On Hermite-Hadamard Type Integral Inequalities for n-times Differentiable Log-Preinvex Functions

M. A. Latif ${ }^{\text {a }}$, S. S. Dragomir ${ }^{\text {a,b }}$
${ }^{a}$ School of Computational and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
${ }^{b}$ School of Engineering and Science, Victoria University, P. O. Box 14428, Melbourne City, MC8001, Australia

Abstract

In this paper, new Hermite-Hadamard type inequalities for n-times differentiable log-preinvex functions are established. The established results generalize some of those results proved in recent papers for differentiable log-preinvex functions and differentiable log-convex functions.

1. Introduction

It is well known in mathematics literature that if $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is a convex mapping and $a, b \in I$ with $a<b$. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

Both the inequalities hold in reversed direction if f is concave. The inequalities (1.1) are known as HermiteHadamard inequalities, a result first noticed by Ch. Hermite in 1883 and rediscovered ten years later by J. Hadamard. Since the discovery of (1.1) in 1883, Hermite-Hadamard inequality (see [10]) has been considered the most useful inequality in mathematical analysis. Some of the classical inequalities for means can be derived from (1.1) for particular choices of the function f. A number of papers have been written on this inequality providing new proofs, noteworthy extensions, generalizations, refinements, counterparts and new Hermite-Hadamard-type inequalities and numerous applications, see [4]-[7], [9], [11]-[15], [25], [27]-[30], [32,33] and the references therein.

In recent years, many mathematicians generalized the classical convexity in many ways and some of those are given as follows.

Definition 1. [36] A set $K \subseteq \mathbb{R}^{n}$ is said to be invex with respect to $\eta: K \times K \rightarrow \mathbb{R}^{n}$ if

$$
u+t \eta(v, u) \in K, \forall u, v \in K, t \in[0,1] .
$$

The invex set K is also called an η-connected set.

[^0]Definition 2. [36] Let $K \subseteq \mathbb{R}^{n}$ be an invex set with respect to $\eta: K \times K \rightarrow \mathbb{R}^{n}$. A function $f: K \rightarrow \mathbb{R}$ is said to be preinvex with respect to η, if

$$
f(u+t \eta(v, u)) \leq(1-t) f(u)+t f(v)
$$

for all $u, v \in K$ and $t \in[0,1]$. The function f is said to be preconcave if and only if $-f$ is preinvex.
It is to be noted that every preinvex function is convex with respect to the map $\eta(u, v)=u-v$ but the converse is not true see for instance [36].

Definition 3. [36] Let $K \subseteq \mathbb{R}^{n}$ be an invex set with respect to $\eta: K \times K \rightarrow \mathbb{R}^{n}$. A function $f: K \rightarrow \mathbb{R}$ is said to be prequasi-invex with respect to η, if

$$
f(u+t \eta(v, u)) \leq \max \{f(u), f(v)\}, \forall u, v \in K, t \in[0,1] .
$$

Definition 4. [21] Let $K \subseteq \mathbb{R}^{n}$ be an invex set with respect to $\eta: K \times K \rightarrow \mathbb{R}^{n}$. A function $f: K \rightarrow(0, \infty)$ is said to be logarithmic preinvex with respect to η, if

$$
f(u+t \eta(v, u)) \leq(f(u))^{1-t}(f(v))^{t}, \forall u, v \in K, t \in[0,1] .
$$

It is clear from the arithmetic-geometric mean inequality that if $f: K \rightarrow(0, \infty)$ is logarithmic preinvex function, we have

$$
\begin{aligned}
f(u+t \eta(v, u)) & \leq(f(u))^{1-t}(f(v))^{t} \\
& \leq(1-t) f(u)+t f(v) \\
& \leq \max \{f(u), f(v)\}
\end{aligned}
$$

$\forall u, v \in K, t \in[0,1]$.
Most recently, Noor [20] has obtained the following Hermite-Hadamard inequalities for the preinvex and log-preinvex functions.

Theorem 1. [20] Let $f:[a, a+\eta(b, a)] \rightarrow(0, \infty)$ be a preinvex function on the interval of the real numbers K° (the interior of K) and $a, b \in K^{\circ}$ with $a<a+\eta(b, a)$. Then the following inequality holds:

$$
\begin{equation*}
f\left(\frac{2 a+\eta(b, a)}{2}\right) \leq \frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq \frac{f(a)+f(b)}{2} . \tag{1.2}
\end{equation*}
$$

Theorem 2. [20] Let $f:[a, a+\eta(b, a)] \rightarrow(0, \infty)$ be a log-preinvex function. Then

$$
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq \frac{f(a)-f(b)}{\log f(a)-\log f(b)}
$$

The other results connected with (1.2) in which two log-preinvex functions are involved can be found in [24].

