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Maximal Antichains of Isomorphic Subgraphs of the Rado Graph
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Abstract. If 〈R,E〉 is the Rado graph andR(R) the set of its copies inside R, then 〈R(R),⊂〉 is a chain-complete
and non-atomic partial order of the size 2ℵ0 . A familyA ⊂ R(R) is a maximal antichain in this partial order
iff (1) A∩B does not contain a copy of R, for each different A,B ∈ A and (2) For each S ∈ R(R) there is A ∈ A
such that A ∩ S contains a copy of R. We show that the partial order 〈R(R),⊂〉 contains maximal antichains
of size 2ℵ0 , ℵ0 and n, for each positive integer n (thus, of all possible cardinalities, under CH). The results
are compared with the corresponding known results concerning the partial order 〈[ω]ω,⊂〉.

1. Introduction

The object of our study is the Rado graph (the countable random graph) introduced by Erdős and Rényi
[3] and characterized as the unique (up to isomorphism) countable graph 〈R,E〉 such that the set

RH∪K
K =

{
r ∈ R \ (H ∪ K) : ∀h ∈ H (rh ∈ E) ∧ ∀k ∈ K (rk < E)

}
is non-empty, for each pair of disjoint finite subsets H,K of R. This rich combinatorial structure and various
related structures (for example the automorphism group and the endomorphism monoid of 〈R,E〉, various
topologies on R etc.) were extensively explored (see [1]).

Since for each partition of the Rado graph R into two pieces at least one of them is isomorphic to R, one
of the structures naturally related to the Rado graph (and providing additional information about it) is the
partial order 〈R(R),⊂〉, where R(R) is the set of all isomorphic copies of R contained in R, that is the set of
all subsets A of R such that 〈A,E ∩ [A]2

〉 is a countable random graph. It is easy to see that 〈R(R),⊂〉 is a
chain-complete and non-atomic partial order with the largest element R and of the cardinality continuum.
Concerning the question of how “tall” is this partial order, we note that, by [4], the class of order types
of maximal chains in the poset 〈R(R),⊂〉 is exactly the class of order types of linear orders of the form
K \ {min K}, where K is a compact subset of the real line, R, having the minimum non-isolated. Thus, for
example, there is a maximal chain of isomorphic subgraphs of the Rado graph 〈R,E〉 order isomorphic to
the interval (0, 1]R.
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Our main goal is to determine how “wide” is the partial order 〈R(R),⊂〉, that is to find one of its order
invariants - the set of cardinalities of maximal antichains in 〈R(R),⊂〉. So we will show that under the
CH there are maximal antichains in 〈R(R),⊂〉 of all possible cardinalities κ (1 ≤ κ ≤ 2ℵ0 ). We note that,
in contrast to this result, in the poset 〈[R]ω,⊂〉 of all infinite subsets of R, which contains our poset as a
sub-order, countable maximal antichains do not exist. In this paper we use the terminology of set theory,
rather than lattice theory, so our antichains are what some authors call strong antichains; we will define all
our terminology in the next section to avoid confusion.

Ultimately, the motivation for this paper comes from set theory, since the study of posets and their
antichains is closely related to the study of possibilities for a forcing construction.

2. Preliminaries

Our notation is mainly standard. So ω = {0, 1, 2, . . . } is the set of non-negative integers and, also, the
minimal infinite cardinal (ω = ℵ0). c = 2ℵ0 is the cardinality of the continuum. For a set X, by |X|we denote
its cardinality and, for a cardinal κ, [X]κ = {A ⊂ X : |A| = κ} and [X]<κ = {A ⊂ X : |A| < κ}.

If 〈P,≤〉 is a partial order, the elements p and q of P are said to be incompatible iff there is no r ∈ P such
that r ≤ p and r ≤ q. A subset A of P is called an antichain iff each two elements of A are incompatible
andA is a maximal antichain iff it is not properly contained in any antichain of P. By Zorn’s Lemma each
antichain in P is contained in some maximal antichain. Chains in P are its linearly ordered subsets. A
partial order 〈P,≤〉 is called: chain complete iff each chain in P has a least upper bound; non-atomic iff
below each element of P there are incompatible elements of P.

