Maximal Antichains of Isomorphic Subgraphs of the Rado Graph

Miloš S. Kurilića ${ }^{\mathbf{a}}$, Petar Markovića ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics and Informatics, University of Novi Sad
Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia

Abstract

If $\langle R, E\rangle$ is the Rado graph and $\mathcal{R}(R)$ the set of its copies inside R, then $\langle\mathcal{R}(R), \subset\rangle$ is a chain-complete and non-atomic partial order of the size $2^{\aleph_{0}}$. A family $\mathcal{A} \subset \mathcal{R}(R)$ is a maximal antichain in this partial order iff (1) $A \cap B$ does not contain a copy of R, for each different $A, B \in \mathcal{A}$ and (2) For each $S \in \mathcal{R}(R)$ there is $A \in \mathcal{A}$ such that $A \cap S$ contains a copy of R. We show that the partial order $\langle\mathcal{R}(R), \subset\rangle$ contains maximal antichains of size $2^{\aleph_{0}}, \boldsymbol{\aleph}_{0}$ and n, for each positive integer n (thus, of all possible cardinalities, under CH). The results are compared with the corresponding known results concerning the partial order $\left\langle[\omega]^{\omega}, \subset\right\rangle$.

1. Introduction

The object of our study is the Rado graph (the countable random graph) introduced by Erdős and Rényi [3] and characterized as the unique (up to isomorphism) countable graph $\langle R, E\rangle$ such that the set

$$
R_{K}^{H \cup K}=\{r \in R \backslash(H \cup K): \forall h \in H(r h \in E) \wedge \forall k \in K(r k \notin E)\}
$$

is non-empty, for each pair of disjoint finite subsets H, K of R. This rich combinatorial structure and various related structures (for example the automorphism group and the endomorphism monoid of $\langle R, E\rangle$, various topologies on R etc.) were extensively explored (see [1]).

Since for each partition of the Rado graph R into two pieces at least one of them is isomorphic to R, one of the structures naturally related to the Rado graph (and providing additional information about it) is the partial order $\langle\mathcal{R}(R), \subset\rangle$, where $\mathcal{R}(R)$ is the set of all isomorphic copies of R contained in R, that is the set of all subsets A of R such that $\left\langle A, E \cap[A]^{2}\right\rangle$ is a countable random graph. It is easy to see that $\langle\mathcal{R}(R), C\rangle$ is a chain-complete and non-atomic partial order with the largest element R and of the cardinality continuum. Concerning the question of how "tall" is this partial order, we note that, by [4], the class of order types of maximal chains in the poset $\langle\mathcal{R}(R), \subset\rangle$ is exactly the class of order types of linear orders of the form $K \backslash\{\min K\}$, where K is a compact subset of the real line, \mathbb{R}, having the minimum non-isolated. Thus, for example, there is a maximal chain of isomorphic subgraphs of the Rado graph $\langle R, E\rangle$ order isomorphic to the interval $(0,1]_{\mathbb{R}}$.

[^0]Our main goal is to determine how "wide" is the partial order $\langle\mathcal{R}(R), \subset\rangle$, that is to find one of its order invariants - the set of cardinalities of maximal antichains in $\langle\mathcal{R}(R), \subset\rangle$. So we will show that under the CH there are maximal antichains in $\langle\mathcal{R}(R), \subset\rangle$ of all possible cardinalities $\kappa\left(1 \leq \kappa \leq 2^{\aleph_{0}}\right)$. We note that, in contrast to this result, in the poset $\left\langle[R]^{\omega}, \subset\right\rangle$ of all infinite subsets of R, which contains our poset as a sub-order, countable maximal antichains do not exist. In this paper we use the terminology of set theory, rather than lattice theory, so our antichains are what some authors call strong antichains; we will define all our terminology in the next section to avoid confusion.

Ultimately, the motivation for this paper comes from set theory, since the study of posets and their antichains is closely related to the study of possibilities for a forcing construction.

