Stability of Essential Approximate Point Spectrum and Essential Defect Spectrum of Linear Operator

Aymen Ammar ${ }^{\text {a }}$, Mohammed Zerai Dhahri ${ }^{\text {a }}$, Aref Jeribi ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, University of Sfax, Faculty of Sciences of Sfax, Route de soukra Km 3.5, B. P. 1171, 3000, Sfax, Tunisia

Abstract

In the present paper, we use the notion of measure of noncompactness to give some results on Fredholm operators and we establish a fine description of the essential approximate point spectrum and the essential defect spectrum of a closed densely defined linear operator.

1. Introduction

Let X and Y be two infinite-dimensional Banach spaces. By an operator A from X to Y we mean a linear operator with domain $\mathcal{D}(A) \subset X$ and range $R(A) \subset Y$. We denote by $C(X, Y)$ (resp. $\mathcal{L}(X, Y)$) the set of all closed, densely defined linear operators (resp. the Banach algebra of all bounded linear operators) from X into Y and we denote by $\mathcal{K}(X, Y)$ the subspace of all compact operators from X into Y. We denote by $\sigma(A)$ and $\rho(A)$ respectively the spectrum and the resolvent set of A. The nullity, $\alpha(A)$, of A is defined as the dimension of $N(A)$ and the deficiency, $\beta(A)$, of A is defined as the codimension of $R(A)$ in Y. The set of upper semi-Fredholm operators is defined by

$$
\Phi_{+}(X, Y)=\{A \in C(X, Y) \text { such that } \alpha(A)<\infty, R(A) \text { is closed in } Y\}
$$

and the set of lower semi-Fredholm operators is defined by

$$
\Phi_{-}(X, Y)=\{A \in C(X, Y) \text { such that } \beta(A)<\infty, R(A) \text { is closed in } Y\} .
$$

The set of Fredholm operators from X into Y is defined by

$$
\Phi(X, Y)=\Phi_{+}(X, Y) \cap \Phi_{-}(X, Y)
$$

The set of bounded upper (resp. lower) semi-Fredholm operator from X into Y is defined by

$$
\Phi_{+}^{b}(X, Y)=\Phi_{+}(X, Y) \cap \mathcal{L}(X, Y) \quad\left(\text { resp. } \Phi_{-}(X, Y) \cap \mathcal{L}(X, Y)\right)
$$

[^0]We denote by $\Phi^{b}(X, Y)=\Phi(X, Y) \cap \mathcal{L}(X, Y)$ the set of bounded Fredholm operators from X into Y. If A is semi-Fredholm operator (either upper or lower) the index of A, is defined by $i(A)=\alpha(A)-\beta(A)$. It is clear that if $A \in \Phi(X, Y)$ then $-\infty<i(A)<\infty$. If $A \in \Phi_{+}(X, Y) \backslash \Phi(X, Y)$ then $i(A)=-\infty$ and if $A \in \Phi_{-}(X, Y) \backslash \Phi(X, Y)$ then $i(A)=+\infty$. If $X=Y$ then $\mathcal{L}(X, Y), \mathcal{C}(X, Y), \mathcal{K}(X, Y), \Phi(X, Y), \Phi_{+}(X, Y)$ and $\Phi_{-}(X, Y)$ are replaced by $\mathcal{L}(X), C(X), \mathcal{K}(X), \Phi(X), \Phi_{+}(X)$ and $\Phi_{-}(X)$ respectively.

There are several, and in general, non-equivalent definitions of the essential spectrum of a closed operator on a Banach space. In this paper, we are concerned with the following essential spectra:

Definition 1.1. Let $A \in C(X)$. We define the essential spectrum of A, by

$$
\begin{aligned}
\sigma_{e g}(A) & =\mathbb{C} \backslash \rho_{\text {ess }}^{+}(A), \\
\sigma_{e w}(A) & =\mathbb{C} \backslash \rho_{\text {ess }}^{-}(A), \\
\sigma_{\text {ess }}(A) & =\mathbb{C} \rho_{\text {ess }}(A), \\
\sigma_{\text {eap }}(A) & =\bigcap_{K \in \mathcal{K}(X)} \sigma_{a p}(A+K),
\end{aligned}
$$

and

$$
\sigma_{e \delta}(A)=\bigcap_{K \in \mathcal{K}(X)} \sigma_{\delta}(A+K)
$$

where

$$
\begin{aligned}
\rho_{\text {ess }}^{+}(A) & =\left\{\lambda \in \mathbb{C} \text { such that } \lambda-A \in \Phi_{+}(X)\right\}, \\
\rho_{\text {ess }}^{-}(A) & =\left\{\lambda \in \mathbb{C} \text { such that } \lambda-A \in \Phi_{-}(X)\right\}, \\
\rho_{\text {ess }}(A) & =\{\lambda \in \mathbb{C} \text { such that } \lambda-A \in \Phi(X)\}, \\
\sigma_{\text {ap }}(A) & =\left\{\lambda \in \mathbb{C} \text { such that } \inf _{\|x\|=1, x \in \mathcal{D}(A)}\|(\lambda-A) x\|=0\right\},
\end{aligned}
$$

and

$$
\sigma_{\delta}(A)=\{\lambda \in \mathbb{C} \text { such that } \lambda-A \text { is not surjective }\} .
$$

The subsets $\sigma_{\text {eap }}($.$) was introduced by V. Rakočević in [11] and designates the essential approximate point$ spectrum, $\sigma_{e \delta}($.$) is the essential defect spectrum and was introduced by C. Shmoeger in [15], \sigma_{e g}($.$) and \sigma_{e w w}($. are the Gustafson and Weidmann essential spectra [4]. Note that, in general, we have

$$
\sigma_{e s s}(A)=\sigma_{e a p}(A) \cup \sigma_{e \delta}(A), \sigma_{e g}(A) \subset \sigma_{e a p}(A) \text { and } \sigma_{e w}(A) \subset \sigma_{e \delta}(A) .
$$

It is well known that if a self-adjoint operator in a Hilbert space, there seems to be only one reasonable way to define the essential spectrum: the set of all points of the spectrum that are not isolated eigenvalues of finite algebraic multiplicity $[8,17,18]$. Note that all these sets are closed and if X is a Hilbert space and A is a self-adjoint operator on X, then all these sets coincide.

