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Abstract. In this article, we introduce a new splitting for rectangular matrices called reverse proper
splitting. We then propose several subclasses of this splitting and also discuss convergence results for these
splittings.

1. Introduction

A class of matrices known as M-matrices were introduced by Ostrowski [21], with reference to the work
of Minkowski [15, 16]. At least 50 different but equivalent characterizations of M-matrices are given by
Berman and Plemmons [4]. This class of matrices arise in many areas of mathematics and statistics, such
as the convergence analysis of iterative processes for the solution of linear systems and the analysis of
Markov chains, to name a few. A real square matrix A is called a Z-matrix if its off-diagonal entries are
nonpositive [10]. A Z-matrix A is called an M-matrix if it is of the form A = sI − B, B ≥ 0 and s ≥ ρ(B),
where the inequality is considered entry-wise and ρ(X) denotes the spectral radius of the matrix X. In the
above definition, if the condition s > ρ(B) is satisfied, then it is called as nonsingular M-matrix, otherwise
we call it a singular M-matrix. One of the most important properties of a nonsingular M-matrix is that
its inverse is nonnegative. There are several works that have considered generalizations of some of the
important properties of M-matrices in the literature. But here we are interested in singular M-matrices.
In particular, finding solution of a singular system of linear equations where the co-efficient matrix is a
singular M-matrix. Besides these, the proposed technique also deals with the problem for finding solution
of a rectangular system of linear equations. A brief description related to these notion is as follows.

Many real world problems involve solving a system of linear equations in n unknowns

Ax = b (1)

where A ∈ Rm×n and b ∈ Rm. In a wide variety of such problems, including the Neumann problem and
those for elastic bodies with free surfaces, the finite difference formulations lead to a singular, consistent
linear system (1) where A is large and sparse. Often, it becomes difficult to determine the exact solution,
even if it exists. Therefore, one is interested in various computational techniques to solve the above system,
and thus the notion of proper splitting (a splitting A = U−V of a real rectangular matrix A is called a proper
splitting ([3]) if R(A) = R(U) and N(A) = N(U), where R(A) and N(A) denote range and null space of the

2010 Mathematics Subject Classification. Primary 15A09; Secondary 65F15, 65F20
Keywords. Moore-Penrose inverse; Group inverse; Proper splittings; Nonnegativity; Convergence theorem; Comparison theorem.
Received: 19 December 2013; Accepted: 30 June 2014
Communicated by Dragana Cvetković Ilić
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matrix A) of a matrix was proposed so that one can attempt to solve the above problem iteratively with the
following iterative scheme

x(i+1) = U†Vx(i) + U†b, (2)

where U† is the Moore-Penrose inverse of U (see next section for this definition). In connection with iterative
techniques for solving singular linear systems, various types of matrix splittings and their convergence
results are introduced by many authors (see [5–7, 12–14, 17–20, 23, 25, 26]). The iteration scheme (1) is said
to be convergent if the spectral radius of U†V is less than 1. As convergence result determines, the smaller
is the spectral radius of U†V, the quicker is the convergence. For a proper splitting, the authors of [3] have
shown that x = A†b for any initial vector x0 if and only if (2) is convergent.

Very recently, Jena et al. [14] proposed the following splittings with a aim to solve the rectangular
systems of linear equations, iteratively. A splitting A = U − V of A ∈ Rm×n is called a proper regular splitting
if it is a proper splitting such that U† ≥ 0 and V ≥ 0. A splitting A = U−V of A ∈ Rm×n is called a proper weak
regular splitting if it is a proper splitting such that U† ≥ 0 and U†V ≥ 0. Thereafter, Mishra [17] introduced
another splitting and is recalled next. A splitting A = U − V of A ∈ Rm×n is called a proper nonnegative
splitting if it is a proper splitting such that U†V ≥ 0. Then the convergence of the above splittings are
examined. From the above definitions, it is clear that all matrices (A) may not have the above splittings.
Now a question arises how to deal with the rest of matrices. In this direction, the main results of this article
may be useful.