2. Preliminaries

Our notation is mainly standard. So $\omega=\{0,1,2, \ldots\}$ is the set of non-negative integers and, also, the minimal infinite cardinal $\left(\omega=\boldsymbol{\aleph}_{0}\right) . c=2^{\aleph_{0}}$ is the cardinality of the continuum. For a set X, by $|X|$ we denote its cardinality and, for a cardinal $\kappa,[X]^{\kappa}=\{A \subset X:|A|=\kappa\}$ and $[X]^{<\kappa}=\{A \subset X:|A|<\kappa\}$.

If $\langle\mathbb{P}, \leq\rangle$ is a partial order, the elements p and q of \mathbb{P} are said to be incompatible iff there is no $r \in \mathbb{P}$ such that $r \leq p$ and $r \leq q$. A subset \mathcal{A} of \mathbb{P} is called an antichain iff each two elements of \mathcal{A} are incompatible and \mathcal{A} is a maximal antichain iff it is not properly contained in any antichain of \mathbb{P}. By Zorn's Lemma each antichain in \mathbb{P} is contained in some maximal antichain. Chains in \mathbb{P} are its linearly ordered subsets. A partial order $\langle\mathbb{P}, \leq\rangle$ is called: chain complete iff each chain in \mathbb{P} has a least upper bound; non-atomic iff below each element of \mathbb{P} there are incompatible elements of \mathbb{P}.

We will compare our results with the corresponding known results concerning the partial order $\left\langle[\omega]^{\omega}, \subset\right\rangle$ (isomorphic to $\left\langle[R]^{\omega}, \subset\right\rangle$) where maximal antichains are called maximal almost disjoint families or, shortly, mad families. So, $\mathcal{A} \subset[\omega]^{\omega}$ is a maximal antichain in the poset $\left\langle[\omega]^{\omega}, \subset\right\rangle$ (that is, a mad family) iff

- $|A \cap B|<\omega$, for each different $A, B \in \mathcal{A}$;
- For each $S \in[\omega]^{\omega}$ there is $A \in \mathcal{A}$ such that $|A \cap S|=\omega$.

Let $\mathfrak{a}=\min \left\{|\mathcal{F}|: \mathcal{A} \subset[\omega]^{\omega}\right.$ is an infinite mad family\}. Then we have (see [2]).
Fact 1. In the partial order $\left\langle[\omega]^{\omega}, \subset\right\rangle$
(a) There are maximal antichains of size n, for each positive integer n;
(b) There are no maximal antichains of size $\boldsymbol{\aleph}_{0}$, so $\boldsymbol{\aleph}_{0}<\mathfrak{a} \leq \mathfrak{c}$;
(c) There are maximal antichains of size c .

A pair $\langle R, E\rangle$ is a graph if R is a non-empty set and $E \subset[R]^{2}$ or, equivalently, $E \subset R^{2}$ is a symmetric and irreflexive relation. In order to simplify notation, instead of $\{r, s\} \in E$ or $\langle r, s\rangle \in E$ we will write $r s \in E$. We will use the following known facts concerning the Rado graph (see [1]).

Fact 2. Let $\langle R, E\rangle$ be a Rado graph and F a finite subset of R. Then
(a) $R \backslash F \in \mathcal{R}(R)$;
(b) $R_{S}^{F}=\{r \in R \backslash F:\{u \in F: u r \in E\}=S\} \in \mathcal{R}(R)$, for each $S \subset F$, and $R=F \cup \bigcup_{S \subset F} R_{S}^{F}$ is a partition of R.
(c) If $R=X_{1} \cup \cdots \cup X_{k}$ is a partition, then $X_{i} \in \mathcal{R}(R)$, for some $i \leq k$.
(d) The union of a chain of copies of R in $\mathcal{R}(R)$ is a copy of R.