We will compare our results with the corresponding known results concerning the partial order 〈[ω]ω,⊂〉
(isomorphic to 〈[R]ω,⊂〉) where maximal antichains are called maximal almost disjoint families or, shortly,
mad families. So,A ⊂ [ω]ω is a maximal antichain in the poset 〈[ω]ω,⊂〉 (that is, a mad family) iff

- |A ∩ B| < ω, for each different A,B ∈ A;
- For each S ∈ [ω]ω there is A ∈ A such that |A ∩ S| = ω.

Let a = min{|A| : A ⊂ [ω]ω is an infinite mad family}. Then we have (see [2]).

Fact 1. In the partial order 〈[ω]ω,⊂〉
(a) There are maximal antichains of size n, for each positive integer n;
(b) There are no maximal antichains of size ℵ0, so ℵ0 < a ≤ c;
(c) There are maximal antichains of size c.

A pair 〈R,E〉 is a graph if R is a non-empty set and E ⊂ [R]2 or, equivalently, E ⊂ R2 is a symmetric and
irreflexive relation. In order to simplify notation, instead of {r, s} ∈ E or 〈r, s〉 ∈ E we will write rs ∈ E. We
will use the following known facts concerning the Rado graph (see [1]).

Fact 2. Let 〈R,E〉 be a Rado graph and F a finite subset of R. Then
(a) R \ F ∈ R(R);
(b) RF

S = {r ∈ R \ F : {u ∈ F : ur ∈ E} = S} ∈ R(R), for each S ⊂ F, and R = F ∪
⋃

S⊂F RF
S is a partition of R.

(c) If R = X1 ∪ · · · ∪ Xk is a partition, then Xi ∈ R(R), for some i ≤ k.
(d) The union of a chain of copies of R in R(R) is a copy of R.

Concerning the partial order 〈R(R),⊂〉 preliminarily we have

Proposition 1. Let 〈R,E〉 be a Rado graph. The partial order 〈R(R),⊂〉 is a non-atomic, chain complete suborder of
the order 〈[R]ω,⊂〉 (isomorphic to the order 〈[ω]ω,⊂〉), has the largest element, R, contains all cofinite subsets of R
and, hence, has countably many co-atoms: R \ {v}, v ∈ R.

Proof. If A ∈ R(R) and v ∈ A then, by Fact 2(b), the sets {a ∈ A : av ∈ E} and {a ∈ A : av < E} are incompatible
elements of R(R) below A, so the poset is non-atomic. It is chain complete since the union of a chain of
copies of R is a copy of R and, by Fact 2(a), it contains cofinite subsets of R.
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3. Finite and Countable Maximal Antichains in 〈R(R),⊂〉

Now, for a Rado graph 〈R,E〉 we investigate the size of maximal antichains of its copies. Clearly,
A ⊂ R(R) is a maximal antichain in the poset 〈R(R),⊂〉 iff

- A ∩ B does not contain a copy of R, for each different A,B ∈ A;
- For each S ∈ R(R) there is A ∈ A such that A ∩ S contains a copy of R.

First we show that the analogue of Fact 1(a) holds in the poset 〈R(R),⊂〉.

Theorem 1. For each integer n ≥ 2 there is a partition of the Rado graph, 〈R,E〉, into n random subgraphs and in
〈R(R),⊂〉 it is a maximal antichain of size n.

Proof. First, using induction we show that for each n ≥ 2 the graph R can be partitioned into n elements of
R(R). Let w ∈ R. Then, by Fact 2(b), R{w}

{w} and R{w}
∅

are random subgraphs of R and, clearly, R = {w}∪R{w}
{w}∪R{w}

∅

is a partition of R. According to Fact 2(a), the graph R is isomorphic to its subgraph R1 = R{w}
{w} ∪ R{w}

∅
and,

consequently, R can be partitioned into two random subgraphs.
If R is partitioned into n elements of R(R), R = R1 ∪ R2 ∪ · · · ∪ Rn, then partitioning Rn into two random

subgraphs as above we obtain a partition of R into n + 1 elements of R(R).
Now, let R = R1 ∪ R2 ∪ · · · ∪ Rn be a partition of R, where Ri ∈ R(R), for all i ≤ n. Clearly {R1,R2, . . . ,Rn}

is an antichain in the ordering 〈R(R),⊂〉 and we prove its maximality. Let S ∈ R(R). Then S =
⋃

i≤n S ∩ Ri is
a partition of S into finitely many pieces so, by Fact 2(c), at least one of them, say S ∩ Ri0 , belongs to R(R).
Hence S and Ri0 are compatible elements of R(R). Thus each element of R(R) is compatible with some Ri,
which proves the maximality of {R1,R2, . . . ,Rn}.