For log-preinvex functions, following Hermite-Hadamard type inequalities were also proved in [31].
Theorem 3. [31] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$. Suppose that $f: K \rightarrow \mathbb{R}$ is a differentiable function. If $\left|f^{\prime}\right|$ is log-preinvex on K, for every $a, b \in K$ with $\eta(b, a)>0$, we have the inequality

$$
\begin{equation*}
\left|\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x-f\left(a+\frac{1}{2} \eta(b, a)\right)\right| \leq \eta(b, a)\left[\frac{\sqrt{\left|f^{\prime}(b)\right|}-\sqrt{\left|f^{\prime}(a)\right|}}{\log \left(\left|f^{\prime}(b)\right|\right)-\log \left(\left|f^{\prime}(a)\right|\right)}\right]^{2} \tag{1.3}
\end{equation*}
$$

Theorem 4. [31] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$. Suppose that $f: K \rightarrow \mathbb{R}$ is a differentiable function. If $\left|f^{\prime}\right|^{q}, q>1, q \in \mathbb{R}$, is a log-preinvex on K, for every $a, b \in K$ with $\eta(b, a)>0$, we have the inequality

$$
\begin{equation*}
\left|f\left(a+\frac{1}{2} \eta(b, a)\right)-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \leq \frac{\eta(b, a) \sqrt{\left|f^{\prime}(a)\right|}}{2^{1 / p}(p+1)^{1 / p} q^{1 / q}}\left[\frac{\left(\left|f^{\prime}(b)\right|\right)^{q / 2}-\left(\left|f^{\prime}(a)\right|\right)^{q / 2}}{\log \left(\left|f^{\prime}(b)\right|\right)-\log \left(\left|f^{\prime}(a)\right|\right)}\right]^{1 / q} \tag{1.4}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
For more results on Hermite-Hadamard type inequalities for preinvex functions and n-times differentiable preinvex functions, we refer the readers to the recent works of Sarikaya et. al , [31] and Latif [16].

The main purpose of the present paper is to establish new Hermite-Hadamard type inequalities in Section 2 that are connected with the right-side and left-side of Hermite-Hadamard inequality for n times differentiable log-preinvex functions which generalize those results established for differentiable log-preinvex functions given in [31].

2. Main Results

In order to prove our main results, we need the following two lemmas:
Lemma 1. [16] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$. Suppose $f: K \rightarrow \mathbb{R}$ is a function such that $f^{(n)}$ exists on K for $n \in \mathbb{N}, n \geq 1$. If $f^{(n)}$ is integrable on $[a, a+\eta(b, a)]$, where $a, b \in K$ with $\eta(b, a)>0$, the following equality holds

$$
\begin{align*}
-\frac{f(a)+f(a+\eta(b, a))}{2}+\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} & f(x) d x+\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \\
& =\frac{(-1)^{n-1}(\eta(b, a))^{n}}{2 n!} \int_{0}^{1} t^{n-1}(n-2 t) f^{(n)}(a+t \eta(b, a)) d t \tag{2.1}
\end{align*}
$$

where the sum above takes 0 when $n=1$ and $n=2$.
Lemma 2. [16] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$. Suppose $f: K \rightarrow \mathbb{R}$ is a function such that $f^{(n)}$ exists on K for $n \in \mathbb{N}, n \geq 1$. If $f^{(n)}$ is integrable on $[a, a+\eta(b, a)]$, where $a, b \in K$ with $\eta(b, a)>0$, the following equality holds

$$
\left.\begin{array}{rl}
\sum_{k=0}^{n-1} & \frac{\left[(-1)^{k}+1\right](\eta(b, a))^{k}}{2^{k+1}(k+1)!} f^{(k)}\left(a+\frac{1}{2} \eta(b, a)\right)-\frac{1}{\eta(b, a)}
\end{array} \int_{a}^{a+\eta(b, a)} f(x) d x\right) .
$$

where

$$
K_{n}(t):=\left\{\begin{array}{ll}
t^{n}, & t \in\left[0, \frac{1}{2}\right] \\
(t-1)^{n}, & t \in\left(\frac{1}{2}, 1\right]
\end{array} .\right.
$$

The following useful results will also help us establishing our results.

Lemma 3. If $\mu>0$ and $\mu \neq 1$, then

$$
\begin{equation*}
\int_{0}^{1} t^{n} \mu^{t} d t=\frac{(-1)^{n+1} n!}{(\ln \mu)^{n+1}}+n!\mu \sum_{k=0}^{n} \frac{(-1)^{k}}{(n-k)!(\ln \mu)^{k+1}} \tag{2.3}
\end{equation*}
$$

Proof. For $n=0$, we have

$$
\int_{0}^{1} \mu^{t} d t=\frac{\mu-1}{\ln \mu}
$$

which coincides with the right hand side of (2.3) for $n=0$.
For $n=1$, we have

$$
\int_{0}^{1} t \mu^{t} d t=\frac{\mu}{\ln \mu}-\frac{\mu}{(\ln \mu)^{2}}+\frac{1}{(\ln \mu)^{2}}
$$

and it coincides with the right hand side of (2.3) for $n=1$.
Suppose (2.3) is true for $n-1$, i.e.

$$
\begin{equation*}
\int_{0}^{1} t^{n-1} \mu^{t} d t=\frac{(-1)^{n}(n-1)!}{(\ln \mu)^{n}}+(n-1)!\mu \sum_{k=0}^{n-1} \frac{(-1)^{k}}{(n-1-k)!(\ln \mu)^{k+1}} \tag{2.4}
\end{equation*}
$$