Concerning the partial order $\langle\mathcal{R}(R), \subset\rangle$ preliminarily we have
Proposition 1. Let $\langle R, E\rangle$ be a Rado graph. The partial order $\langle\mathcal{R}(R), \subset\rangle$ is a non-atomic, chain complete suborder of the order $\left\langle[R]^{\omega}, \subset\right\rangle$ (isomorphic to the order $\left\langle[\omega]^{\omega}, \subset\right\rangle$), has the largest element, R, contains all cofinite subsets of R and, hence, has countably many co-atoms: $R \backslash\{v\}, v \in R$.

Proof. If $A \in \mathcal{R}(R)$ and $v \in A$ then, by Fact 2(b), the sets $\{a \in A: a v \in E\}$ and $\{a \in A: a v \notin E\}$ are incompatible elements of $\mathcal{R}(R)$ below A, so the poset is non-atomic. It is chain complete since the union of a chain of copies of R is a copy of R and, by Fact 2(a), it contains cofinite subsets of R.

3. Finite and Countable Maximal Antichains in $\langle\mathcal{R}(R), \subset\rangle$

Now, for a Rado graph $\langle R, E\rangle$ we investigate the size of maximal antichains of its copies. Clearly, $\mathcal{A} \subset \mathcal{R}(R)$ is a maximal antichain in the poset $\langle\mathcal{R}(R), \subset\rangle$ iff

- $A \cap B$ does not contain a copy of R, for each different $A, B \in \mathcal{A}$;
- For each $S \in \mathcal{R}(R)$ there is $A \in \mathcal{A}$ such that $A \cap S$ contains a copy of R.

First we show that the analogue of Fact 1(a) holds in the poset $\langle\mathcal{R}(R), \subset\rangle$.
Theorem 1. For each integer $n \geq 2$ there is a partition of the Rado graph, $\langle R, E\rangle$, into n random subgraphs and in $\langle\mathcal{R}(R), \subset\rangle$ it is a maximal antichain of size n.

Proof. First, using induction we show that for each $n \geq 2$ the graph R can be partitioned into n elements of $\mathcal{R}(R)$. Let $w \in R$. Then, by Fact 2(b), $R_{\{w\}}^{\{w\}}$ and $R_{\emptyset}^{\{w\}}$ are random subgraphs of R and, clearly, $R=\{w\} \cup R_{\{w\}}^{\{w\}} \cup R_{\emptyset}^{\{w\}}$ is a partition of R. According to Fact 2(a), the graph R is isomorphic to its subgraph $R_{1}=R_{\{w\}}^{\{w\}} \cup R_{\emptyset}^{\{w\}}$ and, consequently, R can be partitioned into two random subgraphs.

If R is partitioned into n elements of $\mathcal{R}(R), R=R_{1} \cup R_{2} \cup \cdots \cup R_{n}$, then partitioning R_{n} into two random subgraphs as above we obtain a partition of R into $n+1$ elements of $\mathcal{R}(R)$.

Now, let $R=R_{1} \cup R_{2} \cup \cdots \cup R_{n}$ be a partition of R, where $R_{i} \in \mathcal{R}(R)$, for all $i \leq n$. Clearly $\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ is an antichain in the ordering $\langle\mathcal{R}(R), \subset\rangle$ and we prove its maximality. Let $S \in \mathcal{R}(R)$. Then $S=\bigcup_{i \leq n} S \cap R_{i}$ is a partition of S into finitely many pieces so, by Fact 2(c), at least one of them, say $S \cap R_{i_{0}}$, belongs to $\mathcal{R}(R)$. Hence S and $R_{i_{0}}$ are compatible elements of $\mathcal{R}(R)$. Thus each element of $\mathcal{R}(R)$ is compatible with some R_{i}, which proves the maximality of $\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$.

Now we show that, in contrast to Fact $1(b)$, the poset $\langle\mathcal{R}(R), \subset\rangle$ contains maximal antichains of size $\boldsymbol{\aleph}_{0}$. For this we need the following lemma. In the sequel, if $F \in[R]^{<\omega}$, then instead of R_{F}^{F} we will write R^{F}.

