
Filomat 29:9 (2015), 1969–1981
DOI 10.2298/FIL1509969M

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Hexagonal Arrays for Fault-Tolerant Matrix Multiplication

Emina I. Milovanovića, Igor Ž. Milovanovića, Mile K. Stojčeva

aFaculty of Electronics Engineering, A. Medvedeva 14, 18000 Niš, Serbia

Abstract. This paper describes mathematical procedure for designing hexagonal systolic arrays that
implement fault-tolerant matrix multiplication. Fault-tolerance is achieved by introducing redundancy
at algorithm level by defining three equivalent algorithms with disjoint index spaces. The essence of the
proposed method is based on mapping data dependency graph that corresponds to the matrix multiplication
algorithm, by an appropriate epimorphism, into a graph with desired properties. Since there is a 1:1
correspondence between the algorithm and it’s graph representation, all transformations performed on
the graph directly affect the algorithm. Chosen epimorphism depends on the projection direction vector
~µ = [µ1 µ2 µ3]T and enables obtaining hexagonal arrays with optimal number of processing elements (PEs)
for the given matrix dimensions, which realizes fault-tolerant matrix multiplication for the shortest possible
time for that number of PEs. The proposed procedure is formally described by explicit formulas and can
be used as a software tool for automatic synthesis of fault-tolerant arrays.

1. Introduction

Matrix multiplication is one of the fundamental operation in many scientific and technical applications.
It appears as a macro-function within many numerical and non-numerical problems. Typical examples
include solving problems in linear algebra, such as finding inverse matrix, determinant, LU factorization,
eigenvalues, etc., graph theory, such as transitive closure, finding all-pairs shortest paths, minimal spanning
tree, etc. Matrix multiplication is very time consuming since it requires O(n3) computational steps. On the
other hand, it is highly regular and posses inherent parallelism and is therefore suitable for implementation
on parallel architectures such as processor or systolic arrays.

Nowadays, CMOS VLSI technology made it possible to develop massively parallel computational
systems. However, shrinking dimensions of transistors, which bring lower operating voltages and smaller
critical charges, make these devices prone to various kind of faults. These faults can be categorized into three
types: transient, intermittent, and permanent faults. Transient faults are failures in which the circuit remains
functional, but the value it generates is corrupted. Transient faults are caused by strikes from energetic
particles, such as alpha particle strikes generated within the package of the chip, or neutron strikes caused
by cosmic ray activity in outer space. Intermittent faults are caused by the combination of device aging
and by stress created by environmental conditions during chip operation [1, 2]. Permanent errors can

2010 Mathematics Subject Classification. Primary 68M07; Secondary 68Q35
Keywords. matrix multiplication, fault-tolerance, systolic arrays.
Received: 15 September 2013; Accepted: 03 February 2014
Communicated by Dragan S. Djordjević
Research supported by Serbian Ministry of Education and Science, Grant No TR-32012 and TR-32009.
Email addresses: ema@elfak.ni.ac.rs (Emina I. Milovanović), igor@elfak.ni.ac.rs (Igor Ž. Milovanović),

mile.stojcev@elfak.ni.ac.rs (Mile K. Stojčev)

E. I. Milovanović et al. / Filomat 29:9 (2015), 1969–1981 1970

occur because of manufacturing imprecision during chip fabrication. When a permanent fault is detected,
the logic block must be isolated and disabled. Here we are interested in the toleration of transient and
intermittent faults. To protect against these faults, some form of error detection and correction capabilities
have to be involved. A variety of techniques have been proposed for handling transient and intermittent
faults. Most of them are based on some kind of redundancy, ether information (such as ABFT), hardware
(such as TMR), or time (such as RESO). In this proposal, fault-tolerance is achieved through triplicated
computation followed by majority voting, but instead of using full hardware redundancy (i.e. triplication)
to achieve fault-tolerance, we generate redundant results partially by means of hardware (by adding two
extra columns of processing elements in the systolic array) and partially by means of time redundancy
by slightly increasing computation time. We are interested in the designing of hexagonal systolic arrays
with the optimal number of PEs with respect to the problem size which implement fault-tolerant matrix
multiplication. In order to reduce the number of PEs and the execution time, we use the fact that during each
computational step, matrix multiplication can be performed in any order without modifying the final result.
By involving two additional columns of PEs and the reordering of computational steps, we achieve that our
hexagonal arrays have Ω = N3(min{N1,N2} + 2) PEs and perform fault-tolerant matrix multiplication for
Ttot = 3 max{N1,N2}+ min{N1,N2}+ N3 − 2 computational steps (N1,N2 and N3 are dimensions of matrices,
namely A = (aik)N1×N3 , B = (bkj)N3×N2 and C = (ci j)N1×N2).

The rest of the paper is organized as follows. Section 1 describes the problem of interest which will be
considered. Mathematical background that serves as the basis for the synthesis of fault-tolerant systolic
arrays is presented in Section 3. Section 4 deals with the procedure for the synthesis of systolic arrays
with optimal number of processing elements. For that number of PEs the execution time is minimized.
Section 5 concentrates on determining initial data arrangement that provides correct implementation of
fault-tolerant matrix multiplication algorithm. Performance evaluation of the synthesized arrays which
relates to the number of PEs and execution time are given in Section 6. Some concluding remarks are given
in Section 7.