Now by integration by parts and using (2.4), we have

$$
\begin{aligned}
\int_{0}^{1} t^{n} \mu^{t} d t & =\frac{\mu}{\ln \mu}-\frac{n}{\ln \mu} \int_{0}^{1} t^{n-1} \mu^{t} d t \\
& =\frac{\mu}{\ln \mu}-\frac{n}{\ln \mu}\left[\frac{(-1)^{n}(n-1)!}{(\ln \mu)^{n}}+(n-1)!\mu \sum_{k=0}^{n-1} \frac{(-1)^{k}}{(n-1-k)!(\ln \mu)^{k+1}}\right] \\
& =\frac{\mu}{\ln \mu}+\frac{(-1)^{n+1} n!}{(\ln \mu)^{n+1}}+n!\mu \sum_{k=0}^{n-1} \frac{(-1)^{k+1}}{(n-1-k)!(\ln \mu)^{k+2}} \\
& =\frac{n!\mu}{n!\ln \mu}+\frac{(-1)^{n+1} n!}{(\ln \mu)^{n+1}}+n!\mu \sum_{k=1}^{n} \frac{(-1)^{k}}{(n-k)!(\ln \mu)^{k+1}} \\
& =\frac{(-1)^{n+1} n!}{(\ln \mu)^{n+1}}+n!\mu \sum_{k=0}^{n} \frac{(-1)^{k}}{(n-k)!(\ln \mu)^{k+1}}
\end{aligned}
$$

This completes the proof of the lemma.
Lemma 4. If $\mu>0$ and $\mu \neq 1$, then

$$
\begin{equation*}
\int_{0}^{\frac{1}{2}} t^{n} \mu^{t} d t=\frac{(-1)^{n+1} n!}{(\ln \mu)^{n+1}}+n!\mu^{1 / 2} \sum_{k=0}^{n} \frac{(-1)^{k}}{2^{n-k}(n-k)!(\ln \mu)^{k+1}} \tag{2.5}
\end{equation*}
$$

Proof. It follows from Lemma 3 after making use of the substitution $t=\frac{u}{2}$.
Lemma 5. If $\mu>0$ and $\mu \neq 1$, then

$$
\begin{equation*}
\int_{\frac{1}{2}}^{1}(1-t)^{n} \mu^{t} d t=\frac{n!\mu}{(\ln \mu)^{n+1}}-n!\mu^{1 / 2} \sum_{k=0}^{n} \frac{1}{2^{n-k}(n-k)!(\ln \mu)^{k+1}} \tag{2.6}
\end{equation*}
$$

Proof. It follows from Lemma 4 afer making the substitution $1-t=u$.
Lemma 6. [35] For $\alpha>0$ and $\mu>0$, we have

$$
I(\alpha, \mu):=\int_{0}^{1} t^{\alpha-1} \mu^{t} d t=\mu \sum_{k=1}^{\infty} \frac{(-1)^{k-1}(\ln \mu)^{k-1}}{(\alpha)_{k}}<\infty
$$

where

$$
(\alpha)_{k}=\alpha(\alpha+1)(\alpha+2) \ldots(\alpha+k-1) .
$$

Moreover, it holds

$$
\left|I(\alpha, \mu)-\mu \sum_{k=1}^{m}(-1)^{k-1} \frac{(\ln \mu)^{k-1}}{(\alpha)_{k}}\right| \leq \frac{|\ln \mu|}{\alpha \sqrt{2 \pi(m-1)}}\left(\frac{|\ln \mu| e}{m-1}\right)^{m-1}
$$

We are now ready to give our first result.
Theorem 5. Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$. Suppose $f: K \rightarrow \mathbb{R}$ is a function such that $f^{(n)}$ exists on K and $f^{(n)}$ is integrable on $[a, a+\eta(b, a)]$ for $n \in \mathbb{N}, n \geq 2$, where $a, b \in K$ with $\eta(b, a)>0$. If $\left|f^{(n)}\right|^{q}$ is \log-preinvex on K for $q \geq 1$, we have the inequality

$$
\begin{array}{r}
\left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a))\right| \\
\leq \frac{(\eta(b, a))^{n}}{2 n!}\left(\frac{n-1}{n+1}\right)^{1-1 / q}\left[E_{1}(n, q)\right]^{1 / q} \tag{2.7}
\end{array}
$$

where

$$
\begin{aligned}
E_{1}(n, q) & =\frac{(-1)^{n} n!\left\{q\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]+2\right\}\left|f^{(n)}(a)\right|^{q}}{q^{n+1}\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]^{n+1}}-\frac{2\left|f^{(n)}(b)\right|^{q}}{q\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]} \\
& -n!\left|f^{(n)}(b)\right|^{q} \sum_{k=1}^{n} \frac{(-1)^{k}\left\{q\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]+2\right\}}{(n-k)!q^{k+1}\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]^{k+1}}
\end{aligned}
$$

Proof. Suppose $n \geq 2$. Since K is an invex set with respect to η, for every $a, b \in K$ and $t \in[0,1]$, we have $a+t \eta(b, a) \in K$. By the log-preinvexity of $\left|f^{(n)}\right|^{q}$ on K, Lemma 1 and Hölder inequality, we have

$$
\begin{align*}
& \left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \\
& \left.-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\, \leq \frac{(\eta(b, a))^{n}}{2 n!} \\
& \times\left(\int_{0}^{1} t^{n-1}(n-2 t) d t\right)^{1-1 / q}\left(\int_{0}^{1} t^{n-1}(n-2 t)\left|f^{(n)}(a+t \eta(b, a))\right|^{q} d t\right)^{1 / q} \\
& \leq \frac{(\eta(b, a))^{n}}{2 n!}\left(\frac{n-1}{n+1}\right)^{1-1 / q}\left(\int_{0}^{1} t^{n-1}(n-2 t)\left(\left(\left|f^{(n)}(a)\right|\right)^{q(1-t)}\left(\left|f^{(n)}(b)\right|\right)^{q t}\right) d t\right)^{1 / q} \\
& \quad=\frac{(\eta(b, a))^{n}\left|f^{(n)}(a)\right|}{2 n!}\left(\frac{n-1}{n+1}\right)^{1-1 / q}\left(n \int_{0}^{1} t^{n-1} \mu^{t} d t-2 \int_{0}^{1} t^{n} \mu^{t} d t\right)^{1 / q}, \tag{2.8}
\end{align*}
$$