Lemma 1. If $\langle R, E\rangle$ is the Rado graph and $S, T \in[R]^{<\omega}$, where $T \not \subset R^{S} \cup S$, then $R^{S} \backslash R^{S U T}$ is a random graph.
Proof. Let $w \in T \backslash\left(R^{S} \cup S\right)$. Then there is $r \in R \backslash(S \cup\{w\})$ such that $r w \notin E$ and $r s \in E$, for all $s \in S$. So $r \in R^{S}$ and $r \notin R^{S \cup T}$, which implies $R^{S} \backslash R^{S \cup T} \neq \emptyset$. Let $H, K \in\left[R^{S} \backslash R^{S \cup T}\right]^{<\omega}$ be disjoint sets. Then $H^{\prime}=H \cup S$ and $K^{\prime}=K \cup\{w\}$ are disjoint finite sets, so there is $v \in R \backslash\left(H^{\prime} \cup K^{\prime}\right)$ such that (i) $\forall r \in H \cup S(v r \in E)$ and (ii) $\forall r \in K \cup\{w\}(v r \notin E)$. By (i) we have $v \in R^{S}$ and, by (ii), vw $\notin E$, so $v \notin R^{S \cup T}$, hence $v \in R^{S} \backslash R^{S \cup T}$. Also $v r \in E$ for all $r \in H$ and $v r \notin E$ for all $r \in K$. So, $R^{S} \backslash R^{S \cup T}$ is a random subgraph of R.

Theorem 2. If $\langle R, E\rangle$ is the Rado graph, then there exists an 1-1 enumeration $R=\left\{a_{n}^{k}: k, n<\omega\right\}$ such that
(a) Each column $A_{n}=\left\{a_{n}^{k}: k<\omega\right\}$ of the matrix $\left[a_{n}^{k}:\langle k, n\rangle \in \omega \times \omega\right]$ is a random graph. Also, for each $n \in \omega$, $B_{n}=\bigcup_{m \geq n} A_{m}$ is a random graph.
(b) $\mathcal{A}=\left\{A_{n}: n \in \omega\right\}$ is a maximal antichain in the partial order $\langle\mathcal{R}(R), \subset\rangle$.

Proof. (a) Let us fix an element w of R and for each infinite subset B of R let us fix a bijection $a_{B}: \omega \rightarrow B$. Let the sets $B_{n} \subset R, n \in \omega$, be defined recursively by
$B_{0}=R \backslash\{w\}$,
$B_{1}=R^{\{w\}}$ and, for $n \geq 2$,

$$
B_{n}=\left\{\begin{array}{cl}
R^{\{w\} \cup\left\{a_{B_{i} \backslash B_{i+1}}(k): i+k \leq n-2\right\}} & \text { if } \forall i \leq n-2\left|B_{i} \backslash B_{i+1}\right|=\omega, \\
\emptyset & \text { otherwise. }
\end{array}\right.
$$

Claim 1. For each $n \in \omega$ we have $\varphi(n)$, where $\varphi(n)$ is the conjunction of the following conditions:

$$
\begin{aligned}
& \varphi_{1}(n) \equiv B_{n} \supset B_{n+1} ; \\
& \varphi_{2}(n) \equiv B_{n} \backslash B_{n+1} \in \mathcal{R}(R) .
\end{aligned}
$$

Proof of Claim 1. We prove the claim by induction. Clearly $R \backslash\{w\} \supset R^{\{w\}}$, that is $B_{0} \supset B_{1}$, thus $\varphi_{1}(0)$ holds. According to Fact 2(b) we have $B_{0} \backslash B_{1}=(R \backslash\{w\}) \backslash R^{\{w\}}=R_{\emptyset}^{\{w\}} \in \mathcal{R}(R)$ and $\varphi_{2}(0)$ is proved.