2. Problem Definition

Suppose A = (aik) and B = (bkj) are rectangular matrices of order N1 × N3 and N3 × N2, respectively.
Their product, C = A · B, C = (ci j), can be computed according to the following recurrent relations

c(0)
i j := 0

c(k)
i j := c(k−1)

i j + aikbkj, k = 1, 2, . . . ,N3 (1)

ci j := c(N3)
i j

for i = 1, 2, . . . ,N1 and j = 1, 2, . . . ,N2.
The following systolic algorithm can be used to compute (1)

Algorithm 1
for k := 1 to N3 do
for j := 1 to N2 do
for i := 1 to N1 do
a(i, j, k) := a(i, j − 1, k);
b(i, j, k) := b(i − 1, j, k);
c(i, j, k) = c(i, j, k − 1) + a(i, j, k) ∗ b(i, j, k);

with the following identities

a(i, 0, k) ≡ aik, b(0, j, k) ≡ bkj, c(i, j, k) ≡ c(k)
i j , c(i, j, 0) ≡ 0. (2)

Note that computations in Algorithm 1, i.e. eqn. (1), with respect to indices i, j and k, are performed
at basic permutations of the sets {1, 2, . . . ,N1}, {1, 2, . . . ,N2}, and {1, 2, . . . ,N3}, respectively. However, this is

E. I. Milovanović et al. / Filomat 29:9 (2015), 1969–1981 1971

not necessary. The computations can be performed at arbitrary permutations of the aforementioned sets
(see [8]). We call this property permutability.

Directed coordinated lattice graph G = (Pint ∪ Pin,D) can be joined to the Algorithm 1. This graph is
placed in a three-dimensional Cartesian space generated by the unity vectors

~e1 = [1 0 0]T, ~e2 = [0 1 0]T, ~e3 = [0 0 1]T, (3)

Set Pint = {~p = [i j k]T
} defines vertices of graph G where active computations from Algorithm 1 are

performed, while Pin = Pin(a) ∪ Pin(b) ∪ Pin(c), where Pin(a) = {~pa = [i 0 k]T
}, Pin(b) = {~pb = [0 j k]T

} and
Pin(c) = {~pc = [i j 0]T

} are vertices where initial elements of matrices A,B and C(0) are placed, respectively.
Directed edges in graph G are defined by the column vectors of matrix D

D =
[
~e 3

b
~e 3

a ~e 3
c

]
=

 1 0 0
0 1 0
0 0 1

 (4)

These vectors also define propagation direction of elements of matrices B,A and C(0), respectively.
Systolic array synthesis procedure, employed in this paper, is based on mapping the graph G on the

plain orthogonal to the projection vector ~µ = [µ1 µ2 µ3]T (see [5]). By this mapping a directed pseudo-graph
in two-dimensional Cartesian space is obtained. This graph corresponds to the desired SA. Here we are
interested in the synthesis of two-dimensional hexagonal systolic arrays (2D HSA), suitable for fault-tolerant
matrix multiplication. The first condition for SA to be suitable for fault-tolerant computations is that it
realizes Algorithm 1 with pipeline period λ ≥ 3. Pipeline period is defined as a time interval between two
successive computations in a processing element (see [9, 11, 12]). Hexagonal array obtained according to
the direction ~µ = [1 1 1]T satisfies this condition and it is well studied in the literature (see [7, 12]). Here

we are interested in hexagonal arrays obtained for the directions ~µ =
[

1 1 −1
]T

, ~µ =
[

1 −1 1
]T

and ~µ =
[
−1 1 1

]T
. These arrays realize Algorithm 1 with pipeline period λ = 1, and therefore were

not considered as suitable candidate architectures for achieving fault-tolerance. However, these arrays
have shorter execution time of matrix multiplication algorithm than the array obtained by the projection
vector ~µ = [1 1 1]T. We are going to show that the fault-tolerant matrix multiplication can be efficiently
implemented on these arrays as well, with shorter execution time than that of the one obtained by the
projection vector ~µ = [1 1 1]T.

In this proposal, without the loss of any generality, we are going to synthesize 2D HSA obtained by the
projection direction vector ~µ = [1 1 − 1]T, which implements fault-tolerant matrix multiplication algorithm.
The other two arrays can be synthesized by the same methodology. Apart from being suitable for fault-
tolerant computation, the synthesized array should have optimal (i.e. minimal) number of processing
elements (PEs) for the given matrix dimensions. Also, the execution time of the array should be as small as
possible for the given number of PEs. This requires substantial modification of the systolic array synthesis
procedure described so far in the literature [3–7].

3. Mathematical Background

Results obtained in this section serve as a background for the synthesis procedure which will be described
in the next one. We start our analysis from the directed graph G = (Pint ∪ Pin,D) which corresponds to the
Algorithm 1. Depending on the relation between N1 and N2, we map vertices of graph G, defined by set
Pint, either into set P(0)

int or P̃(0)
int. This is performed by the isomorphisms ϕ1 or ϕ2, defined by the following

equalities

ϕ1

(
~p =

[
i j k

]T
)

=
[

3i − 2 j k
]T

and (5)

ϕ2

(
~p =

[
i j k

]T
)

=
[

i 3 j − 2 k
]T
,

E. I. Milovanović et al. / Filomat 29:9 (2015), 1969–1981 1972

for each ~p ∈ Pint. In this way we have obtained new directed graphs G(0) = (P(0)
int,D) and G̃(0) = (P̃(0)

int,D).
Now, for the projection vector ~µ = [1 1 − 1]T we define two mappings H1 = (M1, ~F1) and H2 = (M2, ~F2)

defined by

M1 =
[
~µ ~e2 ~e3

]
=

 1 0 0
1 1 0
−1 0 1

 , ~F1 =

 0
−1

3N1 − 3

 ,
and (6)

