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Abstract. In this paper, a stochastic Holling II predator-prey model under Markovian switching with
jumps is investigated. The aim is to find out how the Markovian switching and the jump noise affect the
dynamics of this model. Firstly, we study the properties of the solutions, for example, the existence and
uniqueness of the global positive solution, the uniform boundedness of the pth moment and the pathwise
estimation. Secondly, sufficient criteria for extinction and strong persistence in the mean are established.
Results show that jump noise can essentially change the nature of the system, i.e., it can make strongly
persistent species extinct and extinct species persistent. We also observe that both the overall extinction
and strong persistence in the mean have close relationships with the stationary probability distribution of
the Markov chain. Finally, numerical examples are introduced to illustrate the results.

1. Introduction

In the ecological sciences, the dynamical behavior of interacting species is one of the main problems
which are extensively studied. The interspecific interactions among species such as competition, coopera-
tion and predation are the main research targets. So the dynamic relationship between predators and their
prey has long been and will continue to be one of the dominant themes in both ecology and mathematical
ecology due to its universal existence and importance [1]. Since the relationship between predator and prey
are usually complicated and diverse, Holling [2] gave three different kinds of functional response of the
predator to the prey density. The classical deterministic predator-prey system with Holling II functional
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response has the following form:

dx(t)
dt

= x(t)
(
r1 − a11x(t) −

a12y(t)
1 + x(t)

)
,

dy(t)
dt

= y(t)
(
−r2 +

a21x(t)
1 + x(t)

− a22y(t)
)
,

(1)

where x(t) and y(t) denote the prey and predator population size, respectively, at time t; r1 is the intrinsic
growth rate of the prey; r2 denotes the death rate of predator; a11 measures the strength of competition
among individuals of prey species; a12 is the capturing rate; a21 is the conversion rate; a22 is the strength of
competition among individuals of species predator. In recent years, qualitative analysis of the predator-
prey model (1) with Holling II functional response and its extension have been studied by several authors,
for example, see [3], [4], [5], [6], [7], [8], [9], [10] and [11].

On the other hand, population dynamics are inevitably affected by various environmental noise. So
stochastic population dynamics have attracted a great attention of many mathematicians and biologists in
recent years. One type of noise we know well is the white noise. There are many good papers on the study
of population models perturbed by white noise (see [12]-[18] and references cited therein). And stochastic
predator-prey models are also been well studied, for example, [19], [20] and [21]. They mainly focus on
the qualitative analysis, such as persistence and extinction, permanence, global stability and so on. If the
intrinsic growth rate of the prey population and the death rate of the predator population are affected by
environmental white noise, then the stochastic predator-prey with Holling II functional response takes the
following form:

dx(t) = x(t)
(
r1 − a11x(t) −

a12y(t)
1 + x(t)

)
dt + σ1x(t)dB1(t),

dy(t) = y(t)
(
−r2 +

a21x(t)
1 + x(t)

− a22y(t)
)

dt + σ2y(t)dB2(t),
(2)

where Bi(t) is mutually independent Brownian motion, σi is a positive constant representing the intensity
of the white noise, i = 1, 2.

However, some sudden environment shocks, for example, earthquakes, hurricanes, epidemics, may
occur sometimes, and the solutions of population models are no longer continuous at this time. So stochastic
models (2) perturbed only by white noise can not fit the reality well. Bao et al. [22], [23] suggested that
stochastic models driven by Poisson random measure can describe these phenomena sometimes. The
stochastic predator-prey with Holling II functional response driven by Poisson random measure can be
described as

dx(t) = x(t)
(
r1 − a11x(t) −

a12y(t)
1 + x(t)

)
dt + σ1x(t)dB1(t) +

∫
Y

c1(u)x(t−)N(dt,du),

dy(t) = y(t)
(
−r2 +

a21x(t)
1 + x(t)

− a22y(t)
)

dt + σ2y(t)dB2(t) +

∫
Y

c2(u)y(t−)N(dt,du),
(3)

here x(t−) is the left limit of x(t), N is a Poisson counting measure with characteristic measure λ on a
measurable subset Y of (0,∞) with λ(Y) < ∞, and Ñ(dt,du) := N(dt,du) − λ(du)dt.