In this paper, we suggest a method for the solution of rectangular linear systems using iteration method
by introducing a new splitting called reverse proper splitting for rectangular matrices. The definition of this
splitting is motivated by the ideas of proper splittings ([3]) and of reverse splittings ([28]). The proposed
iteration method associated with these splittings is convergent if the spectral radius of the iteration matrix
is less than one. Here, we provide some theoretical convergence results mainly giving conditions when the
corresponding iteration matrix has a spectral radius less than one.

The remainder of the paper is organized as follows. In Section 2 we set up notation and terminology.
Furthermore, we collect some facts about nonnegative matrices. Section 3 contains the main results of the
paper concerning the convergence results for different matrix reverse splittings. Finally, we end up this
paper with a few concluding remarks.

2. Preliminaries

The set of all m × n matrices over the real numbers R is denoted by Rm×n. We denote the transpose of
a matrix A ∈ Rm×n by AT. Let K,L be complementary subspaces of Rn, i.e., K ⊕ L = Rn. Then PK,L denotes
the (not necessarily orthogonal) projection of Rn onto K along L. So, we have P2

K,L = PK,L, R(PK,L) = K and
N(PK,L) = L. If in addition K ⊥ L, PK,L will be replaced by PK. In that case, we also have PT

K = PK. For K ⊆ Rn,
K⊥ will denote the orthogonal complement of K in Rn. For real rectangular matrices A and B, A = [ai j] ≥ 0
means ai j ≥ 0 for all i, j and A ≤ B means B−A ≥ 0. Let A ∈ Rn×n be a matrix with eigenvalues λ1, λ2, · · · , λn.
Then, the spectral radius ρ(A) of A is defined by ρ(A) = max

1≤i≤n
|λi| and λi(A) means eigenvalues of A.

Before proceeding further, we shall outline briefly some more notation and definitions used throughout.
The Moore-Penrose inverse of a matrix A ∈ Rm×n, denoted by A† is the unique solution X of the equations

AXA = A (1)
XAX = X (2)

(AX)T = AX (3)
(XA)T = XA (4)

Equivalently, it was shown in [9] that A† is the unique matrix X which satisfies XAx = x for all x ∈ N(A)⊥

and Xy = 0 for all y ∈ R(A)⊥. We list some of the well known properties of A† that will be frequently used
in this paper: R(AT) = R(A†); N(AT) = N(A†); AA† = PR(A); A†A = PR(AT). In particular, if x ∈ R(AT) then
x = A†Ax.
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The group inverse of a matrix A ∈ Rn×n (if it exists), denoted by A# is the unique matrix X satisfying
A = AXA, X = XAX and AX = XA. Equivalently, A# is the unique matrix X which satisfies XAx = x for all
x ∈ R(A) and Xy = 0 for all y ∈ N(A). The index of a real square matrix A is the least nonnegative integer k
such that rank(Ak+1)=rank(Ak). A# exists if and only if index of A is 1. Let A ∈ Rn×n be of index k. Then, the
Drazin inverse of A is the unique matrix AD

∈ Rn×n which satisfies the equations Ak+1AD = Ak, ADAAD = AD

and AAD = ADA. (See the book by Ben-Israel and Greville, [1] for more properties.)
The next theorem is a part of Perron−Frobenius theorem.

Theorem 2.1. (Theorem 2.20, [24])
Let A ≥ 0. Then A has a nonnegative real eigenvalue equal to its spectral radius.

Another result which relates spectral radius of two nonnegative matrices is given below.

Theorem 2.2. (Theorem 2.21, [24])
Let A ≥ B ≥ 0. Then ρ(A) ≥ ρ(B).

We conclude this section with the following result which is well known in the theory of nonnegative
matrices.