Now we show that, in contrast to Fact 1(b), the poset 〈R(R),⊂〉 contains maximal antichains of size ℵ0.
For this we need the following lemma. In the sequel, if F ∈ [R]<ω, then instead of RF

F we will write RF.

Lemma 1. If 〈R,E〉 is the Rado graph and S,T ∈ [R]<ω, where T 1 RS
∪ S, then RS

\ RS∪T is a random graph.

Proof. Let w ∈ T \ (RS
∪ S). Then there is r ∈ R \ (S ∪ {w}) such that rw < E and rs ∈ E, for all s ∈ S. So

r ∈ RS and r < RS∪T, which implies RS
\ RS∪T , ∅. Let H,K ∈ [RS

\ RS∪T]<ω be disjoint sets. Then H′ = H ∪ S
and K′ = K ∪ {w} are disjoint finite sets, so there is v ∈ R \ (H′ ∪ K′) such that (i) ∀r ∈ H ∪ S(vr ∈ E) and (ii)
∀r ∈ K ∪ {w}(vr < E). By (i) we have v ∈ RS and, by (ii), vw < E, so v < RS∪T, hence v ∈ RS

\ RS∪T. Also vr ∈ E
for all r ∈ H and vr < E for all r ∈ K. So, RS

\ RS∪T is a random subgraph of R.

Theorem 2. If 〈R,E〉 is the Rado graph, then there exists an 1-1 enumeration R = {ak
n : k,n < ω} such that

(a) Each column An = {ak
n : k < ω} of the matrix [ak

n : 〈k,n〉 ∈ ω × ω] is a random graph. Also, for each n ∈ ω,
Bn =

⋃
m≥n Am is a random graph.

(b)A = {An : n ∈ ω} is a maximal antichain in the partial order 〈R(R),⊂〉.

Proof. (a) Let us fix an element w of R and for each infinite subset B of R let us fix a bijection aB : ω→ B. Let
the sets Bn ⊂ R, n ∈ ω, be defined recursively by

B0 = R \ {w},
B1 = R{w} and, for n ≥ 2,

Bn =

{
R{w}∪{aBi\Bi+1 (k) : i+k≤n−2} if ∀i ≤ n − 2 |Bi \ Bi+1| = ω,

∅ otherwise.

Claim 1. For each n ∈ ω we have ϕ(n), where ϕ(n) is the conjunction of the following conditions:
ϕ1(n) ≡ Bn ⊃ Bn+1;
ϕ2(n) ≡ Bn \ Bn+1 ∈ R(R).

Proof of Claim 1. We prove the claim by induction. Clearly R \ {w} ⊃ R{w}, that is B0 ⊃ B1, thus ϕ1(0) holds.
According to Fact 2(b) we have B0 \ B1 = (R \ {w}) \ R{w} = R{w}

∅
∈ R(R) and ϕ2(0) is proved.
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Let m > 0 and suppose ϕ(i), for each i < m. Then for each i < m we have Bi \ Bi+1 ∈ R(R), which implies
|Bi \ Bi+1| = ω so, according to the definition, Bm = R{w}∪{aBi\Bi+1 (k) : i+k≤m−2} and Bm+1 = R{w}∪{aBi\Bi+1 (k) : i+k≤m−1},
which implies Bm ⊃ Bm+1 and ϕ1(m) is proved.

According to Lemma 1 and since Bm \ Bm+1 = RS
\ RS∪T, where

S = {w} ∪ {aBi\Bi+1 (k) : i + k ≤ m − 2} and

T = {aBi\Bi+1 (k) : i + k = m − 1},

for a proof of ϕ2(m) it is sufficient to show that T 1 RS
∪ S. Clearly we have aB0\B1 (m − 1) ∈ T and

aB0\B1 (m − 1) ∈ B0 \ B1, (1)

which implies aB0\B1 (m−1) < {w}. Suppose that aB0\B1 (m−1) = aBi\Bi+1 (k) for some i and k satisfying i+k ≤ m−2.
Then i = 0, since i > 0 would imply aBi\Bi+1 (k) ∈ Bi ⊂ B1, which is impossible by (1). Now, since aB0\B1 is a
bijection, aB0\B1 (m − 1) = aB0\B1 (k) implies k = m − 1, but k ≤ m − 2, a contradiction. Thus aB0\B1 (m − 1) < S.