Sometimes the population systems may be affected by color noise. Color noise can be described as a
random switching among different regimes of environment. The switching is memoryless and the waiting
time for the next switch follows an exponential distribution [24]. Hence the random switching can be
modeled by a finite-state Markov chain. Then model (3) under Markov switching becomes the following
model:

dx(t) = x(t)
(
r1(ξ(t)) − a11(ξ(t))x(t) −

a12(ξ(t))y(t)
1 + x(t)

)
dt + σ1(ξ(t))x(t)dB1(t) +

∫
Y

c1(ξ(t),u)x(t−)N(dt,du),

dy(t) = y(t)
(
−r2(ξ(t)) +

a21(ξ(t))x(t)
1 + x(t)

− a22(ξ(t))y(t)
)

dt + σ2(ξ(t))y(t)dB2(t) +

∫
Y

c2(ξ(t),u)y(t−)N(dt,du),
(4)
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where ξ(t) is a continuous-time Markov chain with finite-state space S = {1, 2, ...,n}. And the generator
Γ = (γi j)n×n is given by

P{ξ(t + ∆) = j|(ξ(t) = i} =
{
γi j∆ + o(δ), if i , j,
1 + γii∆ + o(δ), if i = j,

where ∆ > 0, γi j ≥ 0 (i , j) is the transition rate from i to j while
∑n

i=1 γi j = 0. Eq.(4) in regime j ∈ S obeys

dx(t) = x(t)
(
r1( j) − a11( j)x(t) −

a12( j)y(t)
1 + x(t)

)
dt + σ1( j)x(t)dB1(t) +

∫
Y

c1( j,u)x(t−)N(dt,du),

dy(t) = y(t)
(
−r2( j) +

a21( j)x(t)
1 + x(t)

− a22( j)y(t)
)

dt + σ2( j)y(t)dB2(t) +

∫
Y

c2( j,u)y(t−)N(dt,du).

Regime-switching jump diffusions have numerous applications in insurance, biology and medicine,
economics and so on [25]. In recent years, many important research papers on the basic properties of
regime-switching jump diffusions have been reported, for instance, G. Yin and F. Xi [25], Z. Yang and
G. Yin [26]. But to the best of our knowledge, to this day, the survival analysis for the predator-prey
population systems with regime-switching jump diffusions has not been reported. Motivated by these, in
this paper, we mainly consider asymptotic behaviors of stochastic Holling II predator-prey model (4) under
Markovian-switching with jumps.

Compared with the literature, contributions and novelties of the current work are as follows:

(1) We introduce three different environmental noise to the predator-prey model with Holling II functional
response.

(2) We give the sufficient criteria for the extinction and persistence of the predator and prey species.
(3) We reveal that how the Markovian-switching affects the population dynamics.
(4) We analyze the impacts of jump noise on the population dynamics.

The remaining part of this paper is organized as follows. In section 2, we show that the Holling II
predator-prey model under Markovian switching with jumps has a unique global positive solution and
consider the asymptotic pathwise behavior of the solution. We establish the sufficient conditions for the
extinction, strong persistence in the mean of the predator and prey species in section 3. Results show
the effect of color noise on the system is mainly determined by the stationary distribution of its Markov
chain, and the jump noise can change the survival situations of the population. Finally we introduce some
examples to illustrate our main results in section 4.

2. Properties of the Solution

Throughout this paper, R+ := (0,∞). Let (Ω,F , {F }t≥0,P) be a complete probability space with a
filtration {F }t≥0 satisfying the usual conditions. Assume further that Markov chain ξ(t) is irreducible and
has a unique stationary distribution π = {π1, π2, ..., πn}which can be determined by equation

πΓ = 0 (5)

subject to
n∑

i=1

πi = 1, and πi > 0, ∀ i ∈ S.

We assume that Markov chain ξ(·), Brownian motion B(·) and Poisson counting measure N(·) are mutually
independent.

Throughout the rest of this paper, we always assume the following assumption holds:
(A). For each i ∈ S, r1(i), r2(i), a11(i), a12(i), a21(i), a22(i), σ1(i) and σ2(i) are positive constants, and there

exist c j∗(i) > −1 and c∗j(i) > |c j∗(i)| such that c j∗(i) ≤ c j(i,u) ≤ c∗j(i) for any u ∈ Y, j = 1, 2.
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For convenience and simplicity, let

β1(ξ(t)) = r1(ξ(t)) −
σ2

1(ξ(t))
2

+

∫
Y

ln(1 + c1(ξ(t),u))λ(du),

β2(ξ(t)) = −r2(ξ(t)) −
σ2

2(ξ(t))
2

+

∫
Y

ln(1 + c2(ξ(t),u))λ(du);

and for any constant vector f (i)i∈S, define

f̂ = min
i∈S

f (i), f̌ = max
i∈S

f (i).

Theorem 2.1. For any initial value (x(0), y(0)) ∈ R2
+ and ξ(0) ∈ S, there is a unique global positive solution

(x(t), y(t)) to Eq.(4) for all t ≥ 0 almost surely.