Theorem 2.3. (Theorem 3.16, [24])

Let X ∈ Rn×n and X ≥ 0. Then ρ(X) < 1 if and only if (I − X)−1 exists and (I − X)−1 =

∞∑
k=0

Xk
≥ 0.

3. Main Results

Influenced by the definition of proper splitting introduced by Berman and Plemmons [3], and reverse
splitting for nonsingular matrices [28], we here propose another splitting called reverse proper splitting
of rectangular(singular) matrices. Here on words all our matrices are considered to be real rectangular
matrices unless otherwise mentioned.

Definition 3.1. (Reverse proper splitting:)
A splitting of the form A = U − V is called a reverse proper splitting of A if R(V) = R(U) and N(V) = N(U).

Berman and Plemmons proved the following result which collects some of the properties of a proper
splitting.

Theorem 3.2. (Theorem 1, [3])
Let A = U − V be a proper splitting. Then
(a) A = U(I −U†V);
(b) I −U†V is invertible;
(c) A† = (I −U†V)−1U†.

Now we present a similar result for the reverse proper splitting.

Theorem 3.3. Let A = U − V be a reverse proper splitting. Then
(i) VV† = UU†; V†V = U†U.
(ii) V = U(I −U†A).
(iii) I −U†A is invertible.
(iv) V† = (I −U†A)−1U†.
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Proof. (i) VV† = PR(V) = PR(U) = UU†. The second identity is similar.
(ii) Since R(V) = R(U), it follows that R(A) ⊆ R(U). Hence UU†A = A and we then have V = U − A =

U −UU†A = U(I −U†A).
(iii) Let (I − U†A)x = 0. Then x = U†Ax ∈ R(U†) = R(UT) = R(VT) and x = V†Vx = U†Ux. Therefore

Ux = UU†Ax = Ax. So (U − A)x = 0 i.e., Vx = 0. So x ∈ N(V). Hence x = 0. Thus I −U†A is invertible.
(iv) Set X = (I −U†A)−1U†. Let x ∈ R(VT). So x = V†Vx = U†Ux. Then XVx = (I −U†A)−1U†(U − A)x =

(I − U†A)−1(U†Ux − U†Ax) = (I − U†A)−1(x − U†Ax) = (I − U†A)−1(I − U†A)x = x. Again, suppose that
y ∈ N(VT) = N(UT) = N(U†). Then Xy = (I −U†A)−1U†y = 0. Hence V† = (I −U†A)−1U†.

We next recall a result of Mishra and Sivakumar, [18] which is for proper splittings.

Lemma 3.4. (Lemma 2.6, [18])
Let A = U − V be a proper splitting of A ∈ Rm×n. Let µi, 1 ≤ i ≤ s and λ j, 1 ≤ j ≤ s be the eigenvalues of the
matrices U†V (VU†) and A†V (VA†), respectively. Then for every j, we have 1 + λ j , 0. Also, for every i, there
exists j such that µi =

λ j

1+λ j
and for every j, there exists i such that λ j =

µi

1−µi
.

An analogous result for reverse proper splitting is stated next. The proof is very similar and is omitted.

Lemma 3.5. Let A = U − V be a reverse proper splitting of A ∈ Rm×n. Let µi, 1 ≤ i ≤ s and λ j, 1 ≤ j ≤ s be the
eigenvalues of the matrices U†A (AU†) and V†A (AV†), respectively. Then for every j, we have 1 + λ j , 0. Also, for
every i, there exists j such that µi =

λ j

1+λ j
and for every j, there exists i such that λ j =

µi

1−µi
.

Next result adds a few more properties of a reverse proper splitting with the assumption of two other
conditions.

Theorem 3.6. Let A = U −V be a reverse proper splitting. Suppose that U† ≥ 0 and A ≥ 0. Then the following are
equivalent:
(i) V† ≥ 0;
(ii) V†A ≥ 0;
(iii) ρ(U†A) < 1.