Let $m>0$ and suppose $\varphi(i)$, for each $i<m$. Then for each $i<m$ we have $B_{i} \backslash B_{i+1} \in \mathcal{R}(R)$, which implies $\left|B_{i} \backslash B_{i+1}\right|=\omega$ so, according to the definition, $B_{m}=R^{\{w\} \cup\left\{a_{B_{i} \mid B_{i+1}}(k): i+k \leq m-2\right\}}$ and $B_{m+1}=R^{\{w\} \cup\left\{a_{B_{i}} \backslash B_{i+1}(k): i+k \leq m-1\right\}}$, which implies $B_{m} \supset B_{m+1}$ and $\varphi_{1}(m)$ is proved.

According to Lemma 1 and since $B_{m} \backslash B_{m+1}=R^{S} \backslash R^{S \cup T}$, where

$$
\begin{gathered}
S=\{w\} \cup\left\{a_{B_{i} \backslash B_{i+1}}(k): i+k \leq m-2\right\} \text { and } \\
T=\left\{a_{B_{i} \backslash B_{i+1}}(k): i+k=m-1\right\},
\end{gathered}
$$

for a proof of $\varphi_{2}(m)$ it is sufficient to show that $T \not \subset R^{S} \cup S$. Clearly we have $a_{B_{0} \backslash B_{1}}(m-1) \in T$ and

$$
\begin{equation*}
a_{B_{0} \backslash B_{1}}(m-1) \in B_{0} \backslash B_{1}, \tag{1}
\end{equation*}
$$

which implies $a_{B_{0} \backslash B_{1}}(m-1) \notin\{w\}$. Suppose that $a_{B_{0} \backslash B_{1}}(m-1)=a_{B_{i} \backslash B_{i+1}}(k)$ for some i and k satisfying $i+k \leq m-2$. Then $i=0$, since $i>0$ would imply $a_{B_{i} \backslash B_{i+1}}(k) \in B_{i} \subset B_{1}$, which is impossible by (1). Now, since $a_{B_{0} \backslash B_{1}}$ is a bijection, $a_{B_{0} \backslash B_{1}}(m-1)=a_{B_{0} \backslash B_{1}}(k)$ implies $k=m-1$, but $k \leq m-2$, a contradiction. Thus $a_{B_{0} \backslash B_{1}}(m-1) \notin S$.

According to the induction hypothesis we have $B_{m} \subset B_{1}$, which, together with (1) implies $a_{B_{0} \backslash B_{1}}(m-1) \notin$ $B_{m}=R^{S}$. So $a_{B_{0} \backslash B_{1}}(m-1) \in T \backslash\left(R^{S} \cup S\right)$ and $\varphi_{2}(m)$ is true. Claim 1 is proved.

For convenience, let the element $a_{B_{i} \backslash B_{i+1}}(k)$ be denoted by a_{i}^{k}. Then, according to Claim 1, for each $n \in \omega$ we have

$$
\begin{align*}
& B_{n}=R^{\{w\} \cup\left\{a_{i}^{k}: i+k \leq n-2\right\}} \in \mathcal{R}(R), \tag{2}\\
& A_{n}=\operatorname{def} B_{n} \backslash B_{n+1}=\left\{a_{n}^{k}: k<\omega\right\} \in \mathcal{R}(R) . \tag{3}
\end{align*}
$$

Claim 2. $\bigcap_{n \in \omega} B_{n}=\emptyset$.
Proof of Claim 2. Suppose that there exists $u \in \bigcap_{n \in \omega} B_{n}$. Let v be an element of R satisfying

$$
\begin{equation*}
u v \notin E \text { and } a_{0}^{0} v \notin E . \tag{4}
\end{equation*}
$$