Proof. Consider the following system

du(t) =

[
β1(ξ(t)) − a11(ξ(t)) exp{u(t)} −

a12(ξ(t)) exp{v(t)}
1 + exp{u(t)}

]
dt

+ σ1(ξ(t))dB1(t) +

∫
Y

ln(1 + c1(ξ(t),u))Ñ(dt,du),

dv(t) =

[
β2(ξ(t)) +

a21(ξ(t)) exp{u(t)}
1 + exp{u(t)}

− a22(ξ(t)) exp{v(t)}
]

dt

+ σ2(ξ(t))dB2(t) +

∫
Y

ln(1 + c2(ξ(t),u))Ñ(dt,du),

(6)

with the initial value (u(0), v(0)) = (ln x(0), ln y(0)). The coefficients of (6) is locally Lipschitz continuous,
so system (6) has a unique local solution (u(t), v(t)) on t ∈ [0, τ), where τ is the explosion time [27], [28].
Hence from Itô’s formula it follows that (x(t), y(t)) = (exp{u(t)}, exp{v(t)}) is the unique local solution to
system (4) with initial value (x(0), y(0)) on t ∈ [0, τ). The proof of its global solution is almost identical to
of equations with regime switching driven by Brownian motion, and we refer the reader to the account of
[29] and [30].

Based on this fundamental theorem, we can study the asymptotic behavior of the solution.

Theorem 2.2. For any initial value (x(0), y(0)) ∈ R2
+ and ξ(0) ∈ S, for any p > 0, the solution satisfies

lim sup
t→∞

E(xp(t) + yp(t)) ≤ K,

where here, and in the sequel, we denote by K a generic positive constant.

Proof. Applying Itô’s formula, we obtain

E(et(xp(t) + yp(t))) = xp(0) + yp(0) + E

∫ t

0
esF(s)ds,

where

F(t) = − a11(ξ(t))pxp+1 +

(
1 + pr1(ξ(t)) +

p(p − 1)
2

σ2
1(ξ(t)) +

∫
Y

((1 + c1(ξ(t),u))p
− 1)λ(du)

)
xp
−

a12(ξ(t))pxpy
1 + x

− a22(ξ(t))pyp+1 +

(
1 − pr2(ξ(t)) +

p(p − 1)
2

σ2
2(ξ(t)) +

∫
Y

((1 + c2(ξ(t),u))p
− 1)λ(du)

)
yp +

a21(ξ(t))pxyp

1 + x

≤ − â11pxp+1 +

(
1 + př1 +

p(p + 1)
2

σ̌2
1 +

∫
Y

((1 + č∗1)p
− 1)λ(du)

)
xp

− â22pyp+1 +

(
1 − pr̂2 +

p(p + 1)
2

σ̌2
2 +

∫
Y

((1 + č∗2)p
− 1)λ(du) + ǎ21p

)
yp

≤ K.
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Hence

E(et(xp(t) + yp(t))) ≤ xp(0) + yp(0) + Ket.

So

lim sup
t→∞

E(et(xp(t) + yp(t))) ≤ K.

We complete the proof.

Now we give some lemmas which are used in the analysis in what follows.

Lemma 2.3. For any initial value (x(0), y(0)) ∈ R2
+ and ξ(0) ∈ S, the solution to system (4) has the property

lim sup
t→∞

ln x(t)
t
≤ 0 a.s., (7)

lim sup
t→∞

ln y(t)
t
≤ 0 a.s.. (8)

Proof. The proof is similar to the proof of Lemma 3.2 in [31], so we omit it here.

Lemma 2.4. If for any i ∈ S,

β2(i) = −r2(i) −
σ2

2(i)
2

+

∫
Y

ln(1 + c2(i,u))λ(du) ≥ 0, (9)

then for any initial value (x(0), y(0)) ∈ R2
+ and ξ(0) ∈ S,

lim inf
t→∞

ln y(t)
t
≥ 0 a.s.. (10)

Proof. Consider the auxiliary equation{
dY(t) = Y(t)(−r2(ξ(t)) − a22(ξ(s))Y(t))dt + σ2(ξ(t))Y(t)dB2(t) +

∫
Y

c2(ξ(t),u)Y(t−1)N(dt,du)
Y(0) = y(0)

(11)

From the stochastic comparison theorem it follows y(t) ≥ Y(t). Using the proof of Lemma 3.3 in [31], the
solution of Eq. (11) has the property

lim inf
t→∞

ln Y(t)
t
≥ 0,

hence the desired assertion (10) holds.

3. Persistence and Extinction

In the previous section, we have discussed some properties of the solution to the system (4). Now in
this section we will analyze the survival of system (4). To proceed, we need some appropriate definitions.

Definition 3.1. [32]

(1) x(t) is said to be extinct if limt→∞ x(t) = 0 a.s..