Proof. (i)⇒ (ii): The conditions V† ≥ 0 and A ≥ 0 imply V†A ≥ 0.
(ii) ⇒ (iii): Suppose that V†A ≥ 0. Also from the given data, we have U†A ≥ 0. Let λ and µ be any

nonnegative eigenvalues of V†A and U†A, respectively. Let f (λ) = λ
1+λ , λ ≥ 0. Then f is a strictly increasing

function. Then by Lemma 3.5, µ = λ
1+λ . So, µ attains its maximum when λ is maximum. But λ is maximum

when λ = ρ(V†A). As a result, the maximum value of µ is ρ(U†A). Hence, ρ(U†A) =
ρ(V†A)

1+ρ(V†A) < 1.

(iii)⇒ (i): Let ρ(U†A) < 1. Then by Theorem 2.3, we have (I −U†A)−1 =

∞∑
k=0

(U†A)k
≥ 0. Since A ≥ 0, so

V† = (I −U†A)−1U† =

∞∑
k=0

(U†A)kU† ≥ 0.

We now introduce a subclass of a reverse splitting called reversible proper splitting and the definition
is as follows.

Definition 3.7. A reverse splitting A = U − V is called a reversible proper splitting of A if λi(U†A) ≥ 0 for
i = 1, 2, · · · ,n.

Example 3.8. Let A =

(
2 −1 0
−1 2 0

)
. Set U =

(
2 0 0
0 2 0

)
and V =

(
0 1 0
1 0 0

)
. Then, U† =

 0.5 0
0 0.5
0 0

,

U†A =

 1 −0.5 0
−0.5 1 0

0 0 0

 and λi(U†A) = {0, 0.5, 1.5} for i = 1, 2, 3. So λi(U†A) ≥ 0. Hence A possess a reversible

proper splitting.
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A convergence result for a reversible proper splitting is presented next.

Theorem 3.9. Let A = U − V be a reversible proper splitting of A and ρ(U†A) < 1, then ρ(U†V) < 1.

Proof. Since A = U−V is a reversible proper splitting of A, thenλi(U†A) ≥ 0 for i = 1, 2, · · · ,n. From Theorem
3.3 (ii) V = U(I −U†A). So U†V = U†U(I −U†A), we then have U†V + U†A = U†U and λi(U†V) + λi(U†A) =
λi(U†U) ≤ 1 for i = 1, 2, · · · ,n. The condition ρ(U†A) < 1 implies λi(U†A) < 1, i = 1, 2, · · · ,n (since
λi(U†A) ≥ 0). Hence, ρ(U†V) = max

1≤i≤n
{λi(U†V)} < 1.

In case of square nonsingular matrices Theorem 1, [28] follows from the above result as a corollary, and
is obtained below.

Corollary 3.10. (Theorem 1, [28])
Let A = U − V be a reversible splitting of A ∈ Rn×n and ρ(U−1A) < 1, then ρ(U−1V) < 1.

The authors of [14] and [17] studied the convergence and comparison results for proper regular splittings,
proper weak regular splittings and proper nonnegative splittings. Unlike the above splittings, we now
introduce a few new splittings which are subclasses of reverse proper splittings.

Definition 3.11. A splitting A = U − V is called
(i) a reversible proper regular splitting of A if A possess a reversible proper splitting with U† ≥ 0 and A ≥ 0;
(ii) a reversible proper weak regular splitting of A if A possess a reversible proper splitting with U† ≥ 0 and

U†A ≥ 0;
(iii) a reversible proper nonnegative splitting of A if A possess a reversible proper splitting with U†A ≥ 0.

Example 3.12. Let A =

(
1 2
1 2

)
. Set U =

(
1 3
1 3

)
and V =

(
0 1
0 1

)
. Then U† =

(
0.05 0.05
0.15 0.15

)
≥ 0 and

U†A =

(
0.1 0.2
0.3 0.6

)
and λi(U†A) = {0, 0.7} ≥ 0. Since A ≥ 0, U† ≥ 0 and λi(U†A) ≥ 0, then A has a reversible

proper regular splitting.

