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Abstract. In the present paper, we use the notion of measure of noncompactness to give some results on
Fredholm operators and we establish a fine description of the essential approximate point spectrum and
the essential defect spectrum of a closed densely defined linear operator.

1. Introduction

Let X and Y be two infinite-dimensional Banach spaces. By an operator A from X to Y we mean a
linear operator with domain D(A) ⊂ X and range R(A) ⊂ Y. We denote by C(X,Y) (resp. L(X,Y) ) the set
of all closed, densely defined linear operators (resp. the Banach algebra of all bounded linear operators)
from X into Y and we denote by K (X,Y) the subspace of all compact operators from X into Y. We denote
by σ(A) and ρ(A) respectively the spectrum and the resolvent set of A. The nullity, α(A), of A is defined as
the dimension of N(A) and the deficiency, β(A), of A is defined as the codimension of R(A) in Y. The set of
upper semi-Fredholm operators is defined by

Φ+(X,Y) =
{
A ∈ C(X,Y) such that α(A) < ∞, R(A) is closed in Y

}
.

and the set of lower semi-Fredholm operators is defined by

Φ−(X,Y) =
{
A ∈ C(X,Y) such that β(A) < ∞, R(A) is closed in Y

}
.

The set of Fredholm operators from X into Y is defined by

Φ(X,Y) = Φ+(X,Y) ∩Φ−(X,Y).

The set of bounded upper ( resp. lower) semi-Fredholm operator from X into Y is defined by

Φb
+(X,Y) = Φ+(X,Y) ∩ L(X,Y)

(
resp. Φ−(X,Y) ∩ L(X,Y)

)
.
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We denote by Φb(X,Y) = Φ(X,Y) ∩ L(X,Y) the set of bounded Fredholm operators from X into Y. If A is
semi-Fredholm operator (either upper or lower) the index of A, is defined by i(A) = α(A) − β(A). It is clear
that if A ∈ Φ(X,Y) then −∞ < i(A) < ∞. If A ∈ Φ+(X,Y)\Φ(X,Y) then i(A) = −∞ and if A ∈ Φ−(X,Y)\Φ(X,Y)
then i(A) = +∞. If X = Y then L(X,Y), C(X,Y), K (X,Y), Φ(X,Y), Φ+(X,Y) and Φ−(X,Y) are replaced by
L(X), C(X), K (X), Φ(X), Φ+(X) and Φ−(X) respectively.

There are several, and in general, non-equivalent definitions of the essential spectrum of a closed
operator on a Banach space. In this paper, we are concerned with the following essential spectra:

Definition 1.1. Let A ∈ C(X). We define the essential spectrum of A, by

σe1(A) = C\ρ+
ess(A),

σew(A) = C\ρ−ess(A),
σess(A) = C\ρess(A),
σeap(A) =

⋂
K∈K (X)

σap(A + K),

and
σeδ(A) =

⋂
K∈K (X)

σδ(A + K),

where
ρ+

ess(A) =
{
λ ∈ C such that λ − A ∈ Φ+(X)

}
,

ρ−ess(A) =
{
λ ∈ C such that λ − A ∈ Φ−(X)

}
,

ρess(A) =
{
λ ∈ C such that λ − A ∈ Φ(X)

}
,

σap(A) =
{
λ ∈ C such that inf

‖x‖=1,x∈D(A)
‖(λ − A)x‖ = 0

}
,

and
σδ(A) =

{
λ ∈ C such that λ − A is not surjective

}
.

The subsets σeap(.) was introduced by V. Rakočević in [11] and designates the essential approximate point
spectrum, σeδ(.) is the essential defect spectrum and was introduced by C. Shmoeger in [15], σe1(.) and σew(.)
are the Gustafson and Weidmann essential spectra [4]. Note that, in general, we have

σess(A) = σeap(A) ∪ σeδ(A), σe1(A) ⊂ σeap(A) and σew(A) ⊂ σeδ(A).

It is well known that if a self-adjoint operator in a Hilbert space, there seems to be only one reasonable
way to define the essential spectrum: the set of all points of the spectrum that are not isolated eigenvalues
of finite algebraic multiplicity [8, 17, 18]. Note that all these sets are closed and if X is a Hilbert space and
A is a self-adjoint operator on X, then all these sets coincide.