Definition 1.2. Let $F \in \mathcal{L}(X, Y)$. F is called Fredholm perturbation if $A+F \in \Phi(X, Y)$ whenever $A \in \Phi(X, Y)$. F is called an upper (resp. lower) Fredholm perturbation if $A+F \in \Phi_{+}(X, Y)\left(\right.$ resp. $\left.\Phi_{-}(X, Y)\right)$ whenever $A \in \Phi_{+}(X, Y)$ (resp. $\Phi_{-}(X, Y)$).
The sets of Fredholm, upper semi-Fredholm and lower semi-Fredholm perturbations are denoted by $\mathcal{F}(X, Y), \mathcal{F}_{+}(X, Y)$ and $\mathcal{F}_{-}(X, Y)$, respectively.

If $X=Y$ then $\mathcal{F}(X):=\mathcal{F}(X, X), \mathcal{F}_{+}(X):=\mathcal{F}_{+}(X, X)$ and $\mathcal{F}_{-}(X):=\mathcal{F}_{-}(X, X)$.
We would like to mention that the study of the sets of Fredholm perturbations starts with the investigations of I. C. Gohberg, A. S. Markus and I. A. Feldman in [5]. In particular, it is shown that $\mathcal{F}(X)$ is closed two-sided ideal of $\mathcal{L}(X)$.

Definition 1.3. [3, Definition 1.2] An operator $A \in \mathcal{L}(X)$ is said to be polynomially Fredholm perturbation if there exists a nonzero complex polynomial P such that $P(A)$ is a Fredholm perturbation. We denote by $\mathcal{P} \mathcal{F}(X)$ the set of polynomially perturbation operators defined by
$\mathcal{P} \mathcal{F}(X):=\{A \in \mathcal{L}(X)$ such that there exists a nonzero complex polynomial

$$
\left.P(z)=\sum_{n=0}^{p} a_{n} z^{n} \text { satisfing } P(z) \in \mathcal{F}(X)\right\} \text {. }
$$

Recently, A. Dehici and N. Boussetila [3, Theorem 2.1] showed that if A is a Riesz operator on X then A is polynomially Fredholm perturbation if and only if A^{n} is a Fredholm perturbation for some $n \in \mathbb{N}$. Besides, they have proved the implication $A \in \mathcal{L}(X)$ is polynomially Fredholm perturbation.

Lemma 1.4. [6, Lemma 2.1] Let $A \in C(X, Y)$ and $F \in \mathcal{L}(X, Y)$. Then
(i) If $A \in \Phi(X, Y)$ and $F \in \mathcal{F}(X, Y)$, then $A+F \in \Phi(X, Y)$ and $i(A+F)=i(A)$.
(ii) If $A \in \Phi_{+}(X, Y)$ and $F \in \mathcal{F}_{+}(X, Y)$, then $A+F \in \Phi_{+}(X, Y)$ and $i(A+F)=i(A)$.
(iii) If $A \in \Phi_{-}(X, Y)$ and $F \in \mathcal{F}_{-}(X, Y)$, then $A+F \in \Phi_{-}(X, Y)$ and $i(A+F)=i(A)$.

The following proposition gives a characterization of the essential approximate point spectrum and the essential defect spectrum by means of upper semi-Fredholm and lower semi-Fredholm operators respectively.

Proposition 1.5. [6, Proposition 3.1] Let $A \in C(X)$. Then:
(i) $\lambda \notin \sigma_{\text {eap }}(A)$ if and only if $\lambda-A \in \Phi_{+}(X)$ and $i(\lambda-A) \leq 0$.
(ii) $\lambda \notin \sigma_{e \delta}(A)$ if and only if $\lambda-A \in \Phi_{-}(X)$ and $i(\lambda-A) \geq 0$.
(iii) If A is a bounded linear operator, then $\sigma_{e \delta}(A)=\sigma_{\text {eap }}\left(A^{*}\right)$, where A^{*} stands for the adjoint operator.

This is equivalent to say that

$$
\sigma_{\text {eap }}(A)=\sigma_{\text {eg }}(A) \cup\{\lambda \in \mathbb{C} \text { such that } i(A-\lambda)>0\} \text {, }
$$

and

$$
\sigma_{e \delta}(A)=\sigma_{e w}(A) \cup\{\lambda \in \mathbb{C} \text { such that } i(A-\lambda)<0\} .
$$

If, in addition, $\rho_{\text {ess }}(A)$ is connected and $\rho(A) \neq \emptyset$, then

$$
\begin{gathered}
\sigma_{e g}(A)=\sigma_{e a p}(A) \\
\sigma_{e w}(A)=\sigma_{e \delta}(A) .
\end{gathered}
$$

and

Let $A \in \mathcal{C}(X)$. It follows from the closedness of A that $\mathcal{D}(A)$ endowed with the graph norm $\|\cdot\|_{A}$ is a Banach space denoted by X_{A}, where

$$
\|x\|_{A}=\|x\|+\|A x\|, \quad x \in \mathcal{D}(A) .
$$

Clearly, for $x \in \mathcal{D}(A)$ we have $\|A x\| \leq\|x\|_{A}$, so $A \in \mathcal{L}\left(X_{A}, X\right)$. If B be a linear operator with $\mathcal{D}(A) \subseteq \mathcal{D}(B)$, then B is said to A-defined. The restriction of B to $\mathcal{D}(A)$ will be denoted by \hat{B}. Let B be an arbitrary A-bounded operator, hence we can regard A and B as operators from X_{A} into X, they will be denoted by \hat{A} and \hat{B} respectively, these belong to $\mathcal{L}\left(X_{A}, X\right)$. Furthermore, we have the obvious relations

$$
\left\{\begin{array}{l}
\alpha(\hat{A})=\alpha(A), \beta(\hat{B})=\beta(B), \quad R(\hat{A})=R(A) \tag{1}\\
\alpha(\hat{A}+\hat{B})=\alpha(A+B), \\
\beta(\hat{A}+\hat{B})=\beta(A+B) \text { and } R(\hat{A}+\hat{B})=R(A+B) .
\end{array}\right.
$$