The above example also possess a reversible proper weak regular splitting and a reversible proper
nonnegative splitting. Since A = U − V is reversible proper regular splitting, so A = U − V is a reverse
proper splitting with U† ≥ 0 and A ≥ 0. Therefore ρ(U†A) < 1, by Theorem 3.6 and then it follows from
Theorem 3.9 that ρ(U†V) < 1. Thus we remark that the reversible proper regular splitting is always convergent.
Hence we will focus on convergence of other proposed splittings, but before that we establish an analogous
result to Theorem 3.6.

Theorem 3.13. Let A = U − V be a reversible proper regular splitting with V† ≥ 0. Then the following conditions
holds.
(i) V† ≥ U†.
(ii) ρ(V†A) ≥ ρ(U†A).
(iii) ρ(U†A) =

ρ(V†A)
1+ρ(V†A) < 1.

Proof. (i): Theorem 3.3 yields V† = (I −U†A)−1U†. So, we have U† = (I −U†A)V† = V† −U†AV†. Therefore
U†AV† = V† − U†. Since A possess reversible proper regular splitting, we have U† ≥ 0 and A ≥ 0. Hence
V† ≥ 0. So U†AV† ≥ 0. Thus V† −U† ≥ 0, i.e., V† ≥ U†.

(ii): Post-multiplying A to the inequality V† ≥ U†, and then Theorem 2.2 yields ρ(V†A) ≥ ρ(U†A).
(iii): We have A = U − V be a reverse proper splitting with U† ≥ 0 and A ≥ 0. So V†A ≥ 0 and U†A ≥ 0.

Let λ and µ be any nonnegative eigenvalues of V†A and U†A, respectively. Let f (λ) = λ
1+λ , λ ≥ 0. Then

f is a strictly increasing function. Then by Lemma 3.5, µ = λ
1+λ . So, µ attains its maximum when λ is

maximum. But λ is maximum when λ = ρ(V†A). As a result, the maximum value of µ is ρ(U†A). Hence,

ρ(U†A) =
ρ(V†A)

1+ρ(V†A) < 1.
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When two splittings of A are given, it is of interest to compare the spectral radii of the corresponding
iteration matrices. The comparison of asymptotic rates of convergence of the iteration matrix induced by
two splittings of a given square nonsingular matrix, has been studied by many authors, Csordas and Varga
[8], Elsner [11], Song [22], Varga [24] and Woźnicki [27], to name a few. In case of square nonsingular
matrices, U is also nonsingular in the splitting A = U − V. Woźnicki [27] has considered different types
of splittings (such as regular, weak regular and weak nonnegative splittings of different types) of a given
monotone matrix and has proved corresponding comparison theorems. Elsner [11] considered weak regular
splitting and multi splittings, and proved comparison results. Song [22] studied a comparison theorem for
nonnegative splittings and then applied it to study different basic iterative methods. Recently, Mishra and
Sivakumar [18], Jena and Mishra [12, 13], and Jena et al. [14] have proved different comparison results for
splittings of rectangular (singular) matrices. Next result is in this direction.

Theorem 3.14. Let A = U1 − V1 = U2 − V2 be two reversible proper regular splittings such that V†2 ≥ V†1 and
V†i ≥ 0 for i = 1, 2. If A ≥ 0, then

ρ(U†1A) ≤ ρ(U†2A) < 1.

Proof. We have ρ(U†i A) < 1 for i = 1, 2 by Theorem 3.6. Since A ≥ 0 and V†i ≥ 0 for i = 1, 2, then V†i A ≥ 0. Let
λi be the eigenvalues of V†i A for i = 1, 2. Similarly, the fact V†2 ≥ V†1 implies (V†2−V†1)A ≥ 0. Since f (λ) = λ

1+λ is
a strictly increasing function for λ ≥ 0 and V†2A ≥ V†1A ≥ 0, so Theorem 2.2 yields ρ(V†2A) ≥ ρ(V†1A). Hence

ρ(V†2A)

1 + ρ(V†2A)
≥

ρ(V†1A)

1 + ρ(V†1A)

i.e.
ρ(U†1A) ≤ ρ(U†2A) < 1.