Definition 1.2. Let F ∈ L(X,Y). F is called Fredholm perturbation if A + F ∈ Φ(X,Y) whenever A ∈ Φ(X,Y). F is
called an upper (resp. lower ) Fredholm perturbation if A + F ∈ Φ+(X,Y)

(
resp. Φ−(X,Y)

)
whenever A ∈ Φ+(X,Y)(

resp. Φ−(X,Y)
)
.

The sets of Fredholm, upper semi-Fredholm and lower semi-Fredholm perturbations are denoted by F (X,Y), F+(X,Y)
and F−(X,Y), respectively.

If X = Y then F (X) := F (X,X), F+(X) := F+(X,X) and F−(X) := F−(X,X).
We would like to mention that the study of the sets of Fredholm perturbations starts with the investigations
of I. C. Gohberg, A. S. Markus and I. A. Feldman in [5]. In particular, it is shown that F (X) is closed
two-sided ideal of L(X).

Definition 1.3. [3, Definition 1.2] An operator A ∈ L(X) is said to be polynomially Fredholm perturbation if there
exists a nonzero complex polynomial P such that P(A) is a Fredholm perturbation. We denote by PF (X) the set of
polynomially perturbation operators defined by
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PF (X) : =
{
A ∈ L(X) such that there exists a nonzero complex polynomial

P(z) =

p∑
n=0

anzn satisfing P(z) ∈ F (X)
}
.

Recently, A. Dehici and N. Boussetila [3, Theorem 2.1] showed that if A is a Riesz operator on X then A is
polynomially Fredholm perturbation if and only if An is a Fredholm perturbation for some n ∈N. Besides,
they have proved the implication A ∈ L(X) is polynomially Fredholm perturbation.

Lemma 1.4. [6, Lemma 2.1] Let A ∈ C(X,Y) and F ∈ L(X,Y). Then

(i) If A ∈ Φ(X,Y) and F ∈ F (X,Y), then A + F ∈ Φ(X,Y) and i(A + F) = i(A).

(ii) If A ∈ Φ+(X,Y) and F ∈ F+(X,Y), then A + F ∈ Φ+(X,Y) and i(A + F) = i(A).

(iii) If A ∈ Φ−(X,Y) and F ∈ F−(X,Y), then A + F ∈ Φ−(X,Y) and i(A + F) = i(A).

The following proposition gives a characterization of the essential approximate point spectrum and
the essential defect spectrum by means of upper semi-Fredholm and lower semi-Fredholm operators
respectively.

Proposition 1.5. [6, Proposition 3.1] Let A ∈ C(X). Then:

(i) λ < σeap(A) if and only if λ − A ∈ Φ+(X) and i(λ − A) ≤ 0.

(ii) λ < σeδ(A) if and only if λ − A ∈ Φ−(X) and i(λ − A) ≥ 0.

(iii) If A is a bounded linear operator, then σeδ(A) = σeap(A∗), where A∗ stands for the adjoint operator.

This is equivalent to say that

σeap(A) = σe1(A) ∪
{
λ ∈ C such that i(A − λ) > 0

}
,

and

σeδ(A) = σew(A) ∪
{
λ ∈ C such that i(A − λ) < 0

}
.

If, in addition, ρess(A) is connected and ρ(A) , ∅, then

σe1(A) = σeap(A)

and σew(A) = σeδ(A).

Let A ∈ C(X). It follows from the closedness of A that D(A) endowed with the graph norm ‖.‖A is a
Banach space denoted by XA, where

‖x‖A = ‖x‖ + ‖Ax‖, x ∈ D(A).

Clearly, for x ∈ D(A) we have ‖Ax‖ ≤ ‖x‖A, so A ∈ L(XA,X). If B be a linear operator withD(A) ⊆ D(B), then
B is said to A-defined. The restriction of B to D(A) will be denoted by B̂. Let B be an arbitrary A-bounded
operator, hence we can regard A and B as operators from XA into X, they will be denoted by Â and B̂
respectively, these belong to L(XA,X). Furthermore, we have the obvious relations

α(Â) = α(A), β(B̂) = β(B), R(Â) = R(A),
α(Â + B̂) = α(A + B),
β(Â + B̂) = β(A + B) and R(Â + B̂) = R(A + B).