M2 =
[
~e1 ~µ ~e3

]
=

 1 1 0
0 1 0
0 −1 1

 , ~F2 =

 −1
0

3N2 − 3

 .
We use mappings H1 and H2 to obtain sets P̄(0)

int = {~p1 = [u v w]T
} and P̂(0)

int = {~p2 = [u v w]T
} from P(0)

int and
P̃(0)

int, respectively. These sets are obtained according to the following equalities

~p1 =

 u
v
w

 = M1~p (0) + F1 =

 1 0 0
1 1 0
−1 0 1

 3i − 2

j
k

 +

 0
−1

3N1 − 3

 =

=

 3i − 2
3i + j − 3

−3i + k + 3N1 − 1

and (7)

~p2 =

 u
v
w

 = M2~p (0) + F2 =

 1 1 0
0 1 0
0 −1 1

 i

3 j − 2
k

 +

 −1
0

3N2 − 3

 =

=

 i + 3 j − 3
3 j − 2

−3 j + k + 3N2 − 1

 ,
for i = 1, 2, . . . ,N1, j = 1, 2, . . . ,N2, and k = 1, 2, . . . ,N3.

Thus we have obtained two directed graphs G(0)
1 = (P̄(0)

int,D) and G(0)
2 = (P̂(0)

int,D) defined by the following
index sets

P̄(0)
int =

{
~p1 =

[
3i − 2 3i + j − 3 −3i + k + 3N1 − 1

]T
}

and
P̂(0)

int =
{
~p2 =

[
i + 3 j − 3 3 j − 2 −3 j + k + 3N2 − 1

]T
}
.

Some important features of mappings H1 and H2 and corresponding directed graphs G(0
1 = (P̄(0)

int,D) and
G(0)

2 = (P̂(0)
int,D), are given in the subsequent theorems.

Theorem 3.1. Matrices Mi, i = 1, 2 are nonsingular and mappings Hi, i = 1, 2, are injective.

Proof The first part of the assertion of Theorem 3.1 directly follows from the equality det Mi = µi = 1 , 0,
i = 1, 2. The second part of the assertion will be proved by the contradiction on the example of mapping
H1.

Suppose, contrary to the assertion of Theorem 3.1, that there are at least two different nodes of graph G(0)

that are mapped by H1 into the same node of graph Ḡ(0). Let ~p (1) = [3i1−2 3i1 + j1−3 −3i1 +k1 +3N1−1]T

and ~p (2) = [3i2 − 2 3i2 + j2 − 3 − 3i2 + k2 + 3N1 − 1]T, ~p (1) , ~p (2), be position vectors of these nodes. In
that case, according to (2), the following would be valid M1~p (1) + ~F1 = M1~p (2) + ~F1. This implies that

3i1 − 2 = 3i2 − 2, (8)
3i1 + j1 − 3 = 3i2 + j2 − 3, (9)

−3i1 + k1 + 3N1 − 1 = −3i2 + k2 + 3N1 − 1. (10)

E. I. Milovanović et al. / Filomat 29:9 (2015), 1969–1981 1973

From (8) it follows i1 = i2. Accordingly, from (9) and (10) it follows j1 = j2 and k1 = k2, so we have ~p (1) = ~p (2),
which is in contradiction with the assumption that ~p (1) , ~p (2).

�

On the basis of Theorem 3.1 we conclude that graphs G(0) and G(0)
1 (i.e. G(0) and G(0)

2) have equal
number of nodes which are differently arranged in the coordinated space. Since M1 · D = M1 , D (i.e
M2 ·D = M2 , D), mappings H1 and H2 do not preserve adjacency of vertices from G(0).

Theorem 3.2. Let l be an arbitrary line parallel to ~µ = [1 1 − 1]T. If line l contains at least one point (vertex) of
graph G(0)

1 (i.e. G(0)
2), then it contains exactly N1, (i.e. N2), vertices of this graph.

Proof Without loss of generality we will conduct the proof for the graph G(0)
1 . Suppose ~p (1) =[

[3i − 2 3i + j1 − 3 −3i + k1 + 3N1 − 1
]T

and ~p (2) =
[

3i + 1 3i + j1 −3i + k1 + 3N1 − 4
]T

are

position vectors of two vertices from graph G(0)
1 . Since ~p (2)

− ~p (1) =
[

3 3 −3
]T

= 3~µ, we conclude that
these vertices are placed on the line l parallel to the direction vector ~µ = [1 1 − 1]. By taking, one after the
other, i = 1, 2, . . . ,N1 − 1, we conclude that there are exactly N1 vertices of G(0)

1 on this line.

�

Corollary 3.3. Let L = {l} be a set of all lines that satisfy the conditions of Theorem 3.2. Then the intersection of
these lines with some plain not parallel to l, has exactly N2N3 (i.e. N1N3) points.

Corollary 3.4. Let L = {l} be a set of all lines that satisfy the conditions of Theorem 3.2. Depending on the relation
between N1 and N2 and by the appropriate choice of mapping Hi, i = 1, 2, it can be achieved that intersection of these
lines with some plane not parallel to l, has exactly N3 min{N1,N2} points.