The notion of measure of noncompactness turned out to be a useful tool in some problems of topology, functional analysis, and operator theory (see, $[2,8]$). In order to recall this notion, consider, for X a Banach space, M_{X} the family of all nonempty and bounded subsets of X while N_{X} denotes its subfamily consisting of all relatively compact sets. Moreover, let us denote by $\operatorname{cvx}(A)$ the convex hull of a set $A \subset X$. Let us recall the following definition.

Definition 1.6. A mapping $\gamma: M_{X} \longrightarrow[0,+\infty[$ is said to be a measure of noncompactness in the space X if it satisfies the following conditions:
(i) The family $\operatorname{ker}(\gamma):=\left\{D \in M_{X}\right.$ such that $\left.\gamma(D)=0\right\}$ is nonempty and $\operatorname{ker}(\gamma) \subset N_{X}$,
for $A, B \in M_{X}$, we have the following:
(ii) If $A \subset B$, then $\gamma(A) \leq \gamma(B)$,
(iii) $\gamma(\bar{A})=\gamma(A)$,
(iv) $\gamma(\overline{\operatorname{cox}(A)})=\gamma(A)$,
(v) $\gamma(\lambda A+(1-\lambda) B) \leq \lambda \gamma(A)+(1-\lambda) \gamma(B)$, for all $\lambda \in[0,1]$,
(vi) If $A \in \mathcal{L}(X), \gamma(A) \leq\|A\|$.

Proposition 1.7. [1, Corollary 2.3] Let X be a Banach space and $A \in \mathcal{L}(X)$. If $\gamma\left(A^{n}\right)<1$, for some $n>0$, then $(I-A)$ is a Fredholm operator with $i(I-A)=0$.

We will denote the set of non negative integers by \mathbb{N} and if $A \in \mathcal{L}(X)$, we define the ascent and the descent of A respectively by:

$$
\operatorname{asc}(A):=\min \left\{n \in \mathbb{N} \text { such that } N\left(A^{n}\right)=N\left(A^{n+1}\right)\right\},
$$

and

$$
\operatorname{desc}(A):=\min \left\{n \in \mathbb{N} \text { such that } R\left(A^{n}\right)=R\left(A^{n+1}\right)\right\} .
$$

If no such integer exists, we shall say that A has infinite ascent or infinite descent. In [16, Theorem 3.6], A. E. Taylor proved that, if ascent and descent are finite, then $\operatorname{asc}(A)=\operatorname{desc}(A)$.

Remark 1.8. Let A be a bounded linear operator on a Banach space X. If $A \in \Phi(X)$. with asc (A) and $\operatorname{desc}(A)$ are finite. Then $i(A)=0$.
Indeed. Since asc (A) and $\operatorname{desc}(A)$ are finite. Using $[16$, Theorem 3.6] there exists an integer k such that asc $(A)=$ $\operatorname{desc}(A)=k$, hence $N\left(A^{k}\right)=N\left(A^{n+k}\right)$ and $R\left(A^{k}\right)=R\left(A^{n+k}\right)$ for all $n \in \mathbb{N}$, therefore

$$
i\left(A^{k}\right)=i\left(A^{n+k}\right)
$$

However, $A \in \Phi(X)$ then by [14, Theorem 5.7] implies that $i\left(A^{k}\right)=k i(A)=i\left(A^{n+k}\right)=(n+k) i(A)$, for all $n \geq 0$. So, $i(A)=0$.

Two important classes of operators in Fredholm theory are given by the classes of semi-Fredholm operators which possess finite ascent or finite descent. We shall distinguish two classes of operators. The class of all upper semi-Browder operators on a Banach space X that is defined by:

$$
\mathcal{B}_{+}(X):=\left\{A \in \Phi_{+}(X) \text { such that } \operatorname{asc}(A)<\infty\right\}
$$

and the class of all lower semi-Browder operators that is defined by:

$$
\mathcal{B}_{-}(X):=\left\{A \in \Phi_{-}(X) \text { such that } \operatorname{desc}(A)<\infty\right\} .
$$

The class of all Browder operators (known in the literature also as Riesz-Schauder operators) is defined by:

$$
\mathcal{B}(X):=\mathcal{B}_{+}(X) \cap \mathcal{B}_{-}(X)
$$

Definition 1.9. Let X and Y be two Banach spaces.
(i) An operator $A \in C(X, Y)$ is said to have a left Fredholm inverse if there are maps $R_{l} \in \mathcal{L}(Y, X)$ and $F \in \mathcal{F}(X)$ such that $I_{X}+F$ extends $R_{l} A$. The operator R_{l} is called left Fredholm inverse of A.
(ii) An operator $A \in C(X, Y)$ is said to have a right Fredholm inverse if there are maps $R_{r} \in \mathcal{L}(Y, X)$ such that $R_{r}(Y) \subset \mathcal{D}(A)$ and $A R_{r}-I_{Y} \in \mathcal{F}(X)$. The operator R_{r} is called right Fredholm inverse of A.

