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Abstract. We determine the unique trees with minimum distance spectral radius in the class of all trees on
n vertices with a fixed maximum degree bounded below by d n

2 e, and in the class of all trees on 2m vertices
with perfect matching and a fixed maximum degree bounded below by dm

2 e + 1.

1. Introduction

We consider simple and undirected graphs. Let G be a connected graph on n vertices with vertex set
V(G) and edge set E(G). For u, v ∈ V(G), the distance between u and v, denoted by dG(u, v), is the length of
a shortest path from u to v in G. The distance matrix of G is the n × n matrix D(G) = (dG(u, v))u,v∈V(G). Since
D(G) is real symmetric, all its eigenvalues are real. The distance spectral radius of G, denoted by ρ(G), is the
largest eigenvalue of D(G). By the Perron-Frobenius Theorem, there is a unique unit positive eigenvector
of D(G) corresponding to ρ(G), which is called the distance Perron vector of G.

The distance spectral radius has received much attention. Ruzieh and Powers [3] and Stevanović and
Ilić [4] showed that the n-vertex path Pn is the unique n-vertex connected graph with maximum distance
spectral radius. Stevanović and Ilić [4] showed that the star Sn is the unique n-vertex tree with minimum
distance spectral radius, and determined the unique n-vertex tree with maximum distance spectral radius
when the maximum degree is fixed. Ilić [5] determined the unique n-vertex tree with minimum distance
spectral radius when the matching number is fixed. Wang and Zhou [6] determined the unique n-vertex tree
with minimum (maximum, respectively) distance spectral radius when the domination number is fixed.
More results in this line may be found in, e.g., [1, 2, 7].

In this paper, we determine the unique n-vertex tree with minimum distance spectral radius when the
maximum degree is at least d n

2 e, and the unique 2m-vertex perfect matching tree with minimum distance
spectral radius when the maximum degree is at least dm

2 e + 1.
Let T be a tree. For u ∈ V(T), NT(u) denotes the set of neighbors of u in T, and dT(u) denotes the degree

of u in T, i.e., dT(u) = |NT(u)|. Let ∆(T) be the maximum degree of T. Let |T| = |V(T)|.
Let G be a graph with complement G. For E ⊆ E(G), let G − E be the graph obtained from G by deleting

all edges of E. For F ⊆ E(G), let G + F be the graph obtained from G by adding all edges of F.
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A path u1u2 . . . ur (with r ≥ 2) in a graph G is called a pendent path (of length r − 1) at u1 if dG(u1) ≥ 3,
the degrees of u2, . . . ,ur−1 (if any exists) are all equal to 2 in G, and dG(ur) = 1.

If x is the distance Perron vector of a (connected) graph G, then xu denotes the component of x corre-
sponding to vertex u in G, and s(W) =

∑
u∈W xu for W ⊆ V(G).

2. Distance Spectral Radius of Trees with Fixed Maximum Degree

We give several lemmas that will be used in our proof.

Lemma 2.1. Let T be a tree and u1v,u2v be two non-pendent edges of T. Let T′ = T−{u2w : w ∈ NT(u2)\{v}}+{u1w :
w ∈ NT(u2) \ {v}}. Then ρ(T′) < ρ(T).

Proof. Let T1 (T2, T3, respectively) be the component of T − {u1v,u2v} containing u1 (u2, v, respectively), and
let Vi = V(Ti) for i = 1, 2, 3. Let x be the distance Perron vector of T′. Then

ρ(T) − ρ(T′) ≥ xTD(T)x − xTD(T′)x = 4s(V2 \ {u2})(s(V1) − xu2 ).

Since u2v is a non-pendent edge of T, |V2| ≥ 2 and thus s(V2 \ {u2}) > 0.
Next we show that s(V1) − xu2 > 0. Since u1v is a non-pendent edge of T, |V1| ≥ 2. Let z be a neighbor of

u1 in T1.
Case 1. dT(z) = 1. Then

ρ(T′)(s(V1) − xu2 ) ≥ ρ(T′)(xz + xu1 − xu2 )

=
∑

w∈V(T′)\{z,u1,u2}

(dT′ (z,w) + dT′ (u1,w) − dT′ (u2,w))xw

+5xu2 − xu1 − 2xz

=
∑

w∈V1∪V2\{u1,u2,z}

(dT′ (z,w) − 2)xw

+
∑
w∈V3

dT′ (z,w)xw + 5xu2 − xu1 − 2xz

> 2xu2 − 2xu1 − 2xz

≥ 2xu2 − 2s(V1).