Note that in practice a plane that is orthogonal to line l is usually taken.
According to Theorem 3.2 and Corollaries 3.3 and 3.4 one can get a geometrical idea of mapping G(0)

1

(i.e. G(0)
2) into two-dimensional directed graph Γ1 = (V1,∆1) (i.e. Γ2 = (V2,∆2) which corresponds to

the respective 2D SA. However we need explicit analytical procedure for obtaining graph Γ1 (i.e. Γ2).
First we define epimorphism S which is joined to the projection vector ~µ = [1 1 − 1]T. It maps three-
dimensional directed graph G(0)

1 (i.e. G(0)
2) into two-dimensional directed graph Γ1 = (V1,∆1) (i.e. Γ2 =

(V2,∆2). Epimorphism S is 2 × 3 matrix of the form

S =

[
~ST

1
~ST

2

]
=

[
s11 s12 s13
s21 s22 s23

]
, (11)

where ~ST
1 and ~ST

2 are vectors defining a plane orthogonal to the projection vector ~µ = [1 1 − 1]T. These
vectors have to conform the following constraints [5]:

1. Since ~µ = [1 1 − 1]T is orthogonal to ~S T
1 and ~S T

2 it follows that ~S T
1 · ~µ = ~S T

2 ~µ = 0, i.e.

s11 + s12 − s13 = 0 and s21 + s22 − s23 = 0. (12)

2. In order to avoid mapping 3D graph G(0)
1 (i.e. G(0)

2) into 1D graph, the rank of matrix S must be 2, i.e.
rankS = 2.

3. To preserve the adjacency of nodes that were present in graph G(0)
1 , elements of matrix S can take

values only from the set {−1, 0, 1}.

Conditions (1) to (3) do not necessarily provide one of the crucial requirements, which is that graph
Γ1 (i.e. Γ2) has N2N3 (i.e. N1N3) vertices. The next theorem gives necessary and sufficient conditions for
epimorphism S so that this requirement is always fulfilled.

E. I. Milovanović et al. / Filomat 29:9 (2015), 1969–1981 1974

Theorem 3.5. Necessary and sufficient conditions that directed graph Γ1 = (V1,∆1) has |V1| = N2N3 vertices are,
apart from (1)-(3), the following ones

s12 = s23 = 0 and s22s13 , 0,
or (13)

s22 = s13 = 0, and s12s23 , 0.

Proof Let ~p (0) = [3i − 2 j k]T be a position vector of arbitrary point from P(0)
int. Then we have that

(S ·M1) ~p (0) =

[
s12 j + s13k
s22 j + s23k

]
.

In order to have exactly N2N3 ordered pairs of the form (s12 j + s13k, s22 j + s23k), necessary and sufficient
conditions are the ones given by (13).

�

Similarly, the following theorem can be proved.

Theorem 3.6. Necessary and sufficient conditions that directed graph Γ2 = (V2,∆2) has |V2| = N1N3 vertices are,
apart from (1)-(3), the following ones

s11 = s23 = 0 and s21s13 , 0,
or

s21 = s13 = 0, and s11s23 , 0.

Note that epimorphism S can not be uniquely determined. For example, if S = [~ST
1
~ST

2]T is an epimor-
phism, so is S̄ = [~ST

2
~ST

1]T. Therefore, without loss of generality, according to Theorems 3.5 and 3.6, and
conditions (1)-(3), we can take the following epimorphisms

S1 =

[
1 0 1
1 −1 0

]
, S2 =

[
0 1 1
−1 1 0

]
(14)

respectively.

4. Systolic Array Synthesis

Based on the results obtained in the previous section, we are going to synthesize 2D HSA that realizes
fault-tolerant matrix multiplication.

Since fault tolerance is achieved by triplicated computation of the same problem instance followed by
majority voting, we first have to derive three matrix multiplication algorithms equivalent to Algorithm 1.
To do that, we perform the shifting of vertices in the directed graph G(0) = (P(0)

int,D) (i. e. G̃(0) = (P̃(0)
int,D))

along the coordinate axes to obtain two additional graphs G(r) = (P(r)
int,D), (i.e. G̃(r) = (P̃(r)

int,D), r = 1, 2 with
the following set of vertices

P(r)
int = {~p = [3i − 2 − r j + r k]T

}

(
i.e. P̃(r)

int = {~p = [i + r 3 j − r − 2 k]T
}

)
Note that this shifting is not unique. The only thing we should take care of is that sets P(r)

int, (i.e. P̃(r)
int),

r = 0, 1, 2 are mutually disjoint.
If we apply mapping H1 (i.e. H2), defined by (7), on the set of vertices of G(r) (i.e. G̃(r)), r = 1, 2, we obtain

directed graphs defined by the following set of vertices

P̄(r)
int = {~p1 = [3i − 2 − r 3i + j − 3 − 3i + k + r + 3N1 − 1]T

}

(i.e. P̂(r)
int = {~p2 = [3 j + i − 3 3 j − 2 − r − 3 j + k + r + 3N2 − 1]T

})

E. I. Milovanović et al. / Filomat 29:9 (2015), 1969–1981 1975

for r = 1, 2.
Now we are able to define systolic algorithms that correspond to graphs G(r)

1 (i.e. G(r)
2), r = 0, 1, 2

Algorithm 2
for r := 0 to 2 do
for k := 1 to N3 do
for j := 1 to N2 do
for i := 1 to N1 do
u := 3i − 2 − r;
v := 3i + j − 3;
w := −3i + k + r + 3N1 − 1;
a(u, v,w) := a(u, v − 1,w);
b(u, v,w) := b(u − 1, v,w)
c(u, v,w) = c(u, v,w − 1) + a(u, v,w) ∗ b(u, v,w);

i.e.