The remainder of this work is to characterize the essential approximate point spectrum and the essential defect spectrum. In the first part of this paper we extend the analysis in [7] to bounded linear operator $\gamma\left(K^{n}\right)<1$ where $\gamma($.$) is a measure of noncompactness. More precisely, let A, B \in \mathcal{L}(X)$, if $\lambda-A \in \Phi_{+}(X)$ (resp. $\left.\Phi_{-}(X)\right)$ and $A_{\lambda r}$ is a left (resp. $\left.A_{\lambda l}\right)$ right Fredholm inverse of $\lambda-A$, such that $\gamma\left(\left[B A_{\lambda r}\right]^{n}\right)<1$ (resp. $\gamma\left(\left[A_{\lambda l} B\right]<1\right)$ and $\left\|B A_{\lambda r}\right\|<1$ (resp. $\left.\left\|A_{\lambda l} B\right\|<1\right)$, then $\sigma_{\text {eap }}(A+B)=\sigma_{\text {eap }}(A)\left(\right.$ resp. $\left.\sigma_{e \delta}(A+B)=\sigma_{e \delta}(A)\right)$. In the second part of this paper we derive also useful stability results for the essential approximate point spectrum and the essential defect spectrum. In fact, let A and B be two closed linear operator in $\Phi(X)$. Assume that there are $A_{0}, B_{0} \in \mathcal{L}(X)$ and $F_{1}, F_{2} \in \mathcal{P} \mathcal{F}(X)$ such that $A A_{0}=I-F_{1}$ and $B B_{0}=I-F_{2}$. Then if $0 \in \rho_{\text {ess }}^{+}(A) \cap \rho_{\text {ess }}^{+}(B), A_{0}-B_{0}$ is upper (resp. lower) semi perturbation and $i(A)=i(B)$ then $\sigma_{\text {eap }}(A)=\sigma_{\text {eap }}(B)$ (resp. $\left.\sigma_{e \delta}(A)=\sigma_{e \delta}(B)\right)$.

2. Stability of Essential Spectra

The purpose of this this Section, we have also the following useful stability of essential spectra.
Theorem 2.1. Let X be Banach space, A and B be two operators in $\mathcal{L}(X)$. Then
(i) Assume that for each $\lambda \in \rho_{\text {ess }}^{+}(A)$, there exists a left Fredholm inverse $A_{\lambda l}$ of $\lambda-A$ such that $\left\|B A_{\lambda l}\right\|<1$, then

$$
\sigma_{\text {eap }}(A+B)=\sigma_{\text {eap }}(A)
$$

(ii) Assume that for each $\lambda \in \rho_{\text {ess }}^{-}(A)$, there exists a right Fredholm inverse $A_{\lambda r}$ of $\lambda-A$ such that $\left\|A_{\lambda r} B\right\|<1$, then

$$
\sigma_{e \delta}(A+B)=\sigma_{e \delta}(A)
$$

Proof. Let $\mathcal{P}_{\gamma}(X)=\left\{A \in \mathcal{L}(X)\right.$ such that $\gamma\left(A^{n}\right)<1$, for some $\left.n>0\right\}$. Since $\left\|B A_{\lambda l}\right\|<1$ (resp. $\left\|A_{\lambda r} B\right\|<1$), then $\gamma\left(B A_{\lambda l}\right)<1$ (resp. $\gamma\left(A_{\lambda r} B\right)<1$), so $B A_{\lambda l} \in \mathcal{P}_{\gamma}(X)$ (resp. $A_{\lambda r} B \in \mathcal{P}_{\gamma}(X)$). Applying Proposition 1.7 we have

$$
\begin{equation*}
I-B A_{\lambda l} \in \Phi^{b}(X) \text { and } i\left(I-B A_{\lambda l}\right)=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
I-A_{\lambda r} B \in \Phi^{b}(X) \text { and } \quad i\left(I-A_{\lambda r} B\right)=0 \tag{3}
\end{equation*}
$$

(i) Let $\lambda \notin \sigma_{\text {eap }}(A)$ then by Proposition 1.5 (i) we get

$$
\lambda-A \in \Phi_{+}^{b}(X) \text { and } i(\lambda-A) \leq 0
$$

As, $A_{\lambda l}$ is a left Fredholm inverse of $\lambda-A$, then there exists $F \in \mathcal{F}(X)$ such that

$$
\begin{equation*}
A_{\lambda l}(\lambda-A)=I-F \text { on } X \tag{4}
\end{equation*}
$$

By, Eq. (4) the operator $\lambda-A-B$ can be written in the from

$$
\begin{equation*}
\lambda-A-B=\lambda-A-B\left(A_{\lambda l}(\lambda-A)+F\right)=\left(I-B A_{\lambda l}\right)(\lambda-A)-B F \tag{5}
\end{equation*}
$$

According of the Eq. (2) we have $I-B A_{\lambda l} \in \Phi_{+}^{b}(X)$, using [9, Theorem 12] we have $\left(I-B A_{\lambda l}\right)(\lambda-A) \in \Phi_{+}(X)$
and

$$
\begin{aligned}
i\left[\left(I-B A_{\lambda l}\right)(\lambda-A)\right] & =i\left(I-B A_{\lambda l}\right)+i(\lambda-A) \\
& =i(\lambda-A) \leq 0 .
\end{aligned}
$$

Using Eq. (5) and Lemma 1.4 (ii), we get

$$
\lambda-A-B \in \Phi_{+}^{b}(X) \text { and } i(\lambda-A-B)=i(\lambda-A) \leq 0
$$

hence $\lambda \notin \sigma_{\text {eap }}(A+B)$. Conversely, let $\lambda \notin \sigma_{\text {eap }}(A+B)$ then by Proposition 1.5 (i) we have

$$
\lambda-A-B \in \Phi_{+}^{b}(X) \text { and } i(\lambda-A-B) \leq 0
$$

Since $\left\|B A_{\lambda l}\right\|<1$, and by Eq. (5) the operator $\lambda-A$ can be written in the from

$$
\begin{equation*}
\lambda-A=\left(I-B A_{\lambda l}\right)^{-1}(\lambda-A-B-B F) \tag{6}
\end{equation*}
$$