So we have (ρ(T′) + 2)(s(V1) − xu2 ) > 0, and thus s(V1) > xu2 .
Case 2. dT(z) ≥ 2. Let z1 be a neighbor of z different from u1 in T1. Then

ρ(T′)(s(V1) − xu2 ) ≥ ρ(T′)(xz + xz1 + xu1 − xu2 )

=
∑

w∈V(T′)\{z,z1,u1,u2}

(dT′ (z,w) + dT′ (z1,w))xw

+
∑

w∈V(T′)\{z,z1,u1,u2}

(dT′ (u1,w) − dT′ (u2,w))xw

+9xu2 + xu1 − xz − xz1

=
∑

w∈V1∪V2\{z,z1,u1,u2}

(dT′ (z,w) + dT′ (z1,w) − 2)xw

+
∑
w∈V3

(dT′ (z,w) + dT′ (z1,w))xw

+9xu2 + xu1 − xz − xz1

> xu2 − xu1 − xz − xz1

≥ xu2 − s(V1).
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So we have (ρ(T′) + 1)(s(V1) − xu2 ) > 0, and thus s(V1) > xu2 .
Combining Cases 1 and 2, we have s(V1) > xu2 , and thus ρ(T′) < ρ(T).

Lemma 2.2. [6] Let G be a connected graph and uv a non-pendent cut edge of G. Let G′ be the graph obtained from
G by contracting uv and attaching a new pendent vertex to u (v). Then ρ(G′) < ρ(G).

Let T ∆
n be the set of trees on n vertices with maximum degree ∆.

Let q(T) be the number of non-pendent vertices of a tree T. Let T ∆
n (q) = {T ∈ T ∆

n : q(T) = q}.

Lemma 2.3. Let T ∈ T ∆
n (q), where d n

2 e ≤ ∆ ≤ n − 1 and q ≥ 3. Then there is a tree T′ in T ∆
n (q − 1) such that

ρ(T′) < ρ(T).

Proof. Let v be a vertex of T such that dT(v) = ∆.
Case 1. Each non-pendent edge of T is incident with v. Let u1,u2 be two distinct non-pendent vertices
different from v, and let

T′ = T − {u2y : y ∈ NT(u2) \ {v}} + {u1y : y ∈ NT(u2) \ {v}}.

Obviously, T′ ∈ T ∆
n as ∆ ≥ d n

2 e, and the non-pendent edge vu2 of T becomes pendent in T′, and thus
T′ ∈ T ∆

n (q − 1). By Lemma 2.1, ρ(T′) < ρ(T).
Case 2. There is a non-pendent edge uw of T, where u and w are different from v. Suppose without loss of
generality that dT(v,u) < dT(v,w). Let

T′ = T − {wz : z ∈ NT(w) \ {u}} + {uz : z ∈ NT(w) \ {u}}.

Obviously, T′ ∈ T ∆
n (q − 1). By Lemma 2.2, ρ(T′) < ρ(T).

Let Sn,i be the double star obtained by attaching i−1 and n− i−1 pendent vertices to the two end vertices
of P2 respectively, where d n

2 e ≤ i ≤ n − 1. In particular, Sn,n−1 = Sn.

Theorem 2.4. Let T ∈ T ∆
n , where d n

2 e ≤ ∆ ≤ n − 1. Then ρ(T) ≥ ρ(Sn,∆) with equality if and only if T � Sn,∆.

Proof. Let T be a tree in T ∆
n with minimal distance spectral radius. We only need to show that T � Sn,∆.

The case ∆ = n − 1 is trivial as T n−1
n = {Sn}.

Suppose that ∆ ≤ n − 2. Then q(T) ≥ 2. By Lemma 2.3, q(T) = 2, and then T � Sn,∆.

Stevanović and Ilić [4] conjectured that a complete ∆-ary tree has the minimum distance spectral radius
among trees T ∆

n . Theorem 2.4 shows that this is true for ∆ ≥ d n
2 e.