Algorithm 3
for r := 0 to 2 do
for k := 1 to N3 do
for j := 1 to N2 do
for i := 1 to N1 do
u := i + 3 j − 3;
v := 3 j − 2 − r;
w := −3 j + k + r + 3N2 − 1;
a(u, v,w) := a(u, v − 1,w);
b(u, v,w) := b(u − 1, v,w)
c(u, v,w) = c(u, v,w − 1) + a(u, v,w) ∗ b(u, v,w);

Denote with Γ̄1 = (V(r)
1 ,∆1) (i.e. Γ̂2 = (V(r)

2 ,∆2) image of G(r)
1 (i.e. G(r)

2), r = 0, 1, 2, obtained by epimorphism
S1 (i.e. S2). This image is located in the 2D cartesian space and corresponds to the 2D HSA which
implements the fault-tolerant matrix multiplication algorithm - Algorithm 2 (i.e. Algorithm 3). Denote the
corresponding array by SA1 (i.e. SA2). Then (x, y) locations of the processing elements in the SA1 array (i.e
vertices of Γ1) are determined from the following equalities

PE 7→
[

x
y

]
= S1 · ~p1 =

[
1 0 1
1 −1 0

]
·

 3i − 2 − r
3i + j − 3
−3i + k + r + 3N1 − 1

 =

[
k + 3N1 − 3

1 − j − r

]
, (15)

for r = 0, 1, 2, j = 1, 2, . . . ,N2 and k = 1, 2, . . . ,N3.
Directed edges in Γ1, which correspond to communication channels in SA1, are determined by column

vectors of matrix ∆1

∆1 =
[
~e 2

b ~e 2
a ~e 2

c

]
= S1 ·D =

[
1 0 1
1 −1 0

]
. (16)

Similarly, for the array SA2 we obtain that PE locations are determined by

PE 7→
[

x
y

]
= S2 · ~p2 =

[
0 1 1
−1 1 0

]
·

 3 j + i − 3
3 j − 2 − r
−3 j + k + r + 3N2 − 1

 =

[
k + 3N2 − 3

1 − i − r

]
, (17)

for r = 0, 1, 2, i = 1, 2, . . . ,N1 and k = 1, 2, . . . ,N3, and communication channels by the column vectors of
matrix ∆2

∆2 =
[
~e 2

b ~e 2
a ~e 2

c

]
= S2 ·D =

[
0 1 1
−1 1 0

]
. (18)

E. I. Milovanović et al. / Filomat 29:9 (2015), 1969–1981 1976

5. Obtaining Initial Data Arrangement

So far we have obtained locations of the PEs in the x-y plane and directions of communication channels
between them. Now we have to determine initial data arrangement that provides correct computation of
the fault-tolerant matrix multiplication algorithm on the systolic array. For the sake of brevity we will do
this only for the array SA1.

From Algorithm 2, i.e. corresponding directed graphs G(r)
1 , initial data arrangement of elements of

matrices A,B and C(0) in a three-dimensional space is defined by the set P(r)
in = P(r)

in (a)∪P(r)
in (b)∪P(r)

in (c), where

P(r)
in (a) = {~pa =

[
3i − 2 − r 0 −3i + k + r + 3N1 − 1

]T
}

P(r)
in (b) = {~pb =

[
0 3i + j − 3 −3i + k + r + 3N1 − 1

]T
}

P(r)
in (c) = {~pc =

[
3i − 2 − r 3i + j − 3 0

]T
}

for r = 0, 1, 2, i = 1, 2, . . . ,N1, j = 1, 2, . . . ,N2 and k = 1, 2, . . . ,N3.
However this data arrangement does not provide correct execution of Algorithm 2 on the array SA1.

This is illustrated in the Figure 1. To simplify, consider a directed graph with four vertices, P1 to P4,
which belong to the internal computation space, Pint, where MAC (multiply with accumulation) operation
is performed. With a, b, c, and d input data belonging to the initial computation space, Pin are denoted. For
these inputs the following products ac, ad, bc and bd should be obtained. However, we will obtain only two
products, namely ac and bd, since data are pipelined through the array (Fig. 1a)). Therefore we have to
rearrange the space of initial data. In essence it is necessary to skew input data in time as illustrated in Fig.
1 b).

P1 P2 P3 P4

1

2

0000 ×××× bdca

dbca ×××× 0000

step
PE

P1 P2 P3 P4

1

2

000000 ×××× ca

db ×××× 000000

0000 ×××× cbda

step
PE

3

P1 P2

P3 P4

0 a

0 b

0
c

0
d

P1 P2

P3 P4

a

b

c

d

INPUT: a, b, c, d
expected OUTPT: ac, ad, bc, bd

before skewing

after skewing

0

0

0

0

a)

b)

Figure 1: Illustration of computation in the array a) before skewing input data b) after skewing input data.