Since $u \in B_{1}=R^{\{w\}}$ we have $u w \in E$ and, by (4), $v \neq w$, which implies $v \in B_{0}$. Since $v \in B_{2}$ would imply $a_{0}^{0} v \in E$, which contradicts (4), we have $v \notin B_{2}$. So, $n_{0}=\min \left\{n \in \omega: v \notin B_{n}\right\} \in\{1,2\}$ and $v \in B_{n_{0}-1} \backslash B_{n_{0}}$ which implies that $v=a_{n_{0}-1}^{k_{0}}$, for some $k_{0} \in \omega$. But, since $u \in B_{n_{0}+1+k_{0}}=R^{\{w\} \cup\left\{a_{i}^{k}: i+k \leq n_{0}-1+k_{0}\right\}}$ we have $u v=u a_{n_{0}-1}^{k_{0}} \in E$. A contradiction to (4). Claim 2 is proved.

By Claim 2, $R=\{w\} \cup \bigcup_{n \in \omega} A_{n}$ is a partition of R. By the uniqueness of the Rado graph and Fact 2(a), the graphs R and $R \backslash\{w\}$ are isomorphic so we can identify R and $\bigcup_{n \in \omega} A_{n}$ and (a) is proved.
(b) Since the sets $A_{n}, n \in \omega$, are disjoint elements of $\mathcal{R}(R), \mathcal{A}=\left\{A_{n}: n \in \omega\right\}$ is an antichain in the ordering $\langle\mathcal{R}(R), \subset\rangle$. Suppose that \mathcal{A} is not a maximal antichain. Then some $S \in \mathcal{R}(R)$ is incompatible with each A_{n}, that is

$$
\begin{equation*}
\forall n \in \omega \neg \exists C \in \mathcal{R}(R) C \subset S \cap A_{n} \tag{5}
\end{equation*}
$$

Let $i_{0}=\min \left\{i \in \omega: S \cap A_{i} \neq \emptyset\right\}$ and let $k_{0}=\min \left\{k \in \omega: a_{i_{0}}^{k} \in S\right\}$. Then $a_{i_{0}}^{k_{0}} \in S \cap A_{i_{0}}$ and we prove that

$$
\begin{equation*}
C=\left(\bigcup_{i=i_{0}}^{i_{0}+k_{0}+1} S \cap A_{i}\right) \backslash\left\{a_{i_{0}}^{k_{0}}\right\} \notin \mathcal{R}(R) \tag{6}
\end{equation*}
$$

Suppose $C \in \mathcal{R}(R)$. Then, by Fact 2(c), $S \cap A_{i} \backslash\left\{a_{i_{0}}^{k_{0}}\right\} \in \mathcal{R}(R)$, for some $i \in\left\{i_{0}, i_{0}+1, \ldots, i_{0}+k_{0}+1\right\}$, which contradicts (5).

By (6) there are disjoint finite subsets $H, K \subset C$ such that $R_{H}^{H \cup K} \cap C=\emptyset$ and, moreover, $R_{H}^{H \cup K \cup\left\{a_{i_{0}}^{k_{0}}\right\}} \cap C=\emptyset$. Since $S \in \mathcal{R}(R)$ there exists $v \in R_{H}^{H \cup K \cup\left\{a_{i_{0}}^{k_{0}}\right\}} \cap S$. Since $v \notin C$ and $v \neq a_{i_{0}}^{k_{0}}$ we have $v \in B_{i_{0}+k_{0}+2} \cap S \subset B_{i_{0}+k_{0}+2}=$ $R^{\{w\} \cup\left\{a_{i}^{k} i+k \leq i_{0}+k_{0}\right\}}$ which implies $v a_{i_{0}}^{k_{0}} \in E$. But $v \in R_{H}^{H \cup K \cup\left\{i_{i_{0}}\right\}}$ implies $v a_{i_{0}}^{k_{0}} \notin E$. A contradiction.

4. Uncountable Maximal Antichains in $\langle\mathcal{R}(R), \subset\rangle$

In this section we show that the poset $\langle\mathcal{R}(R), \subset\rangle$ contains maximal antichains of size c (so the analogue of Fact 1 (c) is true).