(2) x(t) is said to be strongly persistent in the mean if lim inft→∞ t−1
∫ t

0 x(s)ds > 0 a.s..

Now we are in the position to give our main results of this section.
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Theorem 3.2.

(i) If
∑n

i=1 πiβ1(i) < 0 and
∑n

i=1 πiβ2(i) < 0, then the prey and predator are both extinct;

(ii) If
∑n

i=1 πiβ1(i) < 0 and
∑n

i=1 πiβ2(i) > 0, then the prey population is extinct while the predator population is
strongly persistent in mean;

(iii) If
∑n

i=1 πiβ1(i) > 0 and
∑n

i=1 πi(β2(i)+a21(i)) < 0, then the predator population is extinct and the prey population
is strongly persistent in mean;

(iv) If for any i ∈ S, β2(i) > 0 and
∑n

i=1 πiβ1(i) − ǎ12
â22

∑n
i=1 πi(β2(i) + a21(i)) > 0, then both the predator population

and the prey population are strongly persistent in the mean.

Proof. (i).Theorem 1 shows that the solution (x(t), y(t)) with positive initial value will remain in R2
+. By the

generalized Itô’s formula, we get

d ln x(t) =

[
β1(ξ(t)) − a11(ξ(t))x(t) −

a12(ξ(t))y(t)
1 + x(t)

]
dt + σ1(ξ(t))dB1(t) +

∫
Y

ln(1 + c1(ξ(t),u))Ñ(dt,du).

d ln y(t) =

[
β2(ξ(t)) +

a21(ξ(t))x(t)
1 + x(t)

− a22(ξ(t))y(t)
]

dt + σ2(ξ(t))dB2(t) +

∫
Y

ln(1 + c2(ξ(t),u))Ñ(dt,du).

Integrating from 0 to t yields

ln x(t) = ln x(0) +

∫ t

0
β1(ξ(s))ds −

∫ t

0
a11(ξ(s))x(s)ds −

∫ t

0

a12(ξ(s))y(s)
1 + x(s)

ds + M11(t) + M12(t), (12)

ln y(t) = ln y(0) +

∫ t

0
β2(ξ(s))ds −

∫ t

0
a22(ξ(s))y(s)ds +

∫ t

0

a21(ξ(s))x(s)
1 + x(s)

ds + M21(t) + M22(t), (13)

where M j1(t) =
∫ t

0 σ j(ξ(s))dB1(s) and M j2(t) =
∫ t

0

∫
Y

ln(1 + c j(ξ(s),u))Ñ(ds,du), j = 1, 2 are all martingale
terms. Then by Proposition 2.4 in [33],

〈M j1〉(t) =

∫ t

0
σ2

j (ξ(s))ds ≤ σ̌2
j t, j = 1, 2,

〈M j2〉(t) =

∫ t

0

∫
Y

[ln(1 + c j(ξ(s),u))]2λ(du)ds ≤ t[ln(1 + č∗j)]
2λ(Y), j = 1, 2,

where 〈M〉(t) := 〈M,M〉 is Meyer’s angle bracket process.
By the strong law of large numbers for local martingales [34] again, we then obtain

lim
t→∞

M j1(t)
t

= 0 a.s. and lim
t→∞

Mj2(t)
t

= 0 a.s., j = 1, 2. (14)

From (12), we get

ln x(t) ≤ ln x(0) +

∫ t

0
β1(ξ(s))ds + M11(t) + M12(t).

Dividing by t on both sides and combining (14), we deduce

lim sup
t→∞

ln x(t)
t
≤ lim sup

t→∞

1
t

∫ t

0
β1(ξ(s))ds

=

n∑
i=1

πiβ1(i) a.s.,
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where we use the ergodic property of the Markov chain. Therefore, if
∑n

i=1 πiβ1(i) < 0, then limt→∞ x(t) =
0 a.s., that is to say, the prey population x(t) is extinctive. Furthermore, it implies that

lim
t→∞

1
t

∫ t

0
x(s)ds = 0 a.s. (15)

Similarly, dividing by t on both sides of (13) results in

ln y(t)
t
≤

ln y(0)
t

+
1
t

∫ t

0
β2(ξ(s))ds +

ǎ21

t

∫ t

0
x(s)ds +

M21(t)
t

+
M22(t)

t
.

By the ergodic property of the Markov chain, combining (14) and (15), we obtain

lim sup
t→∞

ln y(t)
t
≤ lim sup

t→∞

1
t

∫ t

0
β2(ξ(s))ds =

n∑
i=1

πiβ2(i).