Using Lemma 1.4 (ii), we get

$$
\lambda-A-B-B F \in \Phi_{+}^{b}(X)
$$

and

$$
i(\lambda-A-B-B F)=i(\lambda-A-B) \leq 0
$$

since $I-B A_{\lambda l}$ is boundedly invertible, then by Eq. (6), we have

$$
\lambda-A \in \Phi_{+}^{b}(X) \text { and } i(\lambda-A) \leq 0
$$

This proves that $\lambda \notin \sigma_{\text {eap }}(A)$. We find

$$
\sigma_{e a p}(A+B)=\sigma_{e a p}(A)
$$

(ii) Let $\lambda \notin \sigma_{e \delta}(A)$ then according of Proposition 1.5 we get

$$
\lambda-A \in \Phi_{-}^{b}(X) \text { and } i(\lambda-A) \geq 0
$$

Since $A_{\lambda r}$ is a right Fredholm inverse of $\lambda-A$, then there exists $F \in \mathcal{F}(X)$ such that

$$
\begin{equation*}
(\lambda-A) A_{\lambda r}=I-F \text { on } X \tag{7}
\end{equation*}
$$

By, Eq. (7) the operator $\lambda-A-B$ can be written in the from

$$
\begin{equation*}
\lambda-A-B=\lambda-A-\left((\lambda-A) A_{\lambda r}+F\right) B=(\lambda-A)\left(I-A_{\lambda r} B\right)-F B \tag{8}
\end{equation*}
$$

A similar proof as (i), it suffices to replace $\Phi_{+}^{b}(),. \sigma_{e a p}($.$) , Eq. (5) and Lemma 1.4$ (ii) by $\Phi_{-}^{b}(),. \sigma_{e \delta}($.$) , Eq. (8)$ and Lemma 1.4 (iii) respectively. Hence, we show that

$$
\sigma_{e \delta}(A+B) \subset \sigma_{e \delta}(A)
$$

Conversely, let $\lambda \notin \sigma_{e \delta}(A+B)$ then by Proposition 1.5 (ii)we have

$$
\lambda-A-B \in \Phi_{-}^{b}(X) \text { and } i(\lambda-A-B) \geq 0
$$

Since $\left\|A_{\lambda r} B\right\|<1$, and by Eq. (8) the operator $\lambda-A$ can be written in the from

$$
\begin{equation*}
\lambda-A=(\lambda-A-B-B F)\left(I-A_{\lambda r} B\right)^{-1} \tag{9}
\end{equation*}
$$

According of the Lemma 1.4 (iii), we get

$$
\lambda-A-B-F B \in \Phi_{-}^{b}(X)
$$

and

$$
i(\lambda-A-B-F B)=i(\lambda-A-B) \geq 0
$$

So, $I-A_{\lambda_{r}} B$ is boundedly invertible, then by Eq. (9), we have $\lambda-A \in \Phi_{-}^{b}(X)$ and $i(\lambda-A) \geq 0$. This proves that $\lambda \notin \sigma_{e \delta}(A)$. We find

$$
\sigma_{e \delta}(A+B)=\sigma_{e \delta}(A)
$$

3. Invariance of Essential Spectra

The purpose of this this Section, we also the following useful stability result for the essential approximate point spectrum and the essential defect spectrum of a closed, densely defined linear operator on a Banach space X. we begin with the following useful result.

Theorem 3.1. Let $A \in \mathcal{P} \mathcal{F}(X)$ i.e., there exists a nonzero complex polynomial $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ satisfying $P(A) \in \mathcal{F}(X)$. Let $\lambda \in \mathbb{C}$ with $P(\lambda) \neq 0$ and set $B=\lambda-A$. Then, B is a Fredholm operator on X with finite ascent and descent.

To prove Theorem 3.1 we will need the following lemma.
Lemma 3.2. Let P be a complex polynomial and $\lambda \in \mathbb{C}$ such that $P(\lambda) \neq 0$. Then, for all $A \in \mathcal{L}(X)$ satisfying $P(A) \in \mathcal{F}(X)$, the operator $P(\lambda)-P(A)$ is a Fredholm operator on X with finite ascent and descent.

Proof. Put $B=P(\lambda)-P(A)=P(\lambda)\left(I-\frac{P(A)}{P(\lambda)}\right)=P(\lambda)(I-F)$ where $F=\frac{P(A)}{P(\lambda)} \in \mathcal{F}(X)$. Let $C=I-F$, then $B=P(\lambda) C$. It is clear that $C+F \in \mathcal{B}(X)$ and, so, we can write $C=C+F-F$ with $C+F \in \mathcal{B}(X)$ and $F \in \mathcal{F}(X)$. On the other hand, we have $(C+F) F=F(C+F)$. By using [12, Theorem 1], we deduce that $C \in \mathcal{B}(X)$ and therefore $B \in \mathcal{B}(X)$.