From the proof of Theorem 3.9, we get λi(U†V) + λi(U†A) = λi(U†U) ≤ 1 for i = 1, 2, · · · ,n and then by
the above Theorem, we obtain the following comparison result as a corollary.

Corollary 3.15. Let A = U1 − V1 = U2 − V2 be two reversible proper regular splittings such that V†2 ≥ V†1 and
V†i ≥ 0 for i = 1, 2. If A ≥ 0, then

ρ(U†1V1) ≤ ρ(U†2V2) < 1.

From Theorem 3.9, we conclude that showing a convergence of a reversible proper splitting is equivalent
to show that ρ(U†A) < 1.Hence for all other different subclasses of reversible proper splitting, we will focus
on ρ(U†A). The next result discusses convergence of reversible proper weak regular splitting together with
some more other equivalent conditions.

Theorem 3.16. Let A = U − V be a reversible proper weak regular splitting. Then (a)⇒ (b)⇒ (c)⇒ (d)⇒ (e)⇒
(f)⇒ (g) where
(a) V†U ≥ 0;
(b) ρ(U†A) =

ρ(V†U)−1
ρ(V†U) ;

(c) ρ(U†A) < 1;
(d) (I −U†A)−1

≥ 0;
(e) V†A ≥ 0;
(f) V†A ≥ U†A;
(g) ρ(U†A) =

ρ(V†A)
1+ρ(V†A) .



D. Mishra / Filomat 29:7 (2015), 1491–1499 1497

Proof. Since A has a reversible proper weak regular splitting, so A possess reverse proper splitting with
U† ≥ 0, U†A ≥ 0.

(a) ⇒ (b): Since V†U ≥ 0, then by Theorem 2.1, there exists a nonnegative vector x (x , 0) such
that U†Ax = ρ(U†A)x. Hence x ∈ R(U†) = R(UT) so that U†Ux = x. By Theorem 3.3 (iv), we also have
V† = (I −U†A)−1U† it implies V†U = (I −U†A)−1U†U. Then

V†Ux = (I −U†A)−1U†Ux = (I −U†A)−1x =
1

1 − ρ(U†A)
x.

So 1
1−ρ(U†A) ≥ 0 and is an eigenvalue of V†U. Hence 0 ≤ 1

1−ρ(U†A) ≤ ρ(V†U), i.e., ρ(U†A) ≤ ρ(V†U)−1
ρ(V†U) . Again,

the condition V†U ≥ 0 yields existence of a nonnegative vector y (y , 0) such that V†Uy = ρ(V†U)y. Then
y ∈ R(V†) = R(VT) = R(UT) = R(U†). So U†Uy = y. Also U†U = (I−U†A)V†U. Therefore y = (I−U†A)V†Uy
which implies y − V†Uy = −U†AV†Uy. Hence U†Ay = V†U−I

V†U y, again gives U†Ay =
ρ(V†U)−1
ρ(V†U) y. So ρ(V†U)−1

ρ(V†U) ≤

ρ(U†A). Hence ρ(U†A) =
ρ(V†U)−1
ρ(V†U) .

(b)⇒ (c): Obvious.

(c)⇒ (d): The condition U†A ≥ 0 and Theorem 2.3 yields (I −U†A)−1 =

∞∑
k=0

(U†A)k
≥ 0.