So if
∑n

i=1 πiβ2(i) < 0, then limt→∞ y(t) = 0 a.s. which implies that the predator population is extinct.
(ii). From (i) it follows that if

∑n
i=1 πiβ1(i) < 0, the prey population is extinct. Now we prove that the

predator population is strongly persistent in the mean under the condition
∑n

i=1 πiβ2(i) > 0. Dividing by t
on both sides of (13) we obtain after rearrangement

1
t

∫ t

0
a22(ξ(s))y(s)ds = −

ln y(t)
t

+
ln y(0)

t
+

1
t

∫ t

0
β2(ξ(s))ds +

1
t

∫ t

0

a21(ξ(s))x(s)
1 + x(s)

ds +
M21(t)

t
+

M22(t)
t

.

Taking the inferior limit, together with (8), (14) and (15), we find

lim inf
t→∞

1
t

∫ t

0
a22(ξ(s))y(s)ds ≥ lim inf

t→∞
(−

ln y(t)
t

) + lim inf
t→∞

1
t

∫ t

0
β2(ξ(s))ds

= − lim sup
t→∞

ln y(t)
t

+

n∑
i=1

πiβ2(i)

≥

n∑
i=1

πiβ2(i) a.s.

Hence

lim inf
t→∞

1
t

∫ t

0
y(s)ds ≥

∑n
i=1 πiβ2(i)

ǎ22
a.s.,

so if
∑n

i=1 πiβ2(i) > 0, then the predator population is strongly persistent in mean.
(iii). From (13) we can also get that

ln y(t)
t
≤

ln y(0)
t

+
1
t

∫ t

0
β2(ξ(s))ds +

1
t

∫ t

0
a21(ξ(s))ds +

M21(t)
t

+
M22(t)

t
.

It is easy to derive that

lim sup
t→∞

ln y(t)
t
≤

n∑
i=1

πi(β2(i) + a21(i)) a.s.

Hence it implies that if
∑n

i=1 πi(β2(i) + a21(i)) < 0, then limt→∞ y(t) = 0 a.s. and

lim
t→∞

1
t

∫ t

0
y(s)ds = 0 a.s. (16)
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On the other hand, (12) can lead to

1
t

∫ t

0
a11(ξ(s))x(s)ds = −

ln x(t)
t

+
ln x(0)

t
+

1
t

∫ t

0
β1(ξ(s))ds −

1
t

∫ t

0

a12(ξ(s))y(s)
1 + x(s)

ds +
M11(t)

t
+

M12(t)
t

≥ −
ln x(t)

t
+

ln x(0)
t

+
1
t

∫ t

0
β1(ξ(s))ds −

1
t

∫ t

0
a12(ξ(s))y(s)ds +

M11(t)
t

+
M12(t)

t
.

This combining with (7), (14) and (16) yields

lim inf
t→∞

1
t

∫ t

0
a11(ξ(s))x(s)ds ≥ lim inf

t→∞

1
t

∫ t

0
β1(ξ(s))ds =

n∑
i=1

πiβ1(i) a.s.

So we obtain that if
∑n

i=1 πiβ1(i) > 0, then the prey population is strongly persistent in the mean.
(iv). In (ii), we have proved that under the condition

∑n
i=1 πiβ2(i) > 0 the predator is strongly persistent

in the mean. So if for any i ∈ S, β2(i) > 0 holds, the same desired conclusion follows. Now we are in the
position to prove that the prey population is strongly persistent in mean.

Firstly, we prove that

lim sup
t→∞

1
t

∫ t

0
a22(ξ(s))y(s)ds ≤

n∑
i=1

πi(β2(i) + a21(i)). (17)

To prove this we note that by (13) we have

1
t

∫ t

0
a22(ξ(s))y(s)ds ≤ −

ln y(t)
t

+
ln y(0)

t
+

1
t

∫ t

0
β2(ξ(s))ds +

1
t

∫ t

0
a21(ξ(s))ds +

M21(t)
t

+
M22(t)

t
.

Taking the superior limit on both sides, using (10) and (14) yields

lim sup
t→∞

1
t

∫ t

0
a22(ξ(s))y(s)ds ≤ lim sup

t→∞
(−

ln y(t)
t

) +

n∑
i=1

πi(β2(i) + a21(i))

≤

n∑
i=1

πi(β2(i) + a21(i)) a.s.