(1)
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The notion of measure of noncompactness turned out to be a useful tool in some problems of topology,
functional analysis, and operator theory (see, [2, 8]). In order to recall this notion, consider, for X a Banach
space, MX the family of all nonempty and bounded subsets of X while NX denotes its subfamily consisting
of all relatively compact sets. Moreover, let us denote by cvx(A) the convex hull of a set A ⊂ X. Let us recall
the following definition.

Definition 1.6. A mapping γ : MX −→ [0,+∞[ is said to be a measure of noncompactness in the space X if it
satisfies the following conditions:

(i) The family ker(γ) :=
{
D ∈MX such that γ(D) = 0

}
is nonempty and ker(γ) ⊂ NX,

for A, B ∈MX, we have the following:

(ii) If A ⊂ B, then γ(A) ≤ γ(B),

(iii) γ(Ā) = γ(A),

(iv) γ(cvx(A)) = γ(A),

(v) γ(λA + (1 − λ)B) ≤ λγ(A) + (1 − λ)γ(B), for all λ ∈ [0, 1],

(vi) If A ∈ L(X), γ(A) ≤ ‖A‖.

Proposition 1.7. [1, Corollary 2.3] Let X be a Banach space and A ∈ L(X).
If γ(An) < 1, for some n > 0, then (I − A) is a Fredholm operator with i(I − A) = 0.

We will denote the set of non negative integers by N and if A ∈ L(X), we define the ascent and the
descent of A respectively by:

asc(A) := min
{
n ∈N such that N(An) = N(An+1)

}
,

and
desc(A) := min

{
n ∈N such that R(An) = R(An+1)

}
.

If no such integer exists, we shall say that A has infinite ascent or infinite descent. In [16, Theorem 3.6], A.
E. Taylor proved that, if ascent and descent are finite, then asc(A) = desc(A).

Remark 1.8. Let A be a bounded linear operator on a Banach space X. If A ∈ Φ(X). with asc(A) and desc(A) are
finite. Then i(A) = 0.
Indeed. Since asc(A) and desc(A) are finite. Using [16, Theorem 3.6] there exists an integer k such that asc(A) =
desc(A) = k, hence N(Ak) = N(An+k) and R(Ak) = R(An+k) for all n ∈N, therefore

i(Ak) = i(An+k).

However, A ∈ Φ(X) then by [14, Theorem 5.7] implies that i(Ak) = ki(A) = i(An+k) = (n + k)i(A), for all n ≥ 0. So,
i(A) = 0.

Two important classes of operators in Fredholm theory are given by the classes of semi-Fredholm
operators which possess finite ascent or finite descent. We shall distinguish two classes of operators. The
class of all upper semi-Browder operators on a Banach space X that is defined by:

B+(X) :=
{
A ∈ Φ+(X) such that asc(A) < ∞

}
,

and the class of all lower semi-Browder operators that is defined by:

B−(X) :=
{
A ∈ Φ−(X) such that desc(A) < ∞

}
.

The class of all Browder operators (known in the literature also as Riesz-Schauder operators) is defined by:

B(X) := B+(X) ∩ B−(X).
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Definition 1.9. Let X and Y be two Banach spaces.

(i) An operator A ∈ C(X,Y) is said to have a left Fredholm inverse if there are maps Rl ∈ L(Y,X) and F ∈ F (X) such
that IX + F extends RlA. The operator Rl is called left Fredholm inverse of A.

(ii) An operator A ∈ C(X,Y) is said to have a right Fredholm inverse if there are maps Rr ∈ L(Y,X) such that
Rr(Y) ⊂ D(A) and ARr − IY ∈ F (X). The operator Rr is called right Fredholm inverse of A.