where $\mu=\frac{\left|f^{(n)}(b)\right|^{q}}{\left|f^{(n)}(a)\right|^{q}} \neq 1$.
By Lemma 3, we have

$$
\begin{align*}
& n \int_{0}^{1} t^{n-1} \mu^{t} d t-2 \int_{0}^{1} t^{n} \mu^{t} d t \\
& =\frac{(-1)^{n} n!}{(\ln \mu)^{n}}-n!\mu \sum_{k=1}^{n} \frac{(-1)^{k}}{(n-k)!(\ln \mu)^{k}}-\frac{2(-1)^{n+1} n!}{(\ln \mu)^{n+1}}-2 n!\mu \sum_{k=0}^{n} \frac{(-1)^{k}}{(n-k)!(\ln \mu)^{k+1}} \\
& \tag{2.9}\\
& =\frac{(-1)^{n} n![\ln \mu+2]-2 \mu(\ln \mu)^{n}}{(\ln \mu)^{n+1}}-n!\mu \sum_{k=1}^{n} \frac{(-1)^{k}[\ln \mu+2]}{(n-k)!(\ln \mu)^{k+1}}
\end{align*}
$$

Applying (2.9) in (2.8) and replacing $\mu=\frac{\left|f^{(n)}(b)\right|^{q}}{\left|f^{(n)}(a)\right|^{q}} \neq 1$, we get the desired inequality (2.7). This completes the proof of the theorem
Corollary 1. Suppose the assumptions of Theorem 5 are satisfied and if $q=1$, we have the inequality

$$
\begin{array}{r}
\left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a))\right| \\
\leq \frac{(\eta(b, a))^{n}}{2 n!} E_{1}(n, 1) \tag{2.10}
\end{array}
$$

where

$$
\begin{aligned}
E_{1}(n, 1) & =\frac{(-1)^{n} n!\left\{\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]+2\right\}\left|f^{(n)}(a)\right|}{\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]^{n+1}}-\frac{2\left|f^{(n)}(b)\right|}{\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]} \\
& -n!\left|f^{(n)}(b)\right| \sum_{k=1}^{n} \frac{(-1)^{k}\left\{\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]+2\right\}}{(n-k)!\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]^{k+1}}
\end{aligned}
$$

Corollary 2. Under the assumptions of Theorem 5 , if $n=2$, we have the inequality

$$
\begin{equation*}
\left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \leq \frac{(\eta(b, a))^{2}}{4}\left(\frac{1}{3}\right)^{1-1 / q}\left[E_{1}(2, q)\right]^{1 / q} \tag{2.11}
\end{equation*}
$$

where

$$
E_{1}(2, q)=\frac{2\left\{q\left[\ln \left(\left|f^{\prime \prime}(b)\right|\right)-\ln \left(\left|f^{\prime \prime}(a)\right|\right)\right]+2\right\}\left|f^{\prime \prime}(a)\right|^{q}}{q^{3}\left[\ln \left(\left|f^{\prime \prime}(b)\right|\right)-\ln \left(\left|f^{\prime \prime}(a)\right|\right)\right]^{3}}+\frac{2\left\{q\left[\ln \left(\left|f^{\prime \prime}(b)\right|\right)-\ln \left(\left|f^{\prime \prime}(a)\right|\right)\right]-2\right\}\left|f^{\prime \prime}(b)\right|^{q}}{q^{3}\left[\ln \left(\left|f^{\prime \prime}(b)\right|\right)-\ln \left(\left|f^{\prime \prime}(a)\right|\right)\right]^{3}} .
$$

Corollary 3. Under the assumptions of Theorem 5, if $n=2$ and $q=1$, we have the inequality

$$
\begin{equation*}
\left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \leq \frac{(\eta(b, a))^{2}}{4}\left[E_{1}(2,1)\right] \tag{2.12}
\end{equation*}
$$

where

$$
E_{1}(2,1)=\frac{2\left\{\left[\ln \left(\left|f^{\prime \prime}(b)\right|\right)-\ln \left(\left|f^{\prime \prime}(a)\right|\right)\right]+2\right\}\left|f^{\prime \prime}(a)\right|}{\left[\ln \left(\left|f^{\prime \prime}(b)\right|\right)-\ln \left(\left|f^{\prime \prime}(a)\right|\right)\right]^{3}}+\frac{2\left\{\left[\ln \left(\left|f^{\prime \prime}(b)\right|\right)-\ln \left(\left|f^{\prime \prime}(a)\right|\right)\right]-2\right\}\left|f^{\prime \prime}(b)\right|}{\left[\ln \left(\left|f^{\prime \prime}(b)\right|\right)-\ln \left(\left|f^{\prime \prime}(a)\right|\right)\right]^{3}}
$$

Remark 1. If $\eta(b, a)=b-a$ in the inequalities (2.11) and (2.12), one can get inequalities for the bounds of the difference between middle and the right most terms in the Hermite-Hadamard inequalities (1.1) in terms of second order derivatives for log-convex functions.
Theorem 6. Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$. Suppose $f: K \rightarrow \mathbb{R}$ is a function such that $f^{(n)}$ exists on K and $f^{(n)}$ is integrable on $[a, a+\eta(b, a)]$ for $n \in \mathbb{N}, n \geq 2$, where $a, b \in K$ with $\eta(b, a)>0$. If $\left|f^{(n)}\right|^{q}$ is log-preinvex on K for $q>1$, we have the inequality