Proof of Theorem 3.1 Let $\lambda \in \mathbb{C}$ with $P(\lambda) \neq 0$. We have:

$$
P(\lambda)-P(A)=\sum_{i=1}^{n} a_{i}\left(\lambda^{i}-A^{i}\right)
$$

On the other hand, for any $i \in\{1, \ldots, n\}$, we have

$$
\lambda^{i}-A^{i}=(\lambda-A) \sum_{j=0}^{k-1} \lambda^{j} A^{k-1-j}
$$

So,

$$
\begin{equation*}
P(\lambda)-P(A)=(\lambda-A) Q(A)=Q(A)(\lambda-A) \tag{10}
\end{equation*}
$$

where

$$
Q(A)=\sum_{i=1}^{n} a_{i} \sum_{j=0}^{k-1} \lambda^{j} A^{k-1-j}
$$

Let $p \in \mathbb{N}$, the Eq. (10) gives

$$
(P(\lambda)-P(A))^{p}=(\lambda-A)^{p} Q(A)^{p}=Q(A)^{p}(\lambda-A)^{p}
$$

Hence,

$$
N\left[(\lambda-A)^{p}\right] \subset N\left[(P(\lambda)-P(A))^{p}\right], \quad \forall p \in \mathbb{N}
$$

and

$$
R\left[(P(\lambda)-P(A))^{p}\right] \subset R\left[(\lambda-A)^{p}\right], \quad \forall p \in \mathbb{N}
$$

This leads to

$$
\begin{equation*}
\bigcup_{p \in \mathbb{N}} N\left[(\lambda-A)^{p}\right] \subset \bigcup_{p \in \mathbb{N}} N\left[(P(\lambda)-P(A))^{p}\right] \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\bigcap_{p \in \mathbb{N}} R\left[(P(\lambda)-P(A))^{p}\right] \subset \bigcap_{p \in \mathbb{N}} R\left[(\lambda-A)^{p}\right] . \tag{12}
\end{equation*}
$$

On the other hand, it follows from Lemma 1.2 that $P(\lambda)-P(A)$ is a Fredholm operator on X with finite ascent and descent. So, by [16, Theorem 3.6], we have

$$
\operatorname{asc}(P(\lambda)-P(A))=\operatorname{desc}(P(\lambda)-P(A))
$$

Let p_{0} this quantity, then

$$
\operatorname{dim} \bigcup_{p \in \mathbb{N}} N\left[(P(\lambda)-P(A))^{p}\right]=\operatorname{dim} N\left[(P(\lambda)-P(A))^{p_{0}}\right]<\infty
$$

and

$$
\operatorname{codim} \bigcap_{p \in \mathbb{N}} R\left[(P(\lambda)-P(A))^{p}\right]=\operatorname{codim} R\left[(P(\lambda)-P(A))^{p_{0}}\right]<\infty .
$$

Using Eqs (11) and (12), we have

$$
\operatorname{dim} \bigcup_{p \in \mathbb{N}} N\left[(\lambda-A)^{p}\right]<\infty
$$

and

$$
\operatorname{codim} \bigcap_{p \in \mathbb{N}} R\left[(\lambda-A)^{p}\right]<\infty .
$$

Therefore, asc $(\lambda-A)<\infty$ and desc $(\lambda-A)<\infty$. We have also, $\alpha(\lambda-A)<\infty$ and $\beta(\lambda-A)<\infty$.
Corollary 3.3. Let $A \in \mathcal{L}(X)$. Let $F \in \mathcal{P} \mathcal{F}(X)$, i.e., there exists a nonzero complex polynomial $P(z)=\sum_{r=0}^{p} a_{r} z^{r}$ satisfying $P(F) \in \mathcal{F}(X)$. Let $\lambda \in \mathbb{C}$ with $P(\lambda) \neq 0$. If their $A=\lambda-F$, then A is a Fredholm operator on X of index zero.

Proof. This corollary immediately follows from Theorem 3.1 and Remark 1.8.

The following theorem is the main result of this section.

Theorem 3.4. Let X be a Banach space and let $A, B \in \Phi(X)$. Assume that there are $A_{0}, B_{0} \in \mathcal{L}(X)$ and $F_{1}, F_{2} \in$ $\mathcal{P F}(X)$ such that

$$
\begin{align*}
& A A_{0}=I-F_{1} \tag{13}\\
& B B_{0}=I-F_{2} \tag{14}
\end{align*}
$$

(i) If $0 \in \rho_{\text {ess }}^{+}(A) \cap \rho_{\text {ess }}^{+}(B), A_{0}-B_{0} \in \mathcal{F}_{+}(X)$ and $i(A)=i(B)$ then

$$
\sigma_{\text {eap }}(A)=\sigma_{\text {eap }}(B)
$$

(ii) If $0 \in \rho_{\text {ess }}^{+}(A) \cap \rho_{\text {ess }}^{+}(B), A_{0}-B_{0} \in \mathcal{F}_{-}(X)$ and $i(A)=i(B)$ then

$$
\sigma_{e \delta}(A)=\sigma_{e \delta}(B)
$$

Proof. Let $\lambda \in \mathbb{C}$, Eqs (13) and (14) imply

$$
\begin{equation*}
(\lambda-A) A_{0}-(\lambda-B) B_{0}=F_{1}-F_{2}+\lambda\left(A_{0}-B_{0}\right) . \tag{15}
\end{equation*}
$$

(i) Let $\lambda \notin \sigma_{\text {eap }}(B)$, then by Proposition 1.5 we have

$$
(\lambda-B) \in \Phi_{+}(X) \text { and } i(\lambda-B) \leq 0 .
$$

It is clearly that $B \in \mathcal{L}\left(X_{B}, X\right)$ where $X_{B}=\left(\mathcal{D}(B),\|\cdot\|_{B}\right)$ is Banach space for the graph norm $\|.\|_{B}$. We can regard B as operator from X_{B} into X. This will be denoted by \hat{B}. Then

$$
(\lambda-\hat{B}) \in \Phi_{+}\left(X_{B}, X\right) \text { and } i(\lambda-\hat{B}) \leq 0
$$

Moreover, as $F_{2} \in \mathcal{P} \mathcal{F}(X)$, Eq. (14), Theorem 3.1 and [14, Theorem 2.7] imply that $B_{0} \in \Phi^{b}\left(X, X_{B}\right)$ and consequently

$$
(\lambda-\hat{B}) B_{0} \in \Phi_{+}^{b}\left(X_{B}, X\right)
$$

Using Eq. (15) and Lemma 1.4, the operator $A_{0}-B_{0} \in \mathcal{F}_{+}(X)$ imply that $(\lambda-\hat{A}) A_{0} \in \Phi_{+}^{b}(X)$ and

$$
\begin{equation*}
i\left((\lambda-\hat{A}) A_{0}\right)=i\left((\lambda-\hat{B}) B_{0}\right) \tag{16}
\end{equation*}
$$

