightarrow \infty$.
2. If $\left\{a_{n}\right\}$ is monotone and converges to some $a \geq 0$, then $\int_{0}^{a_{n}} \varphi(t) \mathrm{d} t \rightarrow \int_{0}^{a} \varphi(t) \mathrm{d} t$ as $n \rightarrow \infty$.

Proof. 1. Let $\int_{0}^{a_{n}} \varphi(t) \mathrm{d} t \rightarrow 0$ and suppose first on the contrary that $\lim \sup _{n \rightarrow \infty} a_{n}=\infty$. Then $\left\{a_{n}\right\}$ contains a subsequence $\left\{a_{n_{k}}\right\}$ which diverges to ∞. By passing to a subsequence if necessary, one may assume without loss of generality that $\left\{a_{n_{k}}\right\}$ is a nondecreasing subsequence of $\left\{a_{n}\right\}$. Because the sequence $\left\{\int_{0}^{a_{n_{k}}} \varphi(t) \mathrm{d} t\right\}$ of nonnegative numbers increases to zero, so $a_{n_{k}}=0$ for all $k \geq 1$. This is a contradiction and therefore the sequence $\left\{a_{n}\right\}$ is bounded.

Next, if $\lim \sup _{n \rightarrow \infty} a_{n}=\varepsilon>0$, then there exists a strictly increasing sequence $\left\{n_{k}\right\}$ of positive integers such that $a_{n_{k}} \rightarrow \varepsilon$. Pick an integer $k_{0}>0$ so that the strict inequality $a_{n_{k}}>\frac{\varepsilon}{2}$ holds for all $k \geq k_{0}$. Therefore,

$$
0<\int_{0}^{\frac{\varepsilon}{2}} \varphi(t) \mathrm{d} t \leq \int_{0}^{a_{n_{k}}} \varphi(t) \mathrm{d} t \rightarrow 0
$$

which is again a contradiction. So $\lim \sup _{n \rightarrow \infty} a_{n}=0$, and consequently,

$$
0 \leq \liminf _{n \rightarrow \infty} a_{n} \leq \limsup _{n \rightarrow \infty} a_{n}=0
$$

that is, $a_{n} \rightarrow 0$.
2. Let $\left\{a_{n}\right\}$ be nondecreasing. If for sufficiently large indices n we have $a_{n}=a$, then there is nothing to prove. Otherwise, put $E_{n}=\left[0, a_{n}\right]$ for all $n \geq 1$. Then each E_{n} is a Borel subset of $[0,+\infty)$ and we have $E_{1} \subseteq E_{2} \subseteq \cdots$ and $\bigcup_{n=1}^{\infty} E_{n}=[0, a]$. Because the function $E \stackrel{\mu}{\longmapsto} \int_{E} \varphi \mathrm{~d} \lambda$ is a Borel measure on $[0,+\infty)$, using the continuity of μ from below we get

$$
\int_{0}^{a} \varphi(t) \mathrm{d} t=\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\lim _{n \rightarrow \infty} \int_{0}^{a_{n}} \varphi(t) \mathrm{d} t .
$$

A similar argument is true if $\left\{a_{n}\right\}$ is nonincreasing since each E_{n} defined above is of finite μ-measure by (Ф2).

Let T be a mapping from a uniform space X endowed with a graph G into itself. We denote as usual the set of all fixed points for T by $\operatorname{Fix}(T)$, and by C_{T}, we mean the set of all $x \in X$ such that $\left(T^{n} x, T^{m} x\right)$ is an edge of \widetilde{G} for all $m, n \geq 0$. Clearly, $\operatorname{Fix}(T) \subseteq C_{T}$.

Definition 2.2. Let p be an E-distance on a uniform space X endowed with a graph G. We say that a mapping $T: X \rightarrow X$ is an integral type p-G-contraction if

IC 1) T preserves the egdes of G, that is, $(x, y) \in E(G)$ implies $(T x, T y) \in E(G)$ for all $x, y \in X$;
IC 2) there exists a $\varphi \in \Phi$ and a constant $\alpha \in(0,1)$ such that the contractive condition

$$
\int_{0}^{p(T x, T y)} \varphi(t) \mathrm{d} t \leq \alpha \int_{0}^{p(x, y)} \varphi(t) \mathrm{d} t
$$

holds for all $x, y \in X$ with $(x, y) \in E(G)$.