(d) ⇒ (e): By Theorem 3.3 (iv), we also have V† = (I − U†A)−1U†. Since (I − U†A)−1
≥ 0, U†A ≥ 0, then

V†A = (I −U†A)−1U†A implies V†A ≥ 0.
(e) ⇒ ( f ): Since V†A = (I − U†A)−1U†A. So (I − U†A)V†A = U†A, i.e., V†A − U†A = U†AV†A. Again

V†A ≥ 0 and U†A ≥ 0 implies V†A −U†A ≥ 0. Hence V†A ≥ U†A.
( f )⇒ (1): We have V†A ≥ 0 and U†A ≥ 0. Let λ and µ be any nonnegative eigenvalues of V†A and U†A,

respectively. Let f (λ) = λ
1+λ , λ ≥ 0. Then f is a strictly increasing function. Then by Lemma 3.5, µ = λ

1+λ .
So, µ attains its maximum when λ is maximum. But λ is maximum when λ = ρ(V†A). As a result, the

maximum value of µ is ρ(U†A). Hence, ρ(U†A) =
ρ(V†A)

1+ρ(V†A) .

A convergence result for the reversible proper nonnegative splitting is presented next.

Theorem 3.17. Let A = U − V be a reversible proper nonnegative splitting. Then V†A ≥ 0 if and only if
ρ(U†A) =

ρ(V†A)
1+ρ(V†A) < 1.

Proof. Suppose that V†A ≥ 0. The fact A = U − V is a reversible proper nonnegative splitting yields that A
possess a reverse proper splitting with U†A ≥ 0. Now proceeding as in the proof of Theorem 3.16 ( f )⇒ (1),
we have the desired result.

Conversely, let ρ(U†A) < 1. Then by Theorem 2.3, we get (I − U†A)−1 =

∞∑
k=0

(U†A)k
≥ 0. Since V†A =

(I −U†A)−1U†A. So, we have V†A = (I −U†A)−1U†A =

∞∑
k=0

(U†A)k+1
≥ 0.

Using the above one, the convergence result for reversible proper nonnegative splitting is presented
next.

Corollary 3.18. Let A = U − V be a reversible proper nonnegative splitting. If V†A ≥ 0, then ρ(U†V) < 1.

Theorem 3.19. Let A = U − V be a reversible splitting with V†U ≥ 0 (UV† ≥ 0). Then,

ρ(U†A) =
ρ(V†U) − 1
ρ(V†U)

< 1.

Conversely, if ρ(U†A) < 1, then V†U ≥ 0.
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Proof. The proof is similar to (b)⇒ (c) of Theorem 3.16.

By using the above Theorem and Theorem 3.9, we obtain the following result.

Corollary 3.20. Let A = U − V be a reversible proper nonnegative splitting. If V†U ≥ 0, then ρ(U†V) < 1.

4. Conclusions

In this section, we mention a result for the group inverse, analogous to the case of the Moore-Penrose
inverse. The proof can be extracted analogously from the proof of Theorem 3.3.

Theorem 4.1. Let A = U − V be a reverse proper splitting of A ∈ Rn×n. Suppose that V# exists. Then
(a) U# exists.
(b) VV# = UU# = U#U.
(c) V = U(I −U#A).
(d) I −U#A is invertible.
(e) V# = (I −U#A)−1U#.

We conclude that all other results can also be written in terms of group inverse of a matrix. But in order
to obtain the Drazin inverse analog of all those results in the last section, we have to introduce a few more
generalizations of reverse proper splittings using similar idea from index splitting [25] and index-proper
splitting [5, 13]. Not only these ideas, many other problems which were solved using proper splittings
may also be studied using reverse proper splittings. Finally, convergence rate for both the splittings may
be compared. Berman and Neumann [2] and Mishra and Sivakumar [20] obtained different methods of
constructions for proper splittings. Hence the same case may be examined for the reverse proper splittings.

From the discussed results in last section, we now finish this section with a few concluding remarks.
First of all, we have not here compared the proposed splitting with the existing splittings. Nevertheless,
we defer this for future investigation. At this point, we can say only that these splittings may be useful
whenever the co-efficient matrix A in (1) fails to have any subclass of proper splittings. Besides these, the
idea of reverse proper splitting may also be used for other theoretical problems.
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