Now we turn to the proof of the strong persistence of x(t). Follow the proof of (iii) we find that

lim inf
t→∞

1
t

∫ t

0
a11(ξ(s))x(s)ds

≥ lim inf
t→∞

{
−

ln x(t)
t

+
ln x(0)

t
+

1
t

∫ t

0
β1(ξ(s))ds −

1
t

∫ t

0
a12(ξ(s))y(s)ds +

M11(t)
t

+
M12(t)

t

}
= − lim sup

t→∞

ln x(t)
t

+

n∑
i=1

πiβ1(i) − lim sup
1
t

∫ t

0
a12(ξ(s))y(s)ds

≥

n∑
i=1

πiβ1(i) −
ǎ12

â22

n∑
i=1

πi(β2(i) + a21(i)) a.s.,

where we used (7), (17) and the ergodic property of the Markov chain. Hence if
∑n

i=1 πiβ1(i) > ǎ12
â22

∑n
i=1 πi(β2(i)+

a21(i)), then the prey population is strongly persistent in the mean.
This completes the proof.
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Remark 3.3. For some i ∈ S, consider the subsystem

dx(t) = x(t)
(
r1(i) − a11(i)x(t) −

a12(i)y(t)
1 + x(t)

)
dt + σ1(i)x(t)dB1(t) +

∫
Y

c1(i,u)x(t−)N(dt,du),

dy(t) = y(t)
(
−r2(i) +

a21(i)x(t)
1 + x(t)

− a22(i)y(t)
)

dt + σ2(i)y(t)dB2(t) +

∫
Y

c2(i,u)y(t−)N(dt,du).

Similarly, we can derive that for this subsystem

(i) If β1(i) < 0 and β2(i) < 0, then the prey and predator are both extinct;

(ii) If β1(i) < 0 and β2(i) > 0, then the prey population is extinct while the predator population is strongly persistent
in mean;

(iii) If β1(i) > 0 and β2(i) + a21(i) < 0, then the predator population is extinct and the prey population is strongly
persistent in mean;

(iv) If β2(i) > 0 and β1(i) − a12(i)
a22(i) (β2(i) + a21(i)) > 0, then both the predator population and the prey population are

strongly persistent in the mean.

Remark 3.4. Now we analyze how the jump noise affects the population system (4). Suppose system (4) is not
disturbed by the jump noise, that is to say, c j(ξ(t),u) ≡ 0, j = 1, 2, we denote

β0
1(i) = r1(i) −

σ2
1(i)
2
, β0

2(i) = −r2(i) −
σ2

2(i)
2
.

Then if
∑n

i=1 πi(β0
2(i) + a21(i)) < 0 and

∑n
i=1 πiβ0

1(i) > 0, the predator species is extinct and the prey species is strongly
persistent in the mean; but if system is affected by jump noise, furthermore, the jump noise satisfy

∑n
i=1 πiβ1(i) < 0

and
∑n

i=1 πiβ2(i) > 0, the prey is extinct while the predator is strongly persistent in mean. So the jump noise can
make the extinct species persistent and persistent species extinct. In general, if c j(ξ(t),u) > 0, the jump noise is
advantageous to the ecosystem; if c j(ξ(t),u) < 0, it is disadvantageous.

4. Examples and Numerical Simulations

In this section, to support to our analytical results, we give out the numerical experiment.
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Figure 1: Numerical simulation of model (4) in both sub-
systems with jump noise c1(1,u) = −0.2, c1(2,u) = −0.25,
c2(1,u) = −0.1, c2(2,u) = −0.1. From this figure, we can see the
species in both subsystems are extinctive.

0 5 10 15 20 25 30 35 40
0

1

2

3
Markov Chain

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

Time T

P
o

p
u

la
ti
o

n
 s

iz
e

 

 
x
y

Figure 2: Numerical simulation of the whole system (4) with
jump noise c1(1,u) = −0.2, c1(2,u) = −0.25, c2(1,u) = −0.1,
c2(2,u) = −0.1. From this figure, we can see that both the prey
and predator in the whole system are extinctive.
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Figure 3: Numerical simulation of model (4) in both sub-
systems with jump noise c1(1,u) = −0.2, c1(2,u) = −0.25,
c2(1,u) = 0.4, c2(2,u) = 0.45. From this figure, we can see the
prey species are extinct while the predator species are strongly
persistent in the mean in both subsystems.
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Figure 4: Numerical simulation of the whole system (4) with
jump noise c1(1,u) = −0.2, c1(2,u) = −0.25, c2(1,u) = 0.4,
c2(2,u) = 0.45. From this figure, we can see that the prey
species are extinct and predator are strongly persistent in the
mean in the whole system.

Example 4.1 Consider system (4) with a right-continuous Markov chain taking values in S = {1, 2}. Let
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the generator of the Markov chain is given by

Γ =

(
−7 7
5 −5

)
.