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a))\right| \\
& \leq \frac{(\eta(b, a))^{n}\left[n^{(2 q-1) /(q-1)}-(n-2)^{(2 q-1) /(q-1)}\right]^{1-1 / q}\left|f^{(n)}(b)\right|}{2^{2-1 / q} n!} \\
& \quad \times\left(\frac{q-1}{2 q-1}\right)^{1-1 / q}\left(\sum_{k=1}^{\infty}(-q)^{k-1} \frac{\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]^{k-1}}{(q(n-1)+1)_{k}}\right)^{1 / q} . \tag{2.13}
\end{align*}
$$

Proof. By the log-preinvexity of $\left|f^{(n)}\right|^{q}$ on K, Lemma 1 and Hölder inequality, we have

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a))\right| \\
& \leq \frac{(\eta(b, a))^{n}}{2 n!}\left(\int_{0}^{1}(n-2 t)^{q /(q-1)} d t\right)^{1-1 / q}\left(\int_{0}^{1} t^{q(n-1)} \mid f^{(n)}\left(a+\left.t \eta(b, a)\right|^{q} d t\right)^{1 / q}\right. \\
& \leq \frac{(\eta(b, a))^{n}\left[n^{(2 q-1) /(q-1)}-(n-2)^{(2 q-1) /(q-1)}\right]^{1-1 / q}}{2^{2-1 / q} n!}\left(\frac{q-1}{2 q-1}\right)^{1-1 / q}\left(\int_{0}^{1} t^{q(n-1)}\left(\left(\left|f^{(n)}(a)\right|\right)^{q(1-t)}\left(\left|f^{(n)}(b)\right|\right)^{q t}\right) d t\right)^{1 / q} \\
& \quad=\frac{(\eta(b, a))^{n}\left[n^{(2 q-1) /(q-1)}-(n-2)^{(2 q-1) /(q-1)}\right]^{1-1 / q}\left|f^{(n)}(a)\right|}{2^{2-1 / q} n!}\left(\frac{q-1}{2 q-1}\right)^{1-1 / q}\left(\int_{0}^{1} t^{q(n-1)} \mu^{t} d t\right)^{1 / q}, \tag{2.14}
\end{align*}
$$

where $\mu=\frac{\left|f^{(n)}(b)\right|^{q}}{\left|f^{(n)}(a)\right|^{q}} \neq 1$. Applying Lemma 6 to the last integral in the inequality (2.14) and simplifying, we get the required inequality (2.13).
Corollary 4. Suppose the assumptions of Theorem 6 are satisfied and $n=2$. Then

$$
\begin{align*}
&\left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \leq \frac{(\eta(b, a))^{2}\left|f^{\prime \prime}(b)\right|}{2} \\
& \times\left(\frac{q-1}{2 q-1}\right)^{1-1 / q}\left(\sum_{k=1}^{\infty} \frac{(-q)^{k-1}\left[\ln \left(\left|f^{\prime \prime}(b)\right|\right)-\ln \left(\left|f^{\prime \prime}(a)\right|\right)\right]^{k-1}}{(q+1)_{k}}\right)^{1 / q} \tag{2.15}
\end{align*}
$$

Corollary 5. If $\eta(b, a)=b-a$ in Corollary 4 , we have

$$
\begin{align*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{(b-a)^{2}\left|f^{\prime \prime}(b)\right|}{2} & \left(\frac{q-1}{2 q-1}\right)^{1-1 / q} \\
& \times\left(\sum_{k=1}^{\infty} \frac{(-q)^{k-1}\left[\ln \left(\left|f^{\prime \prime}(b)\right|\right)-\ln \left(\left|f^{\prime \prime}(a)\right|\right)\right]^{k-1}}{(q+1)_{k}}\right)^{1 / q} . \tag{2.16}
\end{align*}
$$

Now we give some results related to left-side of Hermite-Hadamard's inequality for n-times differentiable log-preinvex functions.

Theorem 7. Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$. Suppose $f: K \rightarrow \mathbb{R}$ is a function such that $f^{(n)}$ exists on K and $f^{(n)}$ is integrable on $[a, a+\eta(b, a)]$ for $n \in \mathbb{N}, n \geq 1$, where $a, b \in K$ with $\eta(b, a)>0$. If $\left|f^{(n)}\right|^{q}$ is log-preinvex on K for $q \geq 1$, we have the following inequality

$$
\begin{align*}
\left\lvert\, \sum_{k=0}^{n-1} \frac{\left[(-1)^{k}+1\right](\eta(b, a))^{k}}{2^{k+1}(k+1)!} f^{(k)}(a+\right. & \left.\frac{1}{2} \eta(b, a)\right) \left.-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \right\rvert\, \\
& \leq \frac{(\eta(b, a))^{n}\left|f^{(n)}(a)\right|}{2^{(n+1)(q-1) / q}(n+1)^{1-1 / q}(n!)^{1-1 / q}}\left\{\left[E_{2}(n, q)\right]^{1 / q}+\left[E_{3}(n, q)\right]^{1 / q}\right\} \tag{2.17}
\end{align*}
$$