3. Distance Spectral Radius of Perfect Matching Trees with Fixed Maximum Degree

It is well known that if a tree has a perfect matching, then it is unique. Let T2m be the set of trees on 2m
vertices with a perfect matching. For T ∈ T2m, let M(T) be the unique perfect matching of T. For 0 ≤ j ≤ m−2,
let X j

2m = {T ∈ T2m : there are exactly j non-pendent edges in M(T)}. Obviously, T2m = ∪m−2
j=0 X j

2m.
Let Am be the tree with 2m vertices obtained from the star Sm+1 by attaching a pendent vertex to each of

certain m − 1 non-central vertices. The center of the star Sm+1 is also the center of Am. Obviously, Am ∈ T2m,
and all edges in M(Am) are pendent in Am. LetH = {Ak: k is a positive integer}.

Lemma 3.1. T ∈ X0
2m if and only if T is a tree with 2m vertices obtainable from the union of some graphs in H by

joining centers with edges.
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Proof. Suppose that T is a tree with 2m vertices obtained from union of H1,H2, . . . ,Ht ∈ H by joining centers
with edges. Then T has a unique perfect matching M(T) = ∪t

i=1M(Hi) and all edges in M(T) are pendent
edges of T. Thus T ∈ X0

2m.
Suppose that T ∈ X0

2m. If m = 1, then T = P2 = A1 ∈ H , and if m = 2, then T = P4 = A2 ∈ H . Suppose
that m ≥ 3. Let N = {v ∈ V(T) : dT(v) ≥ 3} and P = {uv ∈ E(T) : u, v ∈ N}. Note that P ∩M(T) = ∅. Obviously,
T − P is a forest on 2m vertices. Let C be a component of T − P. If there are two vertices, say u and v with
degree at least 3 in C, then each internal vertex (if any exists) in the path connecting u and v is of degree at
least 3 (because each non-pendent vertex has a pendent neighbor), and thus all edges in this path should be
in P, a contradiction. Then C contains at most one vertex with degree at least 3, and thus C ∈ H . Obviously,
the vertices in N are their centers of components T − P.

Lemma 3.2. Let T ∈ T2m with u, v ∈ V(T) and u , v. Then dT(u) + dT(v) ≤ m + 2.

Proof. Let T1 be the subgraph of T induced by NT(u) ∪NT(v) ∪ {u, v}. Obviously, |E(T1)| ≥ dT(u) + dT(v) − 1
and E(T1) contains at most 2 edges in M(T). Thus there are at most 2m− 1− (dT(u) + dT(v)− 1) edges outside
T1. If dT(u) + dT(v) > m + 2, then there are at most 2m − 1 − (m + 3 − 1) = m − 3 edges outside T1, and thus
|M(T)| ≤ 2 + m − 3 = m − 1, a contradiction.

Lemma 3.3. Let T ∈ X j
2m, where 1 ≤ j ≤ m− 2. If ∆(T) ≥ dm

2 e+ 1, then there is a tree T′ ∈ X j−1
2m with ∆(T′) = ∆(T)

such that ρ(T′) < ρ(T).

Proof. Let v be a vertex of T with dT(v) = ∆(T).
Case 1. v is not incident with any non-pendent edge in M(T). Let uw be a non-pendent edge in M(T). Let
T′ = T − {wy : y ∈ NT(w)\{u}}+ {uy : y ∈ NT(w)\{u}}. Obviously, M(T′) = M(T) and T′ ∈ X j−1

2m . By Lemma 3.2
and the fact that ∆(T) ≥ dm

2 e + 1, we have

dT′ (u) ≤ m + 2 − dT′ (v) = m + 2 − dT(v) = m + 2 − ∆(T)

≤ m + 2 −
(⌈m

2

⌉
+ 1

)
=

⌊m
2

⌋
+ 1

≤ ∆(T).

Then ∆(T′) = max{dT′ (u), dT′ (v)} = ∆(T). By Lemma 2.2, ρ(T′) < ρ(T).
Case 2. v is incident with some non-pendent edge in M(T), say vw is a non-pendent edge in M(T).
Let z be a neighbor of v different from w. Since vw ∈ M(T), zv is also a non-pendent edge of T. Let
T′ = T − {wy : y ∈ NT(w)\{v}} + {zy : y ∈ NT(w)\{v}}. Obviously, M(T′) = M(T) and T′ ∈ X j−1

2m . By
Lemma 3.2 and the fact that ∆(T) ≥ dm

2 e+ 1, we have dT′ (z) ≤ m + 2− dT′ (v) = m + 2−∆(T) ≤ ∆(T), and thus
∆(T′) = max{dT′ (v), dT′ (z)} = ∆(T). By Lemma 2.1, ρ(T′) < ρ(T).