A similar reasoning as before combining Eq. (13), Theorem 3.1 and [14, Theorem 2.6] shows that $A_{0} \in$ $\Phi^{b}\left(X, X_{A}\right)$ where $X_{A}=\left(\mathcal{D}(A),\|\cdot\| \|_{A}\right)$. According of [14, Theorem 1.4] we can write

$$
\begin{equation*}
A_{0} T=I-F \text { on } X_{A} \tag{17}
\end{equation*}
$$

where

$$
T \in \mathcal{L}\left(X_{A}, X\right) \text { and } F \in \mathcal{F}\left(X_{A}\right)
$$

by Eq. (17) we have

$$
(\lambda-\hat{A}) A_{0} T=(\lambda-\hat{A})-(\lambda-\hat{A}) F
$$

Since $T \in \Phi^{b}\left(X_{A}, X\right)$, according of [14, Theorem 6.6] we have

$$
(\lambda-\hat{A}) A_{0} T \in \Phi_{+}^{b}\left(X_{A}, X\right)
$$

Using [14, Theorem 6.3] we prove that

$$
(\lambda-\hat{A}) \in \Phi_{+}^{b}\left(X_{A}, X\right)
$$

by Eq. (1) we have

$$
\begin{equation*}
(\lambda-A) \in \Phi_{+}\left(X_{A}, X\right) \tag{18}
\end{equation*}
$$

As, $F_{1}, F_{2} \in \mathcal{P} \mathcal{F}(X)$, Eqs (13), (14) and [14, Theorem 2.3] give

$$
i(A)+i\left(A_{0}\right)=i\left(I-F_{1}\right)=0 \text { and } i(B)+i\left(B_{0}\right)=i\left(I-F_{1}\right)=0
$$

since $i(A)=i(B)$ then $i\left(A_{0}\right)=i\left(B_{0}\right)$. Using Eq. (16) we can write

$$
i(\lambda-A)+i\left(A_{0}\right)=i(\lambda-B)+i\left(B_{0}\right)
$$

Therefore

$$
\begin{equation*}
i(\lambda-A) \leq 0 \tag{19}
\end{equation*}
$$

Using Eqs (18) and (19), we get $\lambda \notin \sigma_{\text {eap }}(A)$. Hence we prove that

$$
\sigma_{\text {eap }}(A) \subset \sigma_{\text {eap }}(B)
$$

The opposite inclusion follows from symmetric and we obtain

$$
\sigma_{\text {eap }}(A)=\sigma_{\text {eap }}(B)
$$

(ii) The proof of (ii) may be checked in a similar way to that in (i). It suffices to replace $\sigma_{\text {eap }}(),. \Phi_{+}(),. i() \leq$.0 , [14, Theorem 6.6], [14, Theorem 6.3] and Proposition 1.5 (i) by $\sigma_{e \delta}(),. \Phi_{-}(),. i() \geq 0,.[9$, Theorem 5], [14, Theorem 6.7] and Proposition 1.5 (ii) respectively.

4. Characterization of Essential Spectra

In this Section, we discuss the essential approximate point spectrum and the essential defect spectrum by means of the measure of noncompactness. Let $A \in C(X)$, with a non-empty resolvent set, we will give a refinement on the definition of the essential approximate point spectrum and the essential defect spectrum of A respectively, by

$$
\sigma_{+}(A):=\bigcap_{K \in \mathcal{H}_{A}^{n}(X)} \sigma_{a p}(A+K),
$$

and

$$
\sigma_{-}(A):=\bigcap_{K \in \mathcal{H}_{A}^{n}(X)} \sigma_{\delta}(A+K),
$$

where $\mathcal{H}_{A}^{n}(X)=\left\{K \in \mathcal{C}(X)\right.$ such that $\left.\gamma\left(\left[K(\lambda-A-K)^{-1}\right]^{n}\right)<1, \quad \forall \lambda \in \rho(A+K)\right\}$.
Theorem 4.1. Let $A \in C(X)$ with a non-empty resolvent set. Then
(i) $\sigma_{\text {eap }}(A):=\sigma_{+}(A)$,
(ii) $\sigma_{e \delta}(A):=\sigma_{-}(A)$.

Proof. (i) Since $\mathcal{K}(X) \subset \mathcal{H}_{A}^{n}(X)$, we infer that $\sigma_{+}(A) \subset \sigma_{\text {eap }}(A)$. Conversely, let $\lambda \notin \sigma_{+}(A)$ then there exists $K \in \mathcal{H}_{A}^{n}(X)$ such that

$$
\inf _{\|x\|=1, x \in \mathcal{D}(A)}\|(\lambda-A-K) x\|>0
$$

The use of [13, Theorem 5.1] makes us conclude that $\lambda-A-K \in \Phi_{+}(X)$. So, $\lambda \in \rho(A+K)$ and $\gamma([(\lambda-A-$ $\left.\left.K)^{-1} K\right]^{n}\right)<1$. Hence applying Proposition 1.5 , we get

$$
\left[I+K(\lambda-A-K)^{-1}\right] \in \Phi(X) \text { and } i\left[I+K(\lambda-A-K)^{-1}\right]=0
$$

Then

$$
\left[I+K(\lambda-A-K)^{-1}\right] \in \Phi_{+}(X) \text { and } i\left[I+K(\lambda-A-K)^{-1}\right] \leq 0
$$

So,

$$
\begin{equation*}
\left[I+\hat{K}(\lambda-\hat{A}-\hat{K})^{-1}\right] \in \Phi_{+}(X) \text { and } i\left[I+\hat{K}(\lambda-\hat{A}-\hat{K})^{-1}\right] \leq 0 \tag{20}
\end{equation*}
$$