The remainder of this work is to characterize the essential approximate point spectrum and the essential
defect spectrum. In the first part of this paper we extend the analysis in [7] to bounded linear operator
γ(Kn) < 1 where γ(.) is a measure of noncompactness. More precisely, let A, B ∈ L(X), if λ − A ∈ Φ+(X)
(resp. Φ−(X)) and Aλr is a left (resp. Aλl) right Fredholm inverse of λ − A, such that γ([BAλr]n) < 1 (resp.
γ([AλlB] < 1) and ‖BAλr‖ < 1 (resp. ‖AλlB‖ < 1), then σeap(A + B) = σeap(A) (resp. σeδ(A + B) = σeδ(A)).
In the second part of this paper we derive also useful stability results for the essential approximate point
spectrum and the essential defect spectrum. In fact, let A and B be two closed linear operator in Φ(X).
Assume that there are A0, B0 ∈ L(X) and F1, F2 ∈ PF (X) such that AA0 = I − F1 and BB0 = I − F2. Then if
0 ∈ ρ+

ess(A) ∩ ρ+
ess(B), A0 − B0 is upper (resp. lower) semi perturbation and i(A) = i(B) then σeap(A) = σeap(B)

(resp. σeδ(A) = σeδ(B)).

2. Stability of Essential Spectra

The purpose of this this Section, we have also the following useful stability of essential spectra.

Theorem 2.1. Let X be Banach space, A and B be two operators in L(X). Then
(i) Assume that for each λ ∈ ρ+

ess(A), there exists a left Fredholm inverse Aλl of λ − A such that ‖BAλl‖ < 1, then

σeap(A + B) = σeap(A).

(ii) Assume that for each λ ∈ ρ−ess(A), there exists a right Fredholm inverse Aλr of λ − A such that ‖AλrB‖ < 1, then

σeδ(A + B) = σeδ(A).

Proof. Let Pγ(X) =
{
A ∈ L(X) such that γ(An) < 1, for some n > 0

}
. Since ‖BAλl‖ < 1 (resp. ‖AλrB‖ < 1),

then γ(BAλl) < 1 (resp. γ(AλrB) < 1), so BAλl ∈ Pγ(X) (resp. AλrB ∈ Pγ(X)). Applying Proposition 1.7 we
have

I − BAλl ∈ Φb(X) and i(I − BAλl) = 0, (2)

and

I − AλrB ∈ Φb(X) and i(I − AλrB) = 0. (3)

(i) Let λ < σeap(A) then by Proposition 1.5 (i) we get

λ − A ∈ Φb
+(X) and i(λ − A) ≤ 0.

As, Aλl is a left Fredholm inverse of λ − A, then there exists F ∈ F (X) such that

Aλl(λ − A) = I − F on X. (4)

By, Eq. (4) the operator λ − A − B can be written in the from

λ − A − B = λ − A − B
(
Aλl(λ − A) + F

)
= (I − BAλl)(λ − A) − BF. (5)

According of the Eq. (2) we have I−BAλl ∈ Φb
+(X), using [9, Theorem 12] we have (I−BAλl)(λ−A) ∈ Φ+(X)
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and

i[(I − BAλl)(λ − A)] = i(I − BAλl) + i(λ − A)
= i(λ − A) ≤ 0.

Using Eq. (5) and Lemma 1.4 (ii) , we get

λ − A − B ∈ Φb
+(X) and i(λ − A − B) = i(λ − A) ≤ 0,

hence λ < σeap(A + B). Conversely, let λ < σeap(A + B) then by Proposition 1.5 (i) we have

λ − A − B ∈ Φb
+(X) and i(λ − A − B) ≤ 0.

Since ‖BAλl‖ < 1, and by Eq. (5) the operator λ − A can be written in the from

λ − A = (I − BAλl)−1
(
λ − A − B − BF

)
. (6)

Using Lemma 1.4 (ii), we get

λ − A − B − BF ∈ Φb
+(X)

and

i(λ − A − B − BF) = i(λ − A − B) ≤ 0,

since I − BAλl is boundedly invertible, then by Eq. (6), we have

λ − A ∈ Φb
+(X) and i(λ − A) ≤ 0.

This proves that λ < σeap(A). We find
σeap(A + B) = σeap(A).

(ii) Let λ < σeδ(A) then according of Proposition 1.5 we get

λ − A ∈ Φb
−(X) and i(λ − A) ≥ 0.