By (5), we obtain the unique stationary distribution π1 = 5/12, π2 = 7/12.
Let λ(Y) = 1, the initial value (x(0), y(0)) = (0.2, 0.2), ξ(0) = 2 and the coefficients be

r1(1) = 0.3, a11(1) = 1, a12(1) = 0.5, σ1(1) = 0.7;
r1(2) = 0.4, a11(2) = 1.1, a12(2) = 0.5, σ1(2) = 0.8;
r2(1) = 0.1, a21(1) = 0.1, a22(1) = 0.8, σ2(1) = 0.3;
r2(2) = 0.12, a21(2) = 0.1, a22(2) = 0.7, σ2(2) = 0.3.

Case 1. If the jump noise c1(1,u) = −0.2, c1(2,u) = −0.25, c2(1,u) = −0.1, c2(2,u) = −0.1, then

β1(1) = r1(1) −
1
2
σ2

1(1) +

∫
Y

ln(1 + c1(1,u))λ(du) = −0.1681 < 0,

β1(2) = r1(2) −
1
2
σ2

1(2) +

∫
Y

ln(1 + c1(2,u))λ(du) = −0.2077 < 0,

β2(1) = −r2(1) −
1
2
σ2

2(1) +

∫
Y

ln(1 + c2(1,u))λ(du) = −0.2504 < 0,

β2(2) = −r2(2) −
1
2
σ2

2(2) +

∫
Y

ln(1 + c2(2,u))λ(du) = −0.2704 < 0.

Hence from Remark 1 the species in both subsystems are extinctive, see Fig. 1. In the meanwhile, we note
that

2∑
i=1

πiβ1(i) = −0.1912 < 0,
2∑

i=1

πiβ2(i) = −0.2621 < 0.

Therefore, by Theorem 3(i), both the prey and predator in the whole system (4) are extinct, Fig.2 confirms
this.
Case 2. If the jump noise c1(1,u) = −0.2, c1(2,u) = −0.25, c2(1,u) = 0.4, c2(2,u) = 0.45, then the prey species
x(t) is extinct in subsystems and system (4) as in Case 1. But

β2(1) = 0.1915 > 0, β2(2) = 0.2066 > 0,
2∑

i=1

πiβ2(i) = 0.2033 > 0,

hence from Remark 1 and Theorem 3(ii) we obtain that the predator species in both subsystems and in the
whole system (4) is strongly persistent in the mean. See Fig. 3 and 4.
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Figure 5: The first subfigure is the numerical simulation of Markov chain; the second subfigure is the numerical simulation of model
(4) without jumps. The last subfigure is the numerical simulation of model (4) with jump noise c1(1,u) = −0.2, c1(2,u) = −0.25,
c2(1,u) = 0.4, c2(2,u) = 0.45. Hence the jump noise can make persistent species extinct and extinct species strongly persistent.

Case 3. We choose the jump noise c1(1,u) = c1(2,u) = c2(1,u) = c2(2,u) = 0, that is to say, the jump noise
is not considered, then

2∑
i=1

πi(β2(i) + a21(i)) = −0.057 < 0,
2∑

i=1

πiβ1(i) = 0.070 > 0.

Thus by (iii) in Theorem 3, we can observe that the prey species in system (4) is strongly persistent in the
mean while the predator is extinct.

If we choose c1(1,u) = −0.2, c1(2,u) = −0.25, c2(1,u) = 0.4, c2(2,u) = 0.45, as we said in Case 2, the prey
species is extinct and the predator is persistent in the mean. Fig.5 confirms these. Hence we observe that
the jump noise can make persistent species extinct and extinct species strongly persistent.
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Figure 6: Numerical simulation of the whole system (4) with jump noise c1(1,u) = 0.3, c1(2,u) = 0.2, c2(1,u) = 0.4, c2(2,u) = 0.45. From
this figure, we can see that both the prey and predator are strongly persistent in the mean in the whole system .

Case 4. We choose c1(1,u) = 0.3, c1(2,u) = 0.2, c2(1,u) = 0.4, c2(2,u) = 0.45, then

β2(1) = 0.1915 > 0, β2(2) = 0.2066 > 0,
2∑

i=1

πiβ2(i) = 0.2033 > 0,

moreover,

2∑
i=1

πiβ1(i) −
ǎ12

â22

2∑
i=1

πi(β2(i) + a21(i)) = 0.0708 > 0,

from (iv) in Theorem 3 it follows that boty the predator y(t) and the prey x(t) are strongly persistent in the
mean. See Fig. 6.