where

$$
\begin{aligned}
E_{2}(n, q) & =\frac{(-1)^{n+1}}{q^{n+1}\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]^{n+1}} \\
& +\left(\frac{\left|f^{(n)}(b)\right|}{\left|f^{(n)}(a)\right|}\right)^{q / 2} \sum_{k=0}^{n} \frac{(-1)^{k}}{q^{k+1} 2^{n-k}(n-k)!\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]^{k+1}}
\end{aligned}
$$

and

$$
\begin{aligned}
E_{3}(n, q) & =\frac{\left|f^{(n)}(b)\right|^{q}}{q^{n+1}\left[\ln \left[\left|f^{(n)}(b)\right|\right]-\ln \left(\left|f^{(n)}(a)\right|\right)\right]^{n+1}\left|f^{(n)}(a)\right|^{q}} \\
& -\left(\frac{\left|f^{(n)}(b)\right|}{\left|f^{(n)}(a)\right|}\right)^{q / 2} \sum_{k=0}^{n} \frac{1}{q^{k+1} 2^{n-k}(n-k)!\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]^{k+1}}
\end{aligned}
$$

Proof. Suppose $n \geq 1$. By using Lemma 2 and the log-preinvexity of $\left|f^{(n)}\right|^{q}$ on K for $n \in \mathbb{N}, n \geq 1$, we have

$$
\begin{align*}
& \left|\sum_{k=0}^{n-1} \frac{\left[(-1)^{k}+1\right](\eta(b, a))^{k}}{2^{k+1}(k+1)!} f^{(k)}\left(a+\frac{1}{2} \eta(b, a)\right)-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \\
& \leq \frac{(\eta(b, a))^{n}}{n!}\left[\int_{0}^{\frac{1}{2}} t^{n}\left|f^{(n)}(a+t \eta(b, a))\right| d t+\int_{\frac{1}{2}}^{1}(1-t)^{n}\left|f^{(n)}(a+t \eta(b, a))\right| d t\right] \\
& \leq \frac{(\eta(b, a))^{n}\left|f^{(n)}(a)\right|}{n!}\left[\left(\int_{0}^{\frac{1}{2}} t^{n} d t\right)^{1-1 / q}\left(\int_{0}^{\frac{1}{2}} t^{n} \mu^{t} d t\right)^{1 / q}+\left(\int_{\frac{1}{2}}^{1}(1-t)^{n} d t\right)^{1-1 / q}\left(\int_{\frac{1}{2}}^{1}(1-t)^{n} \mu^{t} d t\right)^{1 / q}\right] \tag{2.18}
\end{align*}
$$

where $\mu=\frac{\left|f^{(n)}(b)\right|^{q}}{\left|f^{(n)}(a)\right|} \neq 1$. Applying Lemma 4 and Lemma 5 to the integrals in the inequality (2.18) and replacing $\mu=\frac{\left|f^{(n)}(b)\right|^{q}}{\left|f^{(n)}(a)\right|^{q}} \neq 1$, we get the desired inequality (2.17). This completes the proof of the theorem.
Corollary 6. Suppose the assumptions of Theorem 7 are fulfilled and if $q=1$, we have

$$
\begin{align*}
\left\lvert\, \sum_{k=0}^{n-1} \frac{\left[(-1)^{k}+1\right](\eta(b, a))^{k}}{2^{k+1}(k+1)!} f^{(k)}\left(a+\frac{1}{2} \eta(b, a)\right)-\frac{1}{\eta(b, a)}\right. & \int_{a}^{a+\eta(b, a)} f(x) d x \mid \\
& \leq(\eta(b, a))^{n}\left|f^{(n)}(a)\right|\left\{\left[E_{2}(n, 1)\right]+\left[E_{3}(n, 1)\right]\right\} \tag{2.19}
\end{align*}
$$

where

$$
E_{2}(n, 1)=\frac{(-1)^{n+1}}{\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]^{n+1}}+\left(\frac{\left|f^{(n)}(b)\right|}{\left|f^{(n)}(a)\right|}\right)^{1 / 2} \sum_{k=0}^{n} \frac{(-1)^{k}}{2^{n-k}(n-k)!\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]^{k+1}}
$$

and

$$
E_{3}(n, 1)=\frac{\left|f^{(n)}(b)\right|}{\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]^{n+1}\left|f^{(n)}(a)\right|}-\left(\frac{\left|f^{(n)}(b)\right|}{\left|f^{(n)}(a)\right|}\right)^{1 / 2} \sum_{k=0}^{n} \frac{1}{2^{n-k}(n-k)!\left[\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)\right]^{k+1}}
$$

Corollary 7. [31] If we take $n=1$ in Corollary 6, we have

$$
\begin{equation*}
\left|f\left(a+\frac{1}{2} \eta(b, a)\right)-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \leq \eta(b, a)\left[\frac{\sqrt{\left|f^{\prime}(b)\right|}-\sqrt{\left|f^{\prime}(a)\right|}}{\ln \left(\left|f^{\prime}(b)\right| \mid\right)-\ln \left(\left|f^{\prime}(a)\right|\right)}\right]^{2} \tag{2.20}
\end{equation*}
$$

Corollary 8. [31] If $\eta(b, a)=b-a$ in Corollary 7, we have

$$
\begin{equation*}
\left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq(b-a)\left[\frac{\sqrt{\left|f^{\prime}(b)\right|}-\sqrt{\left|f^{\prime}(a)\right|}}{\ln \left(\left|f^{\prime}(b)\right|\right)-\ln \left(\left|f^{\prime}(a)\right|\right)}\right]^{2} \tag{2.21}
\end{equation*}
$$