Since Aλr is a right Fredholm inverse of λ − A, then there exists F ∈ F (X) such that

(λ − A)Aλr = I − F on X. (7)

By, Eq. (7) the operator λ − A − B can be written in the from

λ − A − B = λ − A −
(
(λ − A)Aλr + F

)
B = (λ − A)(I − AλrB) − FB. (8)

A similar proof as (i), it suffices to replace Φb
+(.), σeap(.), Eq. (5) and Lemma 1.4 (ii) by Φb

−
(.), σeδ(.), Eq. (8)

and Lemma 1.4 (iii) respectively. Hence, we show that

σeδ(A + B) ⊂ σeδ(A).

Conversely, let λ < σeδ(A + B) then by Proposition 1.5 (ii)we have

λ − A − B ∈ Φb
−(X) and i(λ − A − B) ≥ 0.

Since ‖AλrB‖ < 1, and by Eq. (8) the operator λ − A can be written in the from

λ − A = (λ − A − B − BF)(I − AλrB)−1. (9)
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According of the Lemma 1.4 (iii), we get

λ − A − B − FB ∈ Φb
−(X)

and

i(λ − A − B − FB) = i(λ − A − B) ≥ 0.

So, I − AλrB is boundedly invertible, then by Eq. (9), we have λ − A ∈ Φb
−

(X) and i(λ − A) ≥ 0. This proves
that λ < σeδ(A). We find

σeδ(A + B) = σeδ(A).

3. Invariance of Essential Spectra

The purpose of this this Section, we also the following useful stability result for the essential approximate
point spectrum and the essential defect spectrum of a closed, densely defined linear operator on a Banach
space X. we begin with the following useful result.

Theorem 3.1. Let A ∈ PF (X) i.e., there exists a nonzero complex polynomial P(z) =

n∑
i=0

aizi satisfying P(A) ∈ F (X).

Let λ ∈ C with P(λ) , 0 and set B = λ − A. Then, B is a Fredholm operator on X with finite ascent and descent.

To prove Theorem 3.1 we will need the following lemma.

Lemma 3.2. Let P be a complex polynomial and λ ∈ C such that P(λ) , 0. Then, for all A ∈ L(X) satisfying
P(A) ∈ F (X), the operator P(λ) − P(A) is a Fredholm operator on X with finite ascent and descent.

Proof. Put B = P(λ)−P(A) = P(λ)
(
I − P(A)

P(λ)

)
= P(λ)(I−F) where F =

P(A)
P(λ) ∈ F (X). Let C = I−F, then B = P(λ)C.

It is clear that C + F ∈ B(X) and, so, we can write C = C + F − F with C + F ∈ B(X) and F ∈ F (X). On the
other hand, we have (C + F)F = F(C + F). By using [12, Theorem 1], we deduce that C ∈ B(X) and therefore
B ∈ B(X).

Proof of Theorem 3.1 Let λ ∈ Cwith P(λ) , 0. We have:

P(λ) − P(A) =

n∑
i=1

ai(λi
− Ai).

On the other hand, for any i ∈
{
1, ...,n

}
, we have

λi
− Ai = (λ − A)

k−1∑
j=0

λ jAk−1− j.

So,

P(λ) − P(A) = (λ − A)Q(A) = Q(A)(λ − A), (10)

where

Q(A) =

n∑
i=1

ai

k−1∑
j=0

λ jAk−1− j.



A. Ammar et al. / Filomat 29:9 (2015), 1983–1994 1990

Let p ∈N, the Eq. (10) gives (
P(λ) − P(A)

)p
= (λ − A)pQ(A)p = Q(A)p(λ − A)p.

Hence,
N
[
(λ − A)p

]
⊂ N

[(
P(λ) − P(A)

)p]
, ∀p ∈N

and
R
[(

P(λ) − P(A)
)p]
⊂ R

[
(λ − A)p

]
, ∀p ∈N.

This leads to⋃
p∈N

N
[
(λ − A)p

]
⊂

⋃
p∈N

N
[(

P(λ) − P(A)
)p]
, (11)

and ⋂
p∈N

R
[(

P(λ) − P(A)
)p]
⊂

⋂
p∈N

R
[
(λ − A)p

]
. (12)

On the other hand, it follows from Lemma 1.2 that P(λ) − P(A) is a Fredholm operator on X with finite
ascent and descent. So, by [16, Theorem 3.6], we have

asc
(
P(λ) − P(A)

)
= desc

(
P(λ) − P(A)

)
.