According to the induction hypothesis we have Bm ⊂ B1, which, together with (1) implies aB0\B1 (m− 1) <
Bm = RS. So aB0\B1 (m − 1) ∈ T \ (RS

∪ S) and ϕ2(m) is true. Claim 1 is proved.

For convenience, let the element aBi\Bi+1 (k) be denoted by ak
i . Then, according to Claim 1, for each n ∈ ω

we have

Bn = R{w}∪{a
k
i :i+k≤n−2}

∈ R(R), (2)

An =de f Bn \ Bn+1 = {ak
n : k < ω} ∈ R(R). (3)

Claim 2.
⋂

n∈ω Bn = ∅.

Proof of Claim 2. Suppose that there exists u ∈
⋂

n∈ω Bn. Let v be an element of R satisfying

uv < E and a0
0v < E. (4)

Since u ∈ B1 = R{w} we have uw ∈ E and, by (4), v , w, which implies v ∈ B0. Since v ∈ B2 would imply
a0

0v ∈ E, which contradicts (4), we have v < B2. So, n0 = min{n ∈ ω : v < Bn} ∈ {1, 2} and v ∈ Bn0−1 \ Bn0 which
implies that v = ak0

n0−1, for some k0 ∈ ω. But, since u ∈ Bn0+1+k0 = R{w}∪{a
k
i :i+k≤n0−1+k0} we have uv = uak0

n0−1 ∈ E.
A contradiction to (4). Claim 2 is proved.

By Claim 2, R = {w} ∪
⋃

n∈ω An is a partition of R. By the uniqueness of the Rado graph and Fact 2(a),
the graphs R and R \ {w} are isomorphic so we can identify R and

⋃
n∈ω An and (a) is proved.

(b) Since the sets An, n ∈ ω, are disjoint elements of R(R),A = {An : n ∈ ω} is an antichain in the ordering
〈R(R),⊂〉. Suppose that A is not a maximal antichain. Then some S ∈ R(R) is incompatible with each An,
that is

∀n ∈ ω ¬∃C ∈ R(R) C ⊂ S ∩ An. (5)

Let i0 = min{i ∈ ω : S ∩ Ai , ∅} and let k0 = min{k ∈ ω : ak
i0
∈ S}. Then ak0

i0
∈ S ∩ Ai0 and we prove that

C = (
⋃i0+k0+1

i=i0
S ∩ Ai) \ {ak0

i0
} < R(R). (6)

Suppose C ∈ R(R). Then, by Fact 2(c), S ∩ Ai \ {ak0
i0
} ∈ R(R), for some i ∈ {i0, i0 + 1, . . . , i0 + k0 + 1}, which

contradicts (5).

By (6) there are disjoint finite subsets H,K ⊂ C such that RH∪K
H ∩C = ∅ and, moreover, R

H∪K∪{ak0
i0
}

H ∩C = ∅.

Since S ∈ R(R) there exists v ∈ R
H∪K∪{ak0

i0
}

H ∩ S. Since v < C and v , ak0
i0

we have v ∈ Bi0+k0+2 ∩ S ⊂ Bi0+k0+2 =

R{w}∪{a
k
i :i+k≤i0+k0} which implies vak0

i0
∈ E. But v ∈ R

H∪K∪{ak0
i0
}

H implies vak0
i0
< E. A contradiction.
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4. Uncountable Maximal Antichains in 〈R(R),⊂〉

In this section we show that the poset 〈R(R),⊂〉 contains maximal antichains of size c (so the analogue
of Fact 1(c) is true).