For reader's convenience we list some definitions and facts from set theory. The sets $V_{n}, n \in \omega$, are defined recursively by: $V_{0}=\emptyset$ and $V_{n+1}=P\left(V_{n}\right)$. The union $V_{\omega}=\bigcup_{n \in \omega} V_{n}$ is the collection of hereditarily finite sets (the combinatorial universe) and, for $n \in \omega$, the set $\operatorname{Lev}_{n}=V_{n+1} \backslash V_{n}$ is the n-th level of V_{ω}. The rank of a set $x \in V_{\omega}$ is defined by $\operatorname{rank}(x)=\min \left\{n \in \omega: x \in V_{n+1}\right\}$. So $V_{n}=\left\{x \in V_{\omega}: \operatorname{rank}(x)<n\right\}$ and it is easy to check that $\operatorname{Lev}_{n}=\left\{x \in V_{\omega}: \operatorname{rank}(x)=n\right\}$ and $\operatorname{rank}(x)=\sup \{\operatorname{rank}(y)+1: y \in x\}$. The transitive closure of a set x is the set $\operatorname{trcl}(x)=\bigcup_{n \in \omega} \cup^{n} x$, where $\cup^{0} x=x$, and $\cup^{n+1} x=\bigcup \cup^{n} x$.
Fact 3. (a) V_{ω} is a countable transitive set (i.e. $x \in V_{\omega}$ implies $x \subset V_{\omega}$).
(b) The structure $\left\langle V_{\omega}, \in\right\rangle$ satisfies all the axioms of set theory ZFC except the Axiom of Infinity (Inf). In particular, if $x, y \in V_{\omega}$, then $\{x\}, x \cup y \in V_{\omega}$ etc.
(c) $V_{\omega} \cap$ Ord $=\omega$.
(d) $x \in V_{\omega}$ iff x is a finite subset of V_{ω}.
(e) $V_{\omega}=\{x:|\operatorname{trcl}(x)|<\omega\}$.

In the sequel by ε we will denote the binary relation on the class of all sets defined by: $x \varepsilon y$ if and only if $x \in y$ or $y \in x$. Also, instead of $\langle x, y\rangle \in \varepsilon$ we will write $x y \in \varepsilon$ and, if H is a set, instead of $\left\langle H, \varepsilon \cap H^{2}\right\rangle$ we will write $\langle H, \varepsilon\rangle$, whenever confusion is impossible.

Fact 4. The structure $\left\langle V_{\omega}, \varepsilon\right\rangle$ is a Rado graph.
Proof. Let H and K be disjoint finite subsets of V_{ω}. Then $H, K \in V_{\omega}$ and $n=\operatorname{rank}(K)<\omega$. Since $V_{\omega} \vDash$ ZFC Inf and $H, n \in V_{\omega}$, we have $v=H \cup\{n\} \in V_{\omega}$. Now, for each $h \in H$ we have $h \in v$, thus $h v \in \varepsilon$. On the other hand, for $k \in K$ there holds $k \notin H$ (since $H \cap K=\emptyset$) and $k \neq n$ (since $\operatorname{rank}(k)<n=\operatorname{rank}(n)$) so $k \notin v$. Since $\operatorname{rank}(v) \geq n+1$, we have $v \notin k$, thus $k v \notin \varepsilon$, for all $k \in K$.

Lemma 2. If A is an infinite subset of ω, then $S_{A}=\bigcup_{n \in A} \operatorname{Lev}_{n}$ is a random subgraph of the graph $\left\langle V_{\omega}, \varepsilon\right\rangle$.
Proof. Let $H, K \in\left[S_{A}\right]^{<\omega}$ be disjoint sets. The set $\{\operatorname{rank}(x): x \in H \cup K\}$ is a finite subset of ω, hence $m=\max \{\operatorname{rank}(x): x \in H \cup K\}+2<\omega$. Clearly $n=\min (A \backslash(m+1)) \in A$ and $n>m$. Let $v=H \cup(n \backslash m)$.