Now, we give some examples of integral type p-G-contractions.
Example 2.3. Let p be an E-distance on a uniform space X endowed with a graph G and x_{0} be a point in X such that $p\left(x_{0}, x_{0}\right)=0$. Since $E(G)$ contains the loop $\left(x_{0}, x_{0}\right)$, it follows that the constant mapping $T=x_{0}$ preserves the edges of G, and since $p\left(x_{0}, x_{0}\right)=0$, (IC2) holds trivially for any arbitrary $\varphi \in \Phi$ and $\alpha \in(0,1)$. Therefore, T is an integral type p-G-contraction. In particular, each constant mapping on X is an integral type p - G-contraction if and only if $p(x, x)=0$ for all $x \in X$.

Example 2.4. Let (X, d) be a metric space and $T: X \rightarrow X$ a mapping satisfying

$$
\int_{0}^{d(T x, T y)} \varphi(t) \mathrm{d} t \leq \alpha \int_{0}^{d(x, y)} \varphi(t) \mathrm{d} t \quad(x, y \in X)
$$

where $\varphi \in \Phi$ and $\alpha \in(0,1)$. If we consider X as a uniform space with the uniformity induced by the metric d, then T is an integral type d - G_{0}-contraction, where G_{0} is the complete graph with the vertices set X, that is, $V\left(G_{0}\right)=X$ and $E\left(G_{0}\right)=X \times X$. The existence and uniqueness of fixed point for these kind of contractions were considered by Branciari in [9].

Example 2.5. Let \leq and p be a partial order and an E-distance on a uniform space X, respectively, and consider the poset graphs G_{1} and G_{2} by

$$
V\left(G_{1}\right)=X \quad \text { and } \quad E\left(G_{1}\right)=\{(x, y) \in X \times X: x \leq y\}
$$

and

$$
V\left(G_{2}\right)=X \quad \text { and } \quad E\left(G_{2}\right)=\{(x, y) \in X \times X: x \leq y \vee y \leq x\} .
$$

Then integral type p - G_{1}-contractions are precisely the ordered integral type p-contractions, that is, nondecreasing mappings $T: X \rightarrow X$ which satisfy (IC2) for all $x, y \in X$ with $x \leq y$ and for some $\varphi \in \Phi$ and $\alpha \in(0,1)$. And integral type $p-G_{2}$-contractions are those mappings $T: X \rightarrow X$ which are order preserving and satisfy (IC2) for all comparable $x, y \in X$ and for some $\varphi \in \Phi$ and $\alpha \in(0,1)$.

Remark 2.6. Let T be a mapping from an arbitrary uniform space X into itself. If X is endowed with the complete graph G_{0}, then the set C_{T} coincides with X.

If \leq is a partial order on X and X is endowed with either G_{1} or G_{2}, then a point $x \in X$ belongs to C_{T} if and only if $T^{n} x$ is comparable to $T^{m} x$ for all $m, n \geq 0$. In particular, if T is monotone, then each $x \in X$ satisfying $x \leq T x$ or $T x \leq x$ belongs to C_{T}.

Example 2.7. Let p be any arbitrary E-distance on a uniform space X endowed with a graph G and define a function $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ by the rule $\varphi(t)=t^{\beta}$ for all $t \geq 0$, where $\beta \geq 0$ is constant. It is clear that φ is Lebesgueintegrable on $[0,+\infty)$ and $\int_{0}^{\varepsilon} \varphi(t) \mathrm{d} t=\frac{\varepsilon^{1+\beta}}{1+\beta}$ which is positive and finite for all $\varepsilon>0$, that is, $\varphi \in \Phi$. Now, let a mapping $T: X \rightarrow X$ satisfy $p(T x, T y) \leq \alpha p(x, y)$ for all $x, y \in X$ with $(x, y) \in E(G)$, where $\alpha \in(0,1)$. Then T satisfies (IC2) for the function φ defined as above and the number $\alpha^{1+\beta} \in(0,1)$. In fact, if $x, y \in X$ and $(x, y) \in E(G)$, then

$$
\int_{0}^{p(T x, T y)} \varphi(t) \mathrm{d} t=\frac{p(T x, T y)^{1+\beta}}{1+\beta} \leq \alpha^{1+\beta} \cdot \frac{p(x, y)^{1+\beta}}{1+\beta}=\alpha^{1+\beta} \int_{0}^{p(x, y)} \varphi(t) \mathrm{d} t
$$

Therefore, our contraction generalizes Banach's contraction with E-distances in uncountably many ways. In particular, if T is a Banach G-p-contraction (i.e., the Banach contraction in uniform spaces endowed with an E-distance and a graph), then T is an integral type $p-G$-contraction for uncountably many functions $\varphi \in \Phi$.