Thus writing $\lambda-\hat{A}$ in the form

$$
\begin{equation*}
\lambda-\hat{A}=\left[I+\hat{K}(\lambda-\hat{A}-\hat{K})^{-1}\right](\lambda-\hat{A}-\hat{K}) \tag{21}
\end{equation*}
$$

Using Eqs (20) and (21) together with [10, Theorem 5] and [10, Theorem 12] we get

$$
\lambda-\hat{A} \in \Phi_{+}^{b}(X) \text { and } i(\lambda-\hat{A}) \leq 0
$$

Now, using Eq. (1) we infer that

$$
\lambda-A \in \Phi_{+}(X) \text { and } i(\lambda-A) \leq 0
$$

Finally, by Proposition 1.5 (i) we get $\lambda \notin \sigma_{\text {eap }}(A)$, this proves the assertion (i).
(ii) Since $\mathcal{K}(X) \subset \mathcal{H}_{A}^{n}(X)$, then $\sigma_{-}(A) \subset \sigma_{e \delta}(A)$. It remains to show that $\sigma_{e \delta}(A) \subset \sigma_{-}(A)$. To do this consider $\lambda \notin \sigma_{-}(A)$, then there exists $K \in \mathcal{H}_{A}^{n}(X)$ such that $\lambda \notin \sigma_{e \delta}(A+K)$. Thus $\lambda-A-K$ is surjective, then

$$
\lambda-A-K \in \Phi_{-}(X)
$$

and

$$
i(\lambda-A-K)=\alpha(\lambda-A-K) \geq 0
$$

Hence, by [14, Theorem 5.30] and Eq. (21) we deduce that

$$
\lambda-\hat{A} \in \Phi_{-}(X)
$$

and

$$
i(\lambda-\hat{A})=i(\lambda-\hat{A}-\hat{K}) \geq 0
$$

Using, Eq. (1) we get

$$
\lambda-A \in \Phi_{-}(X) \text { and } i(\lambda-A) \geq 0
$$

Finally, by Proposition 1.5 (ii) we get $\lambda \notin \sigma_{e \delta}(A)$.
Remark 4.2. It follows, immediately, from Theorem 4.1 that

$$
\sigma_{e a p}(A+K)=\sigma_{e a p}(A) \text { and } \sigma_{e \delta}(A+K)=\sigma_{e \delta}(A)
$$

for all $K \in \mathcal{H}_{A}^{n}(X)$.

References

[1] B. Abdelmoumen, A. Dehici, A. Jeribi and M. Mnif, Some new properties in Fredholm theory, Schechter essential spectrum and application to transport theory, J. Inequal. Appl. (2008), Art. ID 852676, 14 pp.
[2] J. Banaś and K. Geobel, Measures of Noncompactness in Banach Spaces, Lect Notes in Pure and Appl Math. 60. New York: Marcel Dekker,(1980), 259-262.
[3] A. Dehici and N. Boussetila, Properties of Polynomially Riesz Operators on Some Banach Spaces. Lobachevskii Journal of Mathematics. 32,(2011), pp. 39-47.
[4] K. Gustafson and J. Weidmann, On the essential spectrum, J. Math. Anal. App. 25, (1969), 121-127.
[5] I. Gohberg, A. Markus and I. A. Feldman, Normally solvable operators and ideals associated with them, Amer. Math. Soc. Tran. Ser., 2 (61), (1967), 63-84.
[6] A. Jeribi and N. Moalla, A characterization of some subsets of Schechter's essential spectrum and application to singular transport equation, J. Math. Anal. Appl., (358) no. 2,(2009), 434-444.
[7] K. Latrach and J. M. Paoli, Perturbation results for linear operators and application to the transport equation, Rocky Montain J. Math. 38(3),(2008), 955-978.
[8] A. Lebow and M. Schechter, Semigroups of operators and measures of noncompactness, J. Funct. Anal. (7), (1971), 1-26.
[9] V. Müller, Spectral theory of linear operators and spectral system in Banach algebras, Operator theory advance and application. 139, (2003).
[10] V. Müller, Spectral theory of linear operators and spectral system in Banach algebras, Oper. Theo. Adva. Appl. (2007), 139, 2nd ed.
[11] V. Rakočević, On one subset of M. Schechter's Essential Spectrum, Math. Vesnuk 5, (1981), 389-391.
[12] V. Rakočević, Semi-Fredholm operators with finite ascent or descent and perturbations, American Mathematical Society,(1995), 123, N 12.
[13] M. Schechter, Principles of functionnal Analysis, Academic Press, New York-London (1971).
[14] M. Schechter, Principles of functionnal Analysis, Grad. Stud. Math., 36, Amer. Math. Soc., Providence, RI, (2002).
[15] C. Schmoeger, The spectral mapping theorem for the essential approximate point spectrum, Colloq. Math. 74, no. 2, (1997),167-176 .
[16] A. E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163, (1966), 18-49.
[17] F. Wolf, On the essential spectrum of partial differential boundary problems, Comm. Pure. Appl. Math. 12, (1959), 211-228.
[18] F. Wolf, On the invariance of the essential spectrum under a change of boundary conditions of partial differential boundary operators, Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21, (1959), 142-147.

[^0]: 2010 Mathematics Subject Classification. Primary 47A53, 47A55; Secondary 47A10
 Keywords. Essential spectra, semi-Fredholm operators, measure of noncompactness, polynomially perturbation operators
 Received: 03 February 2014; Accepted: 19 August 2014
 Communicated by Robin Harte
 Email addresses: ammar_aymen84@yahoo.fr (Aymen Ammar), dhahri.mohammed@gmail.com (Mohammed Zerai Dhahri), Aref.Jeribi@fss.rnu.tn (Aref Jeribi)