Skewing of P(r)
in is performed by the timing function, t(~p) = ~ΠT~p + α (see [6]). This function defines time

instance when the computation in the point ~p ∈ P̄(r)
int is performed. So we have to determine vector ~Π and

constant α. Vector ~Π = [t11 t12 t13]T may be any vector orthogonal on the plane that contains all vertices
of graph G(r))

1 , for some constant r, where computations from Algorithm 2 are performed at the same time
instance. To narrow down choices, the following constraints for elements of vector ~Π are introduced:

E. I. Milovanović et al. / Filomat 29:9 (2015), 1969–1981 1977

• |t11| + |t12| + |t13| > 0;

• The norm of ~Π, |~Π|2 = |t11|
2 + |t12|

2 + |t13|
2 , ti j ∈ Z, should be as small as possible, and

• ~ΠT~e 3
b > 0, ~ΠT~e 3

a > 0, ~ΠT~e 3
c > 0, or ~ΠT~e 3

b < 0, ~ΠT~e 3
a < 0, ~ΠT~e 3

c < 0

Suppose that computation in Algorithm 2 is performed at the vertex p ∈ P(r)
int, of graph G(r)

1 , for some constant

r, with the position vector ~p =
[

3i − 2 − r 3i + j − 3 −3i + k + r + 3N1 − 1
]T

. Immediately prior to the

computation at p, the computations in three points of P̄(r)
int given by the following position vectors, ~p=~p −~e 3

b ,
~p=~p − ~e 3

a and ~p=~p − ~e 3
c , were performed. These points determine the plain, i.e. they are not collinear. Vector

orthogonal to this plane is any vector parallel to vector

~Π∗T = (~p2 − ~p1)T
× (~p3 − ~p1)T = (~e 3

b − ~e
3
a)T
× (~e 3

b − ~e
3
c)T =

∣∣∣∣∣∣∣∣
i j k
1 −1 0
1 0 −1

∣∣∣∣∣∣∣∣ =
[

1 1 1
]
.

Having in mind the above mentioned constraints for the elements of vector ~Π, we can take ~Π = [1 1 1]T.
Constant α is determined by the appropriate choice of vertex in graph G(r)

1 where the first computation,
defined by Algorithm 2, should occur. Let it be a vertex defined by a position vector ~p0 = [u v w]T, where
i = j = k = 1. From the conditions t(~p0) = ~ΠT~p0 + α = 0 and t(~p) > 0, for each ~p ∈ P̄(r)

int, ~p , ~p0, we obtain
α = −3N1 + 1, so we have that timing function is defined as

t(~p) = u + v + w − 3N1 + 1.

Rearrangement (i.e. skewing) of P(r)
in is performed by the following mapping

~p∗γ = ~pγ − (t(~pγ) + 1)~e 3
γ , γ ∈ {a, b, c},

for each ~pγ from P(r)
in and vectors ~e 3

γ , γ ∈ {a, b, c} defined by (4). The rearranged space of initial computations

P̄(r)
in = P̄(r)

in (a) ∪ P̄(r)
in (b) ∪ P̄(r)

in (c) is defined by

P̄(r)
in (a) = {~p∗a =

[
3i − r − 2 1 − k −3i + k + r + 3N1 − 1

]T
}

P̄(r)
in (b) = {~p∗b =

[
2 − j − k − r 3i + j − 3 −3i + k + r + 3N1 − 1

]T
}

P̄(r)
in (c) = {~p∗c =

[
3i − r − 2 3i + j − 3 3 + r + 3N1 − 6i − j

]T
}.

Finally, by mapping the set P̄(r)
in using epimorphism S defined in (14), initial data arrangement of input

elements A, B and C(0) in the (x, y)-plane at the beginning of the computation in the array SA1 is obtained.
The arrangement of input data in the (x, y)-plane is given by

a(i, 0,−i + k + r + N1 − 3) 7→

[
x
y

]
=

[
3i + k − r − 3
k + 3N1 − 3

]
b(0, i + j − 1,−i + k + r + N1 − 3) 7→

[
x
y

]
=

[
5 − 3i − 2 j − k − r
1 − 3i − j + 3N1

]
(19)

c(i, i + j − 1, 0) 7→

[
x
y

]
=

[
1 − r − j

1 − 3i − j + 3N1

]
,

for r = 0, 1, 2, i = 1, 2, . . . ,N1, j = 1, 2, . . . ,N2 and k = 1, 2, . . . ,N3. We assume that the following identities
in (19) are valid: a(i, 0, t + N3) ≡ a(i, 0, t), b(0,m + N2, t + N3) ≡ b(0,m, t), c(i,m + N2, 0) ≡ c(i,m, 0) for each
m = 1, 2, . . . ,N2 and t = 1, 2, . . . ,N3. An example of the SA1 array that implements fault-tolerant matrix

E. I. Milovanović et al. / Filomat 29:9 (2015), 1969–1981 1978

algorithm for the case N1 = 4,N2 = 3 and N3 = 2 is presented in Fig. 2. Dashed squares represent additional
processing elements which represent hardware overhead due to fault-tolerance.

4241423132312221221112
aaaaaaaaaaa

41424132313221222112
aaaaaaaaaa

a
11

a
11

a
12

23

13

22

12

22

11

21

11

23

13

23

12

0

0

0

0

0

0

0

0

0

0

0

00

b

b

b

b

b

b

b

b

b

b

b

b

43

32

21

13

0

0

0

0

0

0

0

0

c

c

c

c

23

12

21

12

21

13

21

13

22

13

22

11

b

b

b

b

b

b

b

b

b

b

b

b

43

42

32

31

21

23

13

12

0

0

0

0

c

c

c

c

c

c

c

c

13

22

11

22

11

23

11

23

12

23

12

21

b

b

b

b

b

b

b

b

b

b

b

b

43

42

41

32

31

33

21

23

22

13

12

11

c

c

c

c

c

c

c

c

c

c

c

c

0

0

0

0

12

21

21

13

13

22

22

11

b

b

b

b

b

b

b

b

0

0

0

0

42

41

31

33

23

22

12

11

c

c

c

c

c

c

c

c

0

0

0

0

0

0

0

0

11

23

12

21

b

b

b

b

0

0

0

0

0

0

0

0

41

33

22

11

c

c

c

c

Figure 2: Fault-tolerant matrix multiplication on the array SA1 for the case N1 = 4,N2 = 3 and N3 = 2.