For reader’s convenience we list some definitions and facts from set theory. The sets Vn, n ∈ ω, are
defined recursively by: V0 = ∅ and Vn+1 = P(Vn). The union Vω =

⋃
n∈ω Vn is the collection of hereditarily

finite sets (the combinatorial universe) and, for n ∈ ω, the set Levn = Vn+1 \Vn is the n-th level of Vω. The
rank of a set x ∈ Vω is defined by rank(x) = min{n ∈ ω : x ∈ Vn+1}. So Vn = {x ∈ Vω : rank(x) < n} and it
is easy to check that Levn = {x ∈ Vω : rank(x) = n} and rank(x) = sup{rank(y) + 1 : y ∈ x}. The transitive
closure of a set x is the set trcl(x) =

⋃
n∈ω ∪

nx, where ∪0x = x, and ∪n+1x =
⋃
∪

nx.

Fact 3. (a) Vω is a countable transitive set (i.e. x ∈ Vω implies x ⊂ Vω).
(b) The structure 〈Vω,∈〉 satisfies all the axioms of set theory ZFC except the Axiom of Infinity (Inf). In particular,

if x, y ∈ Vω, then {x}, x ∪ y ∈ Vω etc.
(c) Vω ∩Ord = ω.
(d) x ∈ Vω iff x is a finite subset of Vω.
(e) Vω = {x : |trcl(x)| < ω}.

In the sequel by ε we will denote the binary relation on the class of all sets defined by: xεy if and only if
x ∈ y or y ∈ x. Also, instead of 〈x, y〉 ∈ ε we will write xy ∈ ε and, if H is a set, instead of 〈H, ε∩H2

〉we will
write 〈H, ε〉, whenever confusion is impossible.

Fact 4. The structure 〈Vω, ε〉 is a Rado graph.

Proof. Let H and K be disjoint finite subsets of Vω. Then H,K ∈ Vω and n = rank(K) < ω. Since Vω |= ZFC -
Inf and H,n ∈ Vω, we have v = H ∪ {n} ∈ Vω. Now, for each h ∈ H we have h ∈ v, thus hv ∈ ε. On the other
hand, for k ∈ K there holds k < H (since H ∩ K = ∅) and k , n (since rank(k) < n = rank(n)) so k < v. Since
rank(v) ≥ n + 1, we have v < k, thus kv < ε, for all k ∈ K.

Lemma 2. If A is an infinite subset of ω, then SA =
⋃

n∈A Levn is a random subgraph of the graph 〈Vω, ε〉.

Proof. Let H,K ∈ [SA]<ω be disjoint sets. The set {rank(x) : x ∈ H ∪ K} is a finite subset of ω, hence
m = max{rank(x) : x ∈ H ∪ K} + 2 < ω. Clearly n = min(A \ (m + 1)) ∈ A and n > m. Let v = H ∪ (n \m).

We prove v ∈ SA. Since H,n \ m ∈ [Vω]<ω, we have H,n \ m ∈ Vω and H ∪ (n \ m) ∈ Vω (because Vω |=
ZFC - Inf) so v ∈ Vω. Moreover rank(v) = sup{rank(x) + 1 : x ∈ H ∪ (n \m)} = n ∈ A, thus v ∈ Levn ⊂ SA.

For each h ∈ H we have h ∈ v, so vh ∈ ε for all h ∈ H.
Let k ∈ K. Then k < H (since H ∩ K = ∅) and k < n \ m (because rank(k) < m and for l ∈ n \ m we have

rank(l) = l ≥ m) thus k < v. On the other hand, rank(v) = n > m > rank(k) implies v < k so vk < ε, for all
k ∈ K.

Theorem 3. LetA be an almost disjoint family in ω. Then
(a)AVω = {SA : A ∈ A} is an almost disjoint family on Vω consisting of random subgraphs of 〈Vω, ε〉.
(b) In 〈R(R),⊂〉 there exists a maximal antichain of size c.

Proof. (a) By Lemma 2, for each A ∈ A the set SA =
⋃

n∈A Levn ∈ R(Vω). If A,B ∈ A and A , B, then
|A ∩ B| < ℵ0 so SA ∩ SB =

⋃
n∈A∩B Levn is a finite set, since the sets Levn are finite.

(b) By Fact 1(c), there are mad families on ω of size c. If A is one, then, by (a), AVω is an antichain in
〈R(AVω ),⊂〉 of size c and, by Zorn’s Lemma, it is contained in a maximal antichain of the same size, because
|[Vω]ω| = c.
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