To prove the existence of a fixed point for an integral type $p-\widetilde{G}$-contraction, we need the following two lemmas:

Lemma 2.8. Let p be an E-distance on a uniform space X endowed with a graph G and $T: X \rightarrow X$ be an integral type $p-G$-contraction. Then $p\left(T^{n} x, T^{n} y\right) \rightarrow 0$ as $n \rightarrow \infty$, for all $x, y \in X$ with $(x, y) \in E(G)$.
Proof. Let $x, y \in X$ be such that $(x, y) \in E(G)$. According to Lemma 2.1, it suffices to show that $\int_{0}^{p\left(T^{n} x, T^{n} y\right)} \varphi(t) \mathrm{d} t \rightarrow$ 0 , where $\varphi \in \Phi$ is as in (IC2). To this end, note that because T preserves the edges of G, we have ($\left.T^{n} x, T^{n} y\right) \in E(G)$ for all $n \geq 0$, and so by (IC2), we find

$$
\int_{0}^{p\left(T^{n} x, T^{n} y\right)} \varphi(t) \mathrm{d} t \leq \alpha \int_{0}^{p\left(T^{n-1} x, T^{n-1} y\right)} \varphi(t) \mathrm{d} t \leq \cdots \leq \alpha^{n} \int_{0}^{p(x, y)} \varphi(t) \mathrm{d} t \quad(n \geq 1)
$$

where $\alpha \in(0,1)$ is as in (IC2). Since, by ($\Phi 2$), $\int_{0}^{p(x, y)} \varphi(t) \mathrm{d} t$ is finite (even possibly zero), it follows immediately that $\int_{0}^{p\left(T^{n} x, T^{n} y\right)} \varphi(t) \mathrm{d} t \rightarrow 0$.
Lemma 2.9. Let p be an E-distance on a uniform space X endowed with a graph G and $T: X \rightarrow X$ be an integral type $p-\widetilde{G}$-contraction. Then the sequence $\left\{T^{n} x\right\}$ is p-Cauchy for all $x \in C_{T}$.
Proof. Suppose on the contrary that $\left\{T^{n} x\right\}$ is not p-Cauchy for some $x \in C_{T}$. Then there exist an $\varepsilon>0$ and positive integers m_{k} and n_{k} such that

$$
m_{k}>n_{k} \geq k \quad \text { and } \quad p\left(T^{m_{k}} x, T^{n_{k}} x\right) \geq \varepsilon \quad k=1,2, \ldots
$$

If the integer n_{k} is kept fixed for sufficiently large indices k (say, $k \geq k_{0}$), then using Lemma 2.8, one may assume without loss of generality that $m_{k}>n_{k}$ is the smallest integer with $p\left(T^{m_{k}} x, T^{n_{k}} x\right) \geq \varepsilon$, that is,

$$
p\left(T^{m_{k}-1} x, T^{n_{k}} x\right)<\varepsilon \quad\left(k \geq k_{0}\right)
$$

Hence we have

$$
\begin{aligned}
\varepsilon & \leq p\left(T^{m_{k}} x, T^{n_{k}} x\right) \\
& \leq p\left(T^{m_{k}} x, T^{m_{k}-1} x\right)+p\left(T^{m_{k}-1} x, T^{n_{k}} x\right) \\
& <p\left(T^{m_{k}} x, T^{m_{k}-1} x\right)+\varepsilon
\end{aligned}
$$

for each $k \geq k_{0}$. Since $x \in C_{T}$, it follows that $(T x, x) \in E(\widetilde{G})$ and by Lemma 2.8, we have $p\left(T^{m_{k}} x, T^{m_{k}-1} x\right) \rightarrow 0$. Thus, letting $k \rightarrow \infty$ yields $p\left(T^{m_{k}} x, T^{n_{k}} x\right) \rightarrow \varepsilon$. On the other hand, we have