Let p0 this quantity, then

dim
⋃
p∈N

N
[(

P(λ) − P(A)
)p]

= dim N
[(

P(λ) − P(A)
)p0

]
< ∞,

and
codim

⋂
p∈N

R
[(

P(λ) − P(A)
)p]

= codim R
[(

P(λ) − P(A)
)p0

]
< ∞.

Using Eqs (11) and (12), we have

dim
⋃
p∈N

N
[
(λ − A)p

]
< ∞,

and
codim

⋂
p∈N

R
[
(λ − A)p

]
< ∞.

Therefore, asc (λ − A) < ∞ and desc (λ − A) < ∞. We have also, α(λ − A) < ∞ and β(λ − A) < ∞.

Corollary 3.3. Let A ∈ L(X). Let F ∈ PF (X), i.e., there exists a nonzero complex polynomial P(z) =

p∑
r=0

arzr

satisfying P(F) ∈ F (X). Let λ ∈ C with P(λ) , 0. If their A = λ − F, then A is a Fredholm operator on X of index
zero.

Proof. This corollary immediately follows from Theorem 3.1 and Remark 1.8.

The following theorem is the main result of this section.
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Theorem 3.4. Let X be a Banach space and let A, B ∈ Φ(X). Assume that there are A0, B0 ∈ L(X) and F1, F2 ∈

PF (X) such that

AA0 = I − F1 (13)

BB0 = I − F2. (14)

(i) If 0 ∈ ρ+
ess(A) ∩ ρ+

ess(B), A0 − B0 ∈ F+(X) and i(A) = i(B) then

σeap(A) = σeap(B).

(ii) If 0 ∈ ρ+
ess(A) ∩ ρ+

ess(B), A0 − B0 ∈ F−(X) and i(A) = i(B) then

σeδ(A) = σeδ(B).

Proof. Let λ ∈ C, Eqs (13) and (14) imply

(λ − A)A0 − (λ − B)B0 = F1 − F2 + λ(A0 − B0). (15)

(i) Let λ < σeap(B), then by Proposition 1.5 we have

(λ − B) ∈ Φ+(X) and i(λ − B) ≤ 0.

It is clearly that B ∈ L(XB,X) where XB = (D(B), ‖.‖B) is Banach space for the graph norm ‖.‖B.We can regard
B as operator from XB into X. This will be denoted by B̂. Then

(λ − B̂) ∈ Φ+(XB,X) and i(λ − B̂) ≤ 0.

Moreover, as F2 ∈ PF (X), Eq. (14), Theorem 3.1 and [14, Theorem 2.7] imply that B0 ∈ Φb(X,XB) and
consequently

(λ − B̂)B0 ∈ Φb
+(XB,X).

Using Eq. (15) and Lemma 1.4, the operator A0 − B0 ∈ F+(X) imply that (λ − Â)A0 ∈ Φb
+(X) and

i
(
(λ − Â)A0

)
= i

(
(λ − B̂)B0

)
. (16)

A similar reasoning as before combining Eq. (13), Theorem 3.1 and [14, Theorem 2.6] shows that A0 ∈

Φb(X,XA) where XA = (D(A), ‖.‖A). According of [14, Theorem 1.4] we can write

A0T = I − F on XA (17)

where

T ∈ L(XA,X) and F ∈ F (XA),

by Eq. (17) we have

(λ − Â)A0T = (λ − Â) − (λ − Â)F.

Since T ∈ Φb(XA,X), according of [14, Theorem 6.6] we have

(λ − Â)A0T ∈ Φb
+(XA,X).

Using [14, Theorem 6.3] we prove that

(λ − Â) ∈ Φb
+(XA,X),
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by Eq. (1) we have

(λ − A) ∈ Φ+(XA,X). (18)

As, F1, F2 ∈ PF (X), Eqs (13), (14) and [14, Theorem 2.3] give

i(A) + i(A0) = i(I − F1) = 0 and i(B) + i(B0) = i(I − F1) = 0,

since i(A) = i(B) then i(A0) = i(B0). Using Eq. (16) we can write

i(λ − A) + i(A0) = i(λ − B) + i(B0).