Example 4.2. In this example, we will analyze the impacts of Markovian switching on the population
dynamics. Consider system (4) with Markov chain taking values in S = {1, 2}, then system (4) can be
regarded as the result of the following two subsystems switching from one to another according to the law
of Markov chain:

dx(t) = x(t)
(
r1(1) − a11(1)x(t) −

a12(1)y(t)
1 + x(t)

)
dt + σ1(1)x(t)dB1(t) +

∫
Y

c1(1,u)x(t−)N(dt,du),

dy(t) = y(t)
(
−r2(1) +

a21(1)x(t)
1 + x(t)

− a22(1)y(t)
)

dt + σ2(1)y(t)dB2(t) +

∫
Y

c2(1,u)y(t−)N(dt,du),
(18)
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and

dx(t) = x(t)
(
r1(2) − a11(2)x(t) −

a12(2)y(t)
1 + x(t)

)
dt + σ1(2)x(t)dB1(t) +

∫
Y

c1(2,u)x(t−)N(dt,du),

dy(t) = y(t)
(
−r2(2) +

a21(2)x(t)
1 + x(t)

− a22(2)y(t)
)

dt + σ2(2)y(t)dB2(t) +

∫
Y

c2(2,u)y(t−)N(dt,du).
(19)

Let λ(Y) = 1, the initial value (x(0), y(0)) = (0.2, 0.2), ξ(0) = 2. Assume that

r1(1) = 0.3, a11(1) = 1, a12(1) = 0.5, σ1(1) = 0.7, c1(1,u) = −0.2;
r1(2) = 0.4, a11(2) = 1.1, a12(2) = 0.5, σ1(2) = 0.8, c1(2,u) = −0.25;
r2(1) = 0.1, a21(1) = 0.1, a22(1) = 0.8, σ2(1) = 0.3, c2(1,u) = −0.1;
r2(2) = 0.12, a21(2) = 0.1, a22(2) = 0.7, σ2(2) = 0.3, c2(2,u) = 0.45.

Now we analyze the effect of Markov switching.
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Figure 7: Numerical simulation of Example 2. The first subfigure is the numerical simulation of model (18). The second subfigure
is the numerical simulation of model (19). From this figure, we observe that the prey species in both subsystems are extinct and the
predator in subsystem (18) is extinctive while the predator in subsystem (19) is strongly persistent in the mean.

Case 1.Let the generator of the Markov chain ξ(t) be

Γ =

(
−11 11

2 −2

)
.

Then the unique stationary distribution π1 = 2/13, π2 = 11/13. As we have obtained that the prey species
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in both subsystems and in the whole system are extinct. Moreover, noting that

β2(1) = −0.2504 < 0, β2(2) = 0.2066 > 0,
2∑

i=1

πiβ2(i) = 0.1363 > 0,

combining Remark 1 and Theorem 3(ii), we observe that the predator in subsystem (18) is extinctive while
the predator in subsystem (19) is strongly persistent in the mean. See Fig. 7. But as the result of Markovian
switching, the whole behavior of predator in (4) is strongly persistent in the mean, see Fig.8.
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Figure 8: Numerical simulation of Example 2 with the gener-
ator of the Markov chain π1 = 2/13, π2 = 11/13. From this
figure, we see the whole behavior of predator in (4) is strongly
persistent in the mean.

0 5 10 15 20 25 30 35 40
0

1

2

3
Markov Chain

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

Time T

P
o

p
u

la
ti
o

n
 s

iz
e

 

 
x
y

Figure 9: Numerical simulation of Exam-
ple 2 with the stationary probability of
the Markov chain π1 = 11/13, π2 = 2/13.
From this figure, we see the whole behav-
ior of predator in (4) is extinctive.

Case 2.Let the generator of the Markov chain ξ(t) be

Γ =

(
−2 2
11 −11

)
.

It is easy to see that the unique stationary distribution π1 = 11/13, π2 = 2/13. The prey species in both
subsystems and in the whole system are also extinctive. For the species predator, subsystem (18) is extinct
while subsystem (19) is strongly persistent, and the whole behavior of predator in (4) is extinctive with
the result of Markovian switching because

∑2
i=1 πiβ2(i) = −0.1801 < 0. Fig. 9 confirms this. These results

also show that both the overall extinction and strong persistence in the mean of the predator have close
relationships with the stationary probability distribution of the Markov chain.

5. Conclusions

In this paper we study the dynamical properties of a stochastic Holling II predator-prey model with
Markovian switching driven by Poisson counting measure. We show that this model has a unique global
positive solution and study the asymptotic behavior of the solution. Afterwards, we establish the sufficient
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conditions for strong persistence in the mean and extinction of the solution. According to the movement of
Markov chain, our model switches from one regime to another regime, and the overall behavior of species
will be extinct or persistent in the mean depending on the the stationary probability distribution of the
Markov chain, though some individual equations in system (4) are extinct while some are persistent in the
mean. Another interesting result is that under some conditions jump noise can make the extinct species
persistent and the strongly persistent species extinct.
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