By the similar procedure one can obtain initial data arrangement of input elements A, B and C(0) in the
(x, y)-plane at the beginning of the computation in the array SA2. It is given by

a(i + j − 1, 0,− j + k + r + N2 − 3) 7→

[
x
y

]
=

[
5 − 2i − 3 j − k − r

1 − i − 3 j − k + 3N2

]
b(0, j,− j + k + r + N2 − 3) 7→

[
x
y

]
=

[
3 j + k − r − 3
k + 3N2 − 3

]
(20)

c(i + j − 1, j, 0) 7→

[
x
y

]
=

[
1 − i − r

1 − i − 3 j + 3N2

]
for r = 0, 1, 2, i = 1, 2, . . . ,N1, j = 1, 2, . . . ,N2 and k = 1, 2, . . . ,N3.

An example of the array SA2 that implements fault-tolerant matrix algorithm for the case N1 = 4,N2 = 3
and N3 = 2 is presented in Fig. 2. As can be seen from Figs. 2 and 3 the array SA1 has fewer PEs than SA2
since N1 > N2.

E. I. Milovanović et al. / Filomat 29:9 (2015), 1969–1981 1979

2111211323132212221121
bbbbbbbbbbb

11211123132312221221
bbbbbbbbbb11

b

11
b

21
b

12

12

41

0

0

0

0

0

0

0

a

a

a

22

11

11

42

42

31

0

0

0

0

a

a

a

a

a

a

0

23

12

41

0

0

0

0

0

0

0

c

c

c

21

12

41

12

41

32

41

32

21

0

a

a

a

a

a

a

a

a

a

23

13

12

42

41

31

0

0

0

0

c

c

c

c

c

c

22

11

42

11

42

33

42

31

22

11

a

a

a

a

a

a

a

a

a

a

23

13

43

12

42

32

41

31

21

0

c

c

c

c

c

c

c

c

c

0

11

41

32

41

32

21

32

21

12

a

a

a

a

a

a

a

a

a

0

13

43

33

42

32

22

31

21

11

c

c

c

c

c

c

c

c

c

0

0

0

0

42

31

31

22

22

11

a

a

a

a

a

a

0

0

0

0

43

33

32

22

21

11

c

c

c

c

c

c

0

0

0

0

0

0

0

32

21

22

a

a

a

0

0

0

0

0

0

0

33

22

11

c

c

c

Figure 3: Fault-tolerant matrix multiplication on the array SA2 for the case N1 = 4,N2 = 3 and N3 = 2.

A schematic of the voting logic is presented in Fig. 4. It consists of 3 ∗
[

min{N1,N2}+2
3

]
three-input

multiplexors and
[

min{N1,N2}

3

]
majority voters. Select signals for all multiplexors are common. The inputs are

selected in a circular manner. In each cycle the majority voter takes three inputs and generates the result.
More details concerning the majority voter can be found in [1].

0 1 2

MUX
0 1 2

MUX
0 1 2

MUX
0 1 2

MUX
0 1 2

MUX
0 1 2

MUX

Voter Voter

PE PE PE PE PE PE2 1 0 3 2 1 PE PE PE4 3 2
PE PE PEn-1 n-2 n-3 PE PE PEn n-1 n-2

PE PE PEn+1 n n-1

select
signals

output
from

multiplexors

voted value voted value

2 2 2 2 2 2 2

Figure 4: A detail of the voting logic.

By the proposed scheme single transient and intermittent faults can be corrected. A number of multiple
fault patterns can be tolerated also, if they do not affect the same element of the resulting matrix. Fault
detection and location are not necessary for fault-tolerance, errors are masked concurrently with normal
operation of the systolic array.

6. Discussion

According to (15) and (17) the following result can be proved.

Theorem 6.1. Hexagonal systolic array obtained by the projection vector ~µ = [1 1 −1]T that implements Algorithm 2
(i.e. Algorithm 3) consists of

Ω = N3(N2 + 2) (i.e. Ω = N3(N1 + 2)) (21)

processing elements.

E. I. Milovanović et al. / Filomat 29:9 (2015), 1969–1981 1980

According to (21) it follows that optimal number of PEs in the SA depends on mutual relation between
N1 and N2. This also means that this relation directly determines whether Algorithm 2 or Algorithm 3
should be used.

Corollary 6.2. Hexagonal systolic array synthesized for projection vector ~µ = [1 1 − 1]T that implements Algo-
rithm 2, i.e. Algorithm 3, has

Ω = N3(min{N1,N2} + 2) (22)

processing elements.

Note that hexagonal SA synthesized for the direction ~µ = [1 1 1]T that implements fault-tolerant matrix
multiplication obtained in [7] has the same number of PEs.

Total execution time, Ttot, of matrix multiplication algorithm on systolic array includes time to load data
into the array, Tin, active execution time, Texe, and time to drain the array, Tout, i.e. Ttot = Tin + Texe + Tout.
If G = (P,E) is directed graph that corresponds to an algorithm, and t(~p) is timing function, then active
execution time can be determined from the equation Texe = max t(~p) −min t(~p) + 1, ~p ∈ P̄r

int [10]. In our case
the following result holds.