$$
p\left(T^{m_{k}+1} x, T^{n_{k}+1} x\right) \leq p\left(T^{m_{k}+1} x, T^{m_{k}} x\right)+p\left(T^{m_{k}} x, T^{n_{k}} x\right)+p\left(T^{n_{k}} x, T^{n_{k}+1} x\right)
$$

for all $k \geq 1$. Letting $k \rightarrow \infty$, since $(T x, x),(x, T x) \in E(\widetilde{G})$, it follows by Lemma 2.8 that

$$
\limsup _{k \rightarrow \infty} p\left(T^{m_{k}+1} x, T^{n_{k}+1} x\right) \leq \varepsilon
$$

Moreover, the inequality

$$
p\left(T^{m_{k}+1} x, T^{n_{k}+1} x\right) \geq p\left(T^{m_{k}} x, T^{n_{k}} x\right)-p\left(T^{m_{k}} x, T^{m_{k}+1} x\right)-p\left(T^{n_{k}+1} x, T^{n_{k}} x\right)
$$

holds for all $k \geq 1$. Thus, similarly we have

$$
\liminf _{k \rightarrow \infty} p\left(T^{m_{k}+1} x, T^{n_{k}+1} x\right) \geq \varepsilon
$$

Hence, $p\left(T^{m_{k}+1} x, T^{n_{k}+1} x\right) \rightarrow \varepsilon$. By passing to two subsequences with the same choice function if necessary, one may assume without loss of generality that both $\left\{p\left(T^{m_{k}} x, T^{n_{k}} x\right)\right\}$ and $\left\{p\left(T^{m_{k}+1} x, T^{n_{k}+1} x\right)\right\}$ are monotone. Therefore, using Lemma 2.1 twice, we have

$$
\int_{0}^{\varepsilon} \varphi(t) \mathrm{d} t=\lim _{k \rightarrow \infty} \int_{0}^{p\left(T^{m_{k}+1} x, T^{n_{k}+1} x\right)} \varphi(t) \mathrm{d} t \leq \alpha \lim _{k \rightarrow \infty} \int_{0}^{p\left(T^{\left.m_{k} x, T^{n_{k}} x\right)}\right.} \varphi(t) \mathrm{d} t=\alpha \int_{0}^{\varepsilon} \varphi(t) \mathrm{d} t
$$

where $\varphi \in \Phi$ and $\alpha \in(0,1)$ are as in (IC2). Therefore, $\int_{0}^{\varepsilon} \varphi(t) \mathrm{d} t=0$, which is a contradiction. Consequently, the sequence $\left\{T^{n} x\right\}$ is p-Cauchy for all $x \in C_{T}$.

In 1971 Ćirić [10] introduced the following two notions (see also [11]).
Definition 2.10 ([10]). Let (X, τ) be a topological space and $T: X \rightarrow X$ be an operator. The operator T is said to be orbitally continuous if $T^{n_{i}} x \rightarrow p$, then $T\left(T^{n_{i}} x\right) \rightarrow T p$ as $i \rightarrow \infty$.

Definition 2.11 ([10]). Let (X, d) be a metric space and $T: X \rightarrow X$ be an operator. The metric space (X, d) is said to be T-orbitally complete if any Cauchy sequence of the form $\left\{T^{n_{i}} x\right\}_{i=1}^{\infty}, x \in X$, converges in X.

Jachymski [12, Definition 2.4] generalized these notions by introducing the notion of an orbitally Gcontinuous mapping in metric spaces endowed with a graph G.

Now we shall generalize the above notion of orbitally continuity to orbitally p - G-continuity.
Definition 2.12. Let p be an E-distance on a uniform space X endowed with a graph G and T be a mapping from X into itself. We say that
i) T is orbitally p-G-continuous on X if for all $x, y \in X$ and all sequences $\left\{a_{n}\right\}$ of positive integers with $\left(T^{a_{n}} x, T^{a_{n+1}} x\right) \in E(G)$ for $n=1,2, \ldots, T^{a_{n}} x \xrightarrow{p} y$ as $n \rightarrow \infty$, implies $T\left(T^{a_{n}} x\right) \xrightarrow{p}$ Ty as $n \rightarrow \infty$.
ii) T is a p-Picard operator if T has a unique fixed point $u \in X$ and $T^{n} x \xrightarrow{p}$ u for all $x \in X$.
iii) T is a weakly p-Picard operator if $\left\{T^{n} x\right\}$ is p-convergent to a fixed point of T for all $x \in X$.