We prove $v \in S_{A}$. Since $H, n \backslash m \in\left[V_{\omega}\right]^{<\omega}$, we have $H, n \backslash m \in V_{\omega}$ and $H \cup(n \backslash m) \in V_{\omega}$ (because $V_{\omega} \vDash$ ZFC - Inf) so $v \in V_{\omega}$. Moreover $\operatorname{rank}(v)=\sup \{\operatorname{rank}(x)+1: x \in H \cup(n \backslash m)\}=n \in A$, thus $v \in \operatorname{Lev}_{n} \subset S_{A}$.

For each $h \in H$ we have $h \in v$, so $v h \in \varepsilon$ for all $h \in H$.
Let $k \in K$. Then $k \notin H$ (since $H \cap K=\emptyset$) and $k \notin n \backslash m$ (because $\operatorname{rank}(k)<m$ and for $l \in n \backslash m$ we have $\operatorname{rank}(l)=l \geq m$) thus $k \notin v$. On the other hand, $\operatorname{rank}(v)=n>m>\operatorname{rank}(k) \operatorname{implies} v \notin k$ so $v k \notin \varepsilon$, for all $k \in K$.

Theorem 3. Let \mathcal{A} be an almost disjoint family in ω. Then
(a) $\mathcal{A}_{V_{\omega}}=\left\{S_{A}: A \in \mathcal{A}\right\}$ is an almost disjoint family on V_{ω} consisting of random subgraphs of $\left\langle V_{\omega}, \varepsilon\right\rangle$.
(b) In $\langle\mathcal{R}(R), \subset\rangle$ there exists a maximal antichain of size c.

Proof. (a) By Lemma 2, for each $A \in \mathcal{A}$ the set $S_{A}=\bigcup_{n \in A} \operatorname{Lev}_{n} \in \mathcal{R}\left(V_{\omega}\right)$. If $A, B \in \mathcal{A}$ and $A \neq B$, then $|A \cap B|<\boldsymbol{\aleph}_{0}$ so $S_{A} \cap S_{B}=\bigcup_{n \in A \cap B} \operatorname{Lev}_{n}$ is a finite set, since the sets Lev_{n} are finite.
(b) By Fact 1(c), there are mad families on ω of size c. If \mathcal{A} is one, then, by (a), $\mathcal{A}_{V_{\omega}}$ is an antichain in $\left\langle\mathcal{R}\left(\mathcal{A}_{V_{\omega}}\right), \subset\right\rangle$ of size c and, by Zorn's Lemma, it is contained in a maximal antichain of the same size, because $\left|\left[V_{\omega}\right]^{\omega}\right|=c$.

References

[1] P. J. Cameron, The random graph, The mathematics of Paul Erdős II, Algorithms Combin. 14 (Springer, Berlin, 1997) 333-351.
[2] E. K. van Douwen, The integers and topology, in: K. Kunen and J.E. Vaughan eds., Handbook of Set-theoretic Topology (North-Holland, Amsterdam, 1984) 111-167.
[3] P. Erdős, A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hungar., 14 (1963) 295-315.
[4] M. S. Kurilić, B. Kuzeljević, Maximal chains of isomorphic subgraphs of the Rado graph, Acta Math. Hungar., 141,1 (2013) 1-10.

[^0]: 2010 Mathematics Subject Classification. Primary 05C80; Secondary 05C63, 06A06
 Keywords. the random graph, the Rado graph, isomorphic subgraph, partial order, maximal antichain, almost disjoint families, mad families

 Received: 06 November 2013; Accepted: 12 April 2014
 Communicated by Miroslav Ćirić
 Research supported by grants no. 174006 (the first author) and 174018 (the second author) of the Ministry of Education, Science and Technological Development of Serbia

 Email addresses: milos@dmi.uns.ac.rs (Miloš S. Kurilić), pera@dmi .uns.ac.rs (Petar Marković)