Theorem 6.3. Total execution time of Algorithm 2 (i.e. Algorithm 3) on the systolic array with optimal number of
PEs obtained for the direction ~µ = [1 1 − 1]T is

Ttot = 3 max{N1,N2} + min{N1,N2} + N3 − 2. (23)

Proof Timing function of the array SA1 that implements Algorithm 2 is t(~p) = u + v + w − 3N1 + 1.
Consequently, active execution time is Texe = 3N1 +N2 +N3−4. In [4] hexagonal SA with optimal number of
PEs which computes matrix product was synthesized for the direction ~µ = [1 1 − 1]T. It consists of N3 ×N2
PEs, and has total execution time Ttot = Texe, i.e. Tin = Tout = 0. The array SA1 synthesized in this paper
represents an extension of the one obtained in [4] for 2N3 PEs. Namely, two PEs are added in each row of
PEs. Since elements of matrix A propagate in that direction, the initialization time is increased for two time
units, i.e. Tin = 2, while Tout remains 0. Accordingly, we have that total execution time of Algorithm 2 on
the array SA1, synthesized by the equations (15), (16) and (19), is

Ttot = Tin + Texe + Tout = 3N1 + N2 + N3 − 2. (24)

Similarly, it can be concluded that total execution time of Algorithm 3 on the array SA2, synthesized by
equations (17), (18) and (20), is

Ttot = N1 + 3N2 + N3 − 2. (25)

Now, statement of the theorem directly follows from the equations (24) and (25).

�

Hexagonal array synthesized in [7] has total execution time equal to Ttot = 3 max{N1,N2}+2 min{N1,N2}+
N3−3. This means that the array synthesized in this paper has shorter execution time for ∆Ttot = min{N1,N2}

time units which is achieved by the same number of PEs as in [7].

7. Conclusion

Systolic arrays are suitable accelerator architectures for matrix multiplication. They are complex CMOS
VLSI circuits that exploit massive parallelism at data level. However, shrinking the dimensions of transis-
tors make this circuits prone to various kind of faults. Reliable operation of these circuits can be achieved
by some kind of redundancy, which in general involves additional hardware or time, that as a consequence

E. I. Milovanović et al. / Filomat 29:9 (2015), 1969–1981 1981

decreases system throughput. Therefore the main design challenges are oriented toward decreasing hard-
ware complexity and increasing the throughput. In this paper we describe a systematic procedure for the
designing of 2D hexagonal arrays that can tolerate single transient and intermittent faults during matrix
multiplication (MM). In this proposal we start from the hexagonal array which implement MM algorithm
with pipeline period λ = 1, and by involving appropriate modifications at algorithm level, obtain the
array with λ = 3. Then two redundant computations are introduced so that fault-tolerance is achieved by
triplicated computation followed by majority voting. This is achieved with minimal hardware and time
overhead. The proposed procedure is formally described by explicit formulas and can be used as a software
tool for automatic synthesis of fault-tolerant arrays.

References

[1] C. Constantinescu, Trends and challenges in VLSI circuit reliability, IEEE MIcro, Vol. 23, 4 (2003), pp. 14-19.
[2] M. Dubois, M. Annavaram, P. Stenstrom, Parallel computer organization and design, Cambridge University Prss, New York,

2012.
[3] J. A. B. Fortes, K. -S. Fu, B. W. Wah, Systematic design approaches for algorithmically specified systolic arrays, In: Computer

Architecture: Concepts and Systems, (V. Milutinović, ed.), Elsevier Sci. Publ. Co., New York, 1988.
[4] I. Ž. Milovanović, M. P. Bekakos, I. N. Tselepis, E. I. Milovanović, Forty-three ways of systolic matrix multiplication, Inter. J.

Comput. Math., Vol. 87, 6 (2010), pp. 1264-1276.
[5] S. G. Sedukhin, The designing and analysis of systolic algorithms and structures, Programming, Vol. 2, (1991), pp. 20-40. (In

Russian)
[6] S. G. Sedukhin, G. Z. Karapetian, Design of optimal systolic systems for matrix multiplication of different structures, Report 85,

Comput. Center Siberian Division of USSR Academy of Science, Novosibirsk, 1990. (In Russian).
[7] N. M. Stojanović, E. I. Milovanović, I. Stojmenović, I. Ž. Milovanović, T. I. Tokić, Mapping matrix multiplication algorithm onto

fault-tolerant systolic array, Comput. Math. Appl., Vol. 48, 1-2 (2004), pp. 275-289.
[8] J. -C. Tsay, P. -Y. Chang, Some new designs of 2D array for matrix multiplication and transitive closure, IEEE Trans. Parall. Distrib.

systems, Vol. 6, 4 (1995), pp. 351-362.
[9] C. R. Wan, D. J. Evans, Nineteen ways of systolic matrix multiplication, Inter. J. Comput. Math., Vol. 6, 1-2 (1998), pp. 39-69.

[10] J. H. Weston, C. N. Zhang, H. Li, Some space considerations on VLSI systolic array mappings, IEEE Trans. Circuits Systems II,
Vol. 48, 4 (2000), pp. 419-424.

[11] C. N. Zhang, Systematic design of systolic arrays for computing multiple problem instance, Microelectronics J., Vol. 23, 7 (1992),
pp. 543-553.

[12] C. N. Zhang, T. M. Bachtiar, W. K. Chou, Optimal fault-tolerant design approach for VLSI array processors, IEE Proc. Comput.
Digit. Tech., Vol. 144, 1 (1997), pp. 15-21.

[13] C. N. Zhang, J. H. Weston, Y, -F. Yan, Determining objective functions in systolic array design, IEEE Trans. Very Large Scale
Integration (VLSI) Systems, Vol. 2, 3 (1994), pp. 357-360.