Example 2.13. Let X be any arbitrary uniform space with more than one point equipped with an E-distance p. Choose a nonempty proper subset A of X and pick a and b from A and A^{c}, respectively. Then the mapping $T: X \rightarrow X$ defined by $T x=a$ if $x \in A$, and $T x=b$ if $x \notin A$ is a weakly p-Picard operator which fails to be p-Picard. In fact, we have $\operatorname{Fix}(T)=\{a, b\}$. Therefore, a weakly p-Picard operator is not necessarily p-Picard.

Now, we are ready to prove our main theorems. The first result guarantees the existence of a fixed point when an integral type p - \widetilde{G}-contraction is orbitally $p-\widetilde{G}$-continuous on X or the triple (X, p, G) has a certain property.

Theorem 2.14. Let p be an E-distance on a separated uniform space X endowed with a graph G such that X is p-complete, and $T: X \rightarrow X$ be an integral type $p-\widetilde{G}$-contraction. Then $\left.T\right|_{C_{T}}$ is a weakly p-Picard operator if one of the following statements holds:
i) T is orbitally $p-\widetilde{G}$-continuous on X;
ii) The triple (X, p, G) satisfies the following property:
(*) If a sequence $\left\{x_{n}\right\}$ in X is p-convergent to an $x \in X$ and satisfies $\left(x_{n}, x_{n+1}\right) \in E(\widetilde{G})$ for all $n \geq 1$, then there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left(x_{n_{k}}, x\right) \in E(\widetilde{G})$ for all $k \geq 1$.

In particular, having been held (i) or (ii), $\operatorname{Fix}(T) \neq \emptyset$ if and only if $C_{T} \neq \emptyset$.
Proof. If $C_{T}=\emptyset$, then there is nothing to prove. Otherwise, note first that since T preserves the edges of \bar{G}, it follows that C_{T} is T-invariant, that is, T maps C_{T} into itself. Now, let $x \in C_{T}$ be given. Then $\left(T^{n} x, T^{n+1} x\right) \in E(\widetilde{G})$ for all $n \geq 0$. Moreover, by Lemma 2.9, the sequence $\left\{T^{n} x\right\}$ is p-Cauchy in X, and because X is p-complete, there exists a $u \in X$ (depends on x) such that $T^{n} x \xrightarrow{p} u$.

To prove the existence of a fixed point for T, suppose first that T is orbitally $p-\widetilde{G}$-continuous. Then $T^{n+1} x \xrightarrow{p} T u$ and because X is separated, Lemma 1.2 ensures that $T u=u$, that is, u is a fixed point for T.

On the other hand, if Property ($*$) holds, then $\left\{T^{n} x\right\}$ contains a subsequence $\left\{T^{n_{k}} x\right\}$ such that $\left(T^{n_{k}} x, u\right) \in E(\widetilde{G})$ for all $k \geq 1$. Since $p\left(T^{n_{k}} x, u\right) \rightarrow 0$, by passing to a subsequence if necessary, one may assume without loss of generality that $\left\{p\left(T^{n_{k}} x, u\right)\right\}$ is monotone. Hence by Lemma 2.1, we have

$$
\int_{0}^{p\left(T^{n_{k}+1} x, T u\right)} \varphi(t) \mathrm{d} t \leq \alpha \int_{0}^{p\left(T^{n_{k}} x, u\right)} \varphi(t) \mathrm{d} t \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty,
$$

where $\alpha \in(0,1)$ is as in (IC2). Using Lemma 2.1 once more, one obtains $p\left(T^{n_{k}+1} x, T u\right) \rightarrow 0$ and since X is separated, Lemma 1.2 guarantees that $T u=u$, that is, u is a fixed point for T.

Finally, $u \in \operatorname{Fix}(T) \subseteq C_{T}$, and so $\left.T\right|_{C_{T}}$ is a weakly p-Picard operator.
Setting $G=G_{0}$ in Theorem 2.14, we have the following result, which is a generalization of [9, Theorem 2.1] to uniform spaces equipped with an E-distance.