Theorem 8. Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$. Suppose $f: K \rightarrow \mathbb{R}$ is a function such that $f^{(n)}$ exists on K and $f^{(n)}$ is integrable on $[a, a+\eta(b, a)]$ for $n \in \mathbb{N}, n \geq 1$, where $a, b \in K$ with $\eta(b, a)>0$. If $\left|f^{(n)}\right|^{q}$ is log-preinvex on K for $q>1$, we have the inequality

$$
\begin{align*}
\sum_{k=0}^{n-1} \frac{\left[(-1)^{k}+1\right](\eta(b, a))^{k}}{2^{k+1}(k+1)!} f^{(k)} & \left.\left(a+\frac{1}{2} \eta(b, a)\right)-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \right\rvert\, \\
& \leq \frac{(\eta(b, a))^{n}\left[\sqrt{\left|f^{(n)}(a)\right|}+\sqrt{\left|f^{(n)}(b)\right|}\right]}{2^{n+1 / p}(n p+1)^{1 / p} q^{1 / q} n!}\left[\frac{\left.| | f^{(n)}(b) \mid\right)^{q / 2}-\left(\left|f^{(n)}(a)\right|\right)^{q / 2}}{\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)}\right]^{1 / q}, \tag{2.22}
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Proof. From Lemma 2, the Hölder integral inequality and the log-preinvexity of $\left|f^{(n)}\right|^{q}$ on K, we have

$$
\begin{gather*}
\left|\sum_{k=0}^{n-1} \frac{\left[(-1)^{k}+1\right](\eta(b, a))^{k}}{2^{k+1}(k+1)!} f^{(k)}\left(a+\frac{1}{2} \eta(b, a)\right)-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \\
\leq \frac{(\eta(b, a))^{n}\left|f^{(n)}(a)\right|}{n!}\left[\left(\int_{0}^{\frac{1}{2}} t^{n p} d t\right)^{\frac{1}{p}}\left(\int_{0}^{\frac{1}{2}}\left(\frac{\left|f^{(n)}(b)\right|}{\left|f^{(n)}(a)\right|}\right)^{q t} d t\right)^{\frac{1}{q}}+\left(\int_{\frac{1}{2}}^{1}(1-t)^{n p} d t\right)^{\frac{1}{p}}\left(\int_{\frac{1}{2}}^{1}\left(\frac{\left|f^{(n)}(b)\right|}{\left|f^{(n)}(a)\right|}\right)^{q t} d t\right)^{\frac{1}{q}}\right] \\
=\frac{(\eta(b, a))^{n}\left[\sqrt{\left|f^{(n)}(a)\right|}+\sqrt{\left|f^{(n)}(b)\right|}\right]}{2^{n+1 / p}(n p+1)^{1 / p} q^{1 / q} n!}\left[\frac{\left.| | f^{(n)}(b) \mid\right)^{q / 2}-\left(\left|f^{(n)}(a)\right|\right)^{q / 2}}{\ln \left(\left|f^{(n)}(b)\right|\right)-\ln \left(\left|f^{(n)}(a)\right|\right)}\right]^{1 / q} \tag{2.23}
\end{gather*}
$$

Which is the required inequality. This completes the proof of the theorem.

Corollary 9. Under the assumptions of Theorem 8 , if $n=1$, we have the inequality

$$
\begin{align*}
&\left|f\left(a+\frac{1}{2} \eta(b, a)\right)-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \\
& \leq \frac{\eta(b, a)\left[\sqrt{\left|f^{\prime}(a)\right|}+\sqrt{\left|f^{\prime}(b)\right|}\right]}{2^{1+1 / p}(p+1)^{1 / p} q^{1 / q}}\left[\frac{\left(\left|f^{\prime}(b)\right|\right)^{q / 2}-\left(\left|f^{\prime}(a)\right|\right)^{q / 2}}{\ln \left(\left|f^{\prime}(b)\right|\right)-\ln \left(\left|f^{\prime}(a)\right|\right)}\right]^{1 / q}, \tag{2.24}
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Corollary 10. If we take $\eta(b, a)=b-a$ in (2.24), we get the inequality:

$$
\begin{equation*}
\left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{(b-a)\left[\sqrt{\left|f^{\prime}(a)\right|}+\sqrt{\left|f^{\prime}(b)\right|}\right]}{2^{1+1 / p}(p+1)^{1 / p} q^{1 / q}}\left[\frac{\left(\left|f^{\prime}(b)\right|\right)^{q / 2}-\left(\left|f^{\prime}(a)\right|\right)^{q / 2}}{\log \left(\left|f^{\prime}(b)\right|\right)-\log \left(\left|f^{\prime}(a)\right|\right)}\right]^{1 / q} \tag{2.25}
\end{equation*}
$$

Remark 2. Inequalities (2.24) and (2.25) are the corrected inequalities that are given in Theorem 4 and its related corollary from [31].

Acknowledgement 1. The authors appreciate anonymous referees for their careful corrections and valuable comments on the original version of this paper.