Therefore

i(λ − A) ≤ 0. (19)

Using Eqs (18) and (19), we get λ < σeap(A). Hence we prove that

σeap(A) ⊂ σeap(B).

The opposite inclusion follows from symmetric and we obtain

σeap(A) = σeap(B).

(ii) The proof of (ii) may be checked in a similar way to that in (i). It suffices to replace σeap(.), Φ+(.), i(.) ≤ 0,
[14, Theorem 6.6], [14, Theorem 6.3] and Proposition 1.5 (i) by σeδ(.), Φ−(.), i(.) ≥ 0, [9, Theorem 5], [14,
Theorem 6.7] and Proposition 1.5 (ii) respectively.

4. Characterization of Essential Spectra

In this Section, we discuss the essential approximate point spectrum and the essential defect spectrum
by means of the measure of noncompactness. Let A ∈ C(X), with a non-empty resolvent set, we will give a
refinement on the definition of the essential approximate point spectrum and the essential defect spectrum
of A respectively, by

σ+(A) :=
⋂

K∈Hn
A(X)

σap(A + K),

and

σ−(A) :=
⋂

K∈Hn
A(X)

σδ(A + K),

whereHn
A(X) =

{
K ∈ C(X) such that γ([K(λ − A − K)−1]n) < 1, ∀λ ∈ ρ(A + K)

}
.

Theorem 4.1. Let A ∈ C(X) with a non-empty resolvent set. Then

(i) σeap(A) := σ+(A),

(ii) σeδ(A) := σ−(A).
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Proof. (i) Since K (X) ⊂ Hn
A(X), we infer that σ+(A) ⊂ σeap(A). Conversely, let λ < σ+(A) then there exists

K ∈ Hn
A(X) such that

inf
‖x‖=1, x∈D(A)

‖(λ − A − K)x‖ > 0.

The use of [13, Theorem 5.1] makes us conclude that λ − A − K ∈ Φ+(X). So, λ ∈ ρ(A + K) and γ([(λ − A −
K)−1K]n) < 1. Hence applying Proposition 1.5, we get[

I + K(λ − A − K)−1
]
∈ Φ(X) and i

[
I + K(λ − A − K)−1

]
= 0.

Then [
I + K(λ − A − K)−1

]
∈ Φ+(X) and i

[
I + K(λ − A − K)−1

]
≤ 0.

So, [
I + K̂(λ − Â − K̂)−1

]
∈ Φ+(X) and i

[
I + K̂(λ − Â − K̂)−1

]
≤ 0. (20)

Thus writing λ − Â in the form

λ − Â =
[
I + K̂(λ − Â − K̂)−1

]
(λ − Â − K̂). (21)

Using Eqs (20) and (21) together with [10, Theorem 5] and [10, Theorem 12] we get

λ − Â ∈ Φb
+(X) and i(λ − Â) ≤ 0.

Now, using Eq. (1) we infer that

λ − A ∈ Φ+(X) and i(λ − A) ≤ 0.

Finally, by Proposition 1.5 (i) we get λ < σeap(A), this proves the assertion (i).

(ii) Since K (X) ⊂ Hn
A(X), then σ−(A) ⊂ σeδ(A). It remains to show that σeδ(A) ⊂ σ−(A). To do this consider

λ < σ−(A), then there exists K ∈ Hn
A(X) such that λ < σeδ(A + K). Thus λ − A − K is surjective, then

λ − A − K ∈ Φ−(X)

and
i(λ − A − K) = α(λ − A − K) ≥ 0.

Hence, by [14, Theorem 5.30] and Eq. (21) we deduce that

λ − Â ∈ Φ−(X)

and
i(λ − Â) = i(λ − Â − K̂) ≥ 0.

Using, Eq. (1) we get
λ − A ∈ Φ−(X) and i(λ − A) ≥ 0.

Finally, by Proposition 1.5 (ii) we get λ < σeδ(A).

Remark 4.2. It follows, immediately, from Theorem 4.1 that

σeap(A + K) = σeap(A) and σeδ(A + K) = σeδ(A)

for all K ∈ Hn
A(X).
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