Corollary 2.15. Let p be an E-distance on a separated uniform space X such that X is p-complete. Let $T: X \rightarrow X$ satisfy

$$
\int_{0}^{p(T x, T y)} \varphi(t) \mathrm{d} t \leq \alpha \int_{0}^{p(x, y)} \varphi(t) \mathrm{d} t \quad(x, y \in X)
$$

where $\varphi \in \Phi$ and $\alpha \in(0,1)$. Then T is a p-Picard operator.
Proof. By Theorem 2.14, the mapping T is a weakly p-Picard operator. To complete the proof, it suffices to show that T has a unique fixed point. To this end, let x and y be two fixed points for T. Then

$$
\int_{0}^{p(x, y)} \varphi(t) \mathrm{d} t=\int_{0}^{p(T x, T y)} \varphi(t) \mathrm{d} t \leq \alpha \int_{0}^{p(x, y)} \varphi(t) \mathrm{d} t
$$

which is impossible unless $p(x, y)=0$. Similarly, one can show that $p(x, x)=0$ and since X is separated, it follows by Lemma 1.2 that $x=y$.

Because $\widetilde{G_{1}}=\widetilde{G_{2}}=G_{2}$, setting $G=G_{1}$ or $G=G_{2}$ in Theorem 2.14, we obtain the ordered version of Branciari's result as follows:

Corollary 2.16. Let p be an E-distance on a partially ordered separated uniform space X such that X is p-complete and a mapping $T: X \rightarrow X$ satisfy

$$
\int_{0}^{p(T x, T y)} \varphi(t) \mathrm{d} t \leq \alpha \int_{0}^{p(x, y)} \varphi(t) \mathrm{d} t
$$

for all comparable elements x and y of X, where $\varphi \in \Phi$ and $\alpha \in(0,1)$. Assume that there exists an $x \in X$ such that $T^{m} x$ and $T^{n} x$ are comparable for all $m, n \geq 0$. Then T is a weakly p-Picard operator if one of the following statements holds:

- T is orbitally $p-G_{2}$-continuous on X;
- X satisfies the following property:

If a sequence $\left\{x_{n}\right\}$ in X with successive comparable terms is p-convergent to an $x \in X$, then x is comparable to x_{n} for all $n \geq 1$.

Next, we are going to prove two theorems on uniqueness of the fixed points for integral type $p-\widetilde{G}$ contractions.

Theorem 2.17. Let p be an E-distance on a separated uniform space X endowed with a graph G such that X is p-complete, and let $T: X \rightarrow X$ be an integral type p - \widetilde{G}-contraction such that the function φ in (IC2) satisfies

$$
\begin{equation*}
\int_{0}^{a+b} \varphi(t) \mathrm{d} t \leq \int_{0}^{a} \varphi(t) \mathrm{d} t+\int_{0}^{b} \varphi(t) \mathrm{d} t \tag{1}
\end{equation*}
$$

for all $a, b \geq 0$. If G is weakly connected and C_{T} is nonempty, then there exists a unique $u \in X$ such that $T^{n} x \xrightarrow{p} u$ for all $x \in X$. In particular, T is a p-Picard operator if and only if $\operatorname{Fix}(T)$ is nonempty.

Proof. Let x and y be two arbitrary elements of X. Since G is weakly connected, there exists a path $\left(x_{i}\right)_{i=0}^{N}$ in \widetilde{G} from x to y. Since T preserves the edges of \widetilde{G}, it follows that $\left(T^{n} x_{i-1}, T^{n} x_{i}\right) \in E(\widetilde{G})$ for all $n \geq 0$ and $i=1, \ldots, N$. Therefore, by (1) and (IC2) we have

$$
\begin{aligned}
\int_{0}^{p\left(T^{n} x, T^{n} y\right)} \varphi(t) \mathrm{d} t & \leq \int_{0}^{\sum_{i=1}^{N} p\left(T^{n} x_{i-1}, T^{n} x_{i}\right)} \varphi(t) \mathrm{d} t \\
& \leq \sum_{i=1}^{N} \int_{0}^{p\left(T^{n} x_{i-1}, T^{n} x_{i}\right)} \varphi(t) \mathrm{d} t \\
& \leq \alpha \sum_{i=1}^{N} \int_{0}^{p\left(T^{n-1} x_{i-1}, T^{n-1} x_{i}\right)} \varphi(t) \mathrm{d} t \\
& \vdots \\
& \leq \alpha^{n} \sum_{i=1}^{N} \int_{0}^{p\left(x_{i-1}, x_{i}\right)} \varphi(t) \mathrm{d} t
\end{aligned}
$$