References

[1] A. Barani, A.G. Ghazanfari, S.S. Dragomir, Hermite-Hadamard inequality through prequsi-invex functions, RGMIA Research Report Collection, 14(2011), Article 48, 7 pp.
[2] A. Barani, A.G. Ghazanfari, S.S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl. 2012, 2012:247 doi:10.1186/1029-242X-2012-247.
[3] A. Ben-Israel and B. Mond, What is invexity?, J. Austral. Math. Soc., Ser. B, 28(1986), No. 1, 1-9.
[4] S.S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91-95.
[5] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
[6] S. S. Dragomir and B. Mond, Integral inequalities of Hadamard type for log-convex functions, Demonst. Math., 31 (1998), 354-364.
[7] Wei-Dong Jiang, Da-Wei Niu, Yun Hua, and Feng Qi, Generalizations of Hermite-Hadamard inequality to n-time differentiable functions which are s-convex in the second sense, Analysis (Munich) 32 (2012), 1001-1012; Available online at http://dx.doi.org/10.1524/anly.2012.1161.
[8] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981) 545-550.
[9] Shu-Hong, Bo-Yan Xi and Feng Qi, Some new inequalities of Hermite-Hadamard type for n-times differentiable functions which are m-convex, Analysis (Munich) 32 (2012), no. 3, 247-262; Available online at http://dx.doi.org/10.1524/anly.2012.1167.
[10] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considerée par Riemann, J. Math Pures Appl., 58 (1893), 171-215.
[11] Dah-Yang Hwang, Some inequalities for n-time differentiable mappings and applications, Kyugpook Math. J. 43(2003), 335-343
[12] I. Iscan, Ostrowski type inequalites for functions whose derivatives are preinvex, arXiv:1204.2010v1.
[13] U.S. Kırmacı, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., 147 (2004), 137-146.
[14] U.S. Kırmacı and M.E. Özdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., 153 (2004), 361-368.
[15] U.S. Kırmacı, Improvement and further generalization of inequalities for differentiable mappings and applications, Computers and Math. with Appl., 55 (2008), 485-493.
[16] M. A. Latif, On Hermite-Hadamard type integral inequalities for n-times differentiable preinvex functions with applications, Stud. Univ. Babeş-Bolyai Math. 58(2013), No. 3, 325-343.
[17] M. A. Latif, Some inequalities for differenitable prequasiinvex functions with applications, Konuralp Journal of Mathematics Volume 1, No. 2 pp. 17-29 (2013).
[18] M. A. Latif and S. S. Dragomir, Some weighted integral inequalities for differentiable preinvex and prequasiinvex functions with applications, J. Inequal Appl. 2013, 2013:575 doi:10.1186/1029-242X-2013-575.
[19] S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189 (1995), 901-908.
[20] M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126-131.
[21] M. A. Noor, Variational-like inequalities, Optimization, 30 (1994), 323-330.
[22] M. A. Noor, Invex equilibrium problems, J. Math. Anal. Appl., 302 (2005), 463-475.
[23] M. A. Noor, Some new classes of nonconvex functions, Nonl. Funct. Anal. Appl.,11(2006),165-171
[24] M. A. Noor, On Hadamard integral inequalities involving two log-preinvex functions, J. Inequal. Pure Appl. Math., 8(2007), No. 3, 1-6, Article 75.
[25] C.E.M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13(2) (2000), 51-55.
[26] R. Pini, Invexity and generalized Convexity, Optimization 22 (1991) 513-525.
[27] M. Z. Sarikaya, A. Saglam and H. Yıldırım, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, International Journal of Open Problems in Computer Science and Mathematics (IJOPCM), 5(3), 2012.
[28] M. Z. Sarikaya, A. Saglam and H. Yıldırım, On some Hadamard-type inequalities for h-convex functions, Journal of Mathematical Inequalities, Volume 2, Number 3 (2008), 335-341.
[29] M. Z. Sarikaya, M. Avci and H. Kavurmaci, On some inequalities of Hermite-Hadamard type for convex functions, ICMS Iternational Conference on Mathematical Science. AIP Conference Proceedings 1309, 852 (2010).
[30] M. Z. Sarikaya and N. Aktan, On the generalization some integral inequalities and their applications Mathematical and Computer Modelling, Volume 54, Issues 9-10, November 2011, Pages 2175-2182.
[31] M. Z. Sarikaya, H. Bozkurt and N. Alp, On Haermite-Hadamard type integral inequalities for preinvex and log-preinvex functions, Contemporary Analysis and Applied Mathematics, Vol.1, No.2, 237-252, 2013.
[32] M. Z. Sarikaya, E. Set and M. E. Ozdemir, On some new inequalities of Hadamard type involving h-convex functions, Acta Mathematica Universitatis Comenianae, Vol. LXXIX, 2(2010), pp. 265-272.
[33] A. Saglam, M. Z. Sarikaya and H. Yildirim, Some new inequalities of Hermite-Hadamard's type, Kyungpook Mathematical Journal, 50(2010), 399-410.
[34] T. Weir, and B. Mond, Preinvex functions in multiple objective optimization, Journal of Mathematical Analysis and Applications, 136 (1998) 29-38.
[35] J. Wang, J. Deng, M. Fečkan, Exploring s-e-condition and applications to some Ostrowski type inequalities via Hadamard fractional integrals. Math. Slovaca (2013, in press)
[36] X. M. Yang and D. Li, On properties of preinvex functions, J. Math. Anal. Appl. 256 (2001) 229-241.

[^0]: 2010 Mathematics Subject Classification. 26D15, 26D99
 Keywords. Hermite-Hadamard's inequality, invex set, log-preinvex function, Hölder's inequality.
 Received: 11 January 2014; Accepted: 07 February 2014
 Communicated by Predrag Stanimirović
 Email addresses: m_amer_latif@hotmail.com (M. A. Latif), sever.dragomir@vu.edu.au (S. S. Dragomir)