Remark 2.19. Theorem 2.18 guarantees that in a separated uniform space X endowed with a graph G and an E distance p, if $(x, y) \in E(G)$, then both x and y cannot be a fixed point for any integral type $p-G$-contraction T. In other words, each weakly connected component of G intersects $\operatorname{Fix}(T)$ in at most one point. So in partially ordered separated uniform spaces equipped with an E-distance p, no ordered integral type p-contraction has two comparable fixed points.

Remark 2.20. Since the Riemann integral (proper and improper) is subsumed in the Lebesgue integral, it follows that one may replace Lebesgue-integrability with Riemann-integrability of φ on $[0,+\infty)$ in ($\Phi 1$), where the value of the integral on $[0,+\infty)$ is allowed to be ∞. Facing with Riemann integrals, we should assume that the function φ is bounded. Therefore, all of the results of this paper can be restated and reproved for Riemann integrals instead of Lebesgue integrals. A similar remark holds for Riemann-Stieltjes integrable functions with respect to any fixed nondecreasing function on $[0,+\infty)$.

References

[1] M. Aamri, D. El Moutawakil, Common fixed point theorems for E-contractive or E-expansive maps in uniform spaces, Acta Mathematica Academiae Paedagogicae Nyıregyháziensis 20 (2004) 83-91.
[2] R. P. Agarwal, A. Aghanians, K. Fallahi, K. Nourouzi, Coincidence point theorems for $E-(\psi, \varphi)$ - and E - φ-weak contractions in partially ordered uniform spaces, Journal of Nonlinear and Convex Analysis, to appear.
[3] A. Aghanians, K. Fallahi, K. Nourouzi, An entourage approach to the contraction principle in uniform spaces endowed with a graph, PanAmerican Mathematical Journal 23 (2013) 87-102.
[4] A. Aghanians, K. Fallahi, K. Nourouzi, Fixed points for E-asymptotic contractions and Boyd-Wong type E-contractions in uniform spaces, Bulletin of the Iranian Mathematical Society 39 (2013) 1261-1272.
[5] A. Aghanians, K. Fallahi, K. Nourouzi, Fixed points for G-contractions on uniform spaces endowed with a graph, Fixed Point Theory and Applications 2012:182, 12 pages.
[6] A. Aghanians, K. Fallahi, K. Nourouzi, R. U. Verma, Fixed points for Ćirić-G-contractions in uniform spaces endowed with a graph, Publications de l'Institut Mathématique (Nouvelle Série), to appear.
[7] A. Aghanians, K. Nourouzi, Fixed points for Banach and Kannan contractions in modular spaces with a graph, International Journal of Nonlinear Analysis and Applications 5 (2014) 50-59.
[8] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
[9] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences 29 (2002) 531-536.
[10] L. B. Ćirić, On contraction type mappings, Mathematica Balkanica 1 (1971) 52-57.
[11] L. B. Ćirić, Fixed point theorems for mappings with a generalized contractive iterate at a point, Publications de l'Institut Mathématique (Nouvelle Série) 13(27) (1972) 11-16.
[12] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proceedings of the American Mathematical Society 136 (2008) 1359-1373.
[13] M. O. Olatinwo, Some common fixed point theorems for selfmappings satisfying two contractive conditions of integral type in a uniform space, Central European Journal of Mathematics 6 (2008) 335-341.
[14] B. Samet, C. Vetro, An integral version of Ćirić's fixed point theorem, Mediterranean Journal of Mathematics 9 (2012) 225-238.
[15] S. Willard, General Topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970.

[^0]: 2010 Mathematics Subject Classification. Primary: 47H10; Secondary: 05C40.
 Keywords. separated uniform space, integral type $p-G$-contraction, fixed point
 Received: 06 January 2014; Accepted: 11 June 2014
 Communicated by Hari M. Srivastava
 Corresponding author: Kourosh Nourouzi
 Email addresses: a.aghanians@dena.kntu.ac.ir (Aris Aghanians), nourouzi@kntu.ac.ir (Kourosh Nourouzi)