For T ∈ X0
2m with m ≥ 3, let P = {uv ∈ E(T) : dT(u), dT(v) ≥ 3}. By the proof of Lemma 3.1, T − P is a

forest, whose components are trees in H . Let Hi be the component of T − P and vi be the center of Hi for
i = 1, 2, . . . , t, where t ≥ 1. The contracted tree of T, denoted by T̂, is defined to be the tree obtained from T
by replacing Hi with vi for i = 1, 2, . . . , t, i.e., V(T̂) = {v1, v2, . . . , vt} and viv j ∈ T̂ if and only if viv j ∈ T. For
T ∈ X0

2m with m = 1, 2, let T̂ = K1.

Lemma 3.4. Let T ∈ X0
2m with ∆(T) ≥ dm

2 e + 1. If |T̂| ≥ 3, then there is a tree T′ ∈ X0
2m with ∆(T′) = ∆(T) and

|T̂′| = |T̂| − 1 such that ρ(T′) < ρ(T).

Proof. Let v be a vertex of T with dT(v) = ∆(T). Obviously, T̂ has at least two pendent edges.
Case 1. T̂ has a pendent edge uy, where u , v and dT̂(y) = 1. Let z be a neighbor of u in T̂ different from
y, and yy1,uu1, zz1 pendent edges of T. Let T1 (T2, respectively) be the component of T − {uy} containing
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u (y, respectively), and Vi = V(Ti) for i = 1, 2. Note that dT(y) ≥ 3. Then |NT(y) \ {u, y1}| ≥ 1. Let
T′ = T − {yw : w ∈ NT(y) \ {u, y1}}+ {uw : w ∈ NT(y) \ {u, y1}}. Let x be the distance Perron vector of T′. Then

ρ(T) − ρ(T′) ≥ xTD(T)x − xTD(T′)x = 2s(V2 \ {y, y1})(s(V1) − xy − xy1 ).

Note that

ρ(T′)(s(V1) − xy − xy1 ) ≥ ρ(T′)(xz + xz1 + xu + xu1 − xy − xy1 )

=
∑

w∈V1\{z,z1,u,u1}

(dT′ (z,w) + dT′ (z1,w) − 2)xw

+
∑

w∈V2\{y,y1}

(dT′ (u,w) + dT′ (u1,w))xw

+7xy + 11xy1 − xz − xz1 + xu + xu1

> xy + xy1 − xz − xz1 − xu − xu1

≥ xy + xy1 − s(V1).

So s(V1) > xy + xy1 , and thus ρ(T′) < ρ(T).
Case 2. All pendent edges of T̂ are incident with v. Obviously, T̂ = St with center v. Let vv1, vv2 be
two edges in T̂. Then dT(v1), dT(v2) ≥ 3. Let z be a non-pendent neighbor of v1 different from v in T,
and v1z1, v2z2, zz3 pendent edges of T. Let T1 (T2, T3, respectively) be the component of T − {vv1, vv2}

containing v1 (v2, v, respectively), and Vi = V(Ti) for i = 1, 2, 3. Obviously, |NT(v2) \ {v, z2}| ≥ 1. Let
T′ = T − {v2w : w ∈ NT(v2) \ {v, z2}} + {v1w : w ∈ NT(v2) \ {v, z2}}. Let x be the distance Perron vector of T′.
Then

ρ(T) − ρ(T′) ≥ xTD(T)x − xTD(T′)x = 4s(V2 \ {v2, z2})(s(V1) − xv2 − xz2 ).

Note that

ρ(T′)(s(V1) − xv2 − xz2 ) ≥ ρ(T′)(xz + xz1 + xz3 + xv1 − xv2 − xz2 )

=
∑

w∈V1\{z,z1,z3,v1}

(dT′ (v1,w) + dT′ (z1,w) − 2)xw

+
∑

w∈V2\{z2,v2}

(dT′ (v1,w) + dT′ (z1,w) − 2)xw

+
∑
w∈V3

(dT′ (z,w) + dT′ (z3,w))xw

+11xv2 + 15xz2 − xv1 − xz1 − 3xz − 3xz3

> 3xv2 + 3xz2 − 3xv1 − 3xz1 − 3xz − 3xz3

≥ 3(xv2 + xz2 − s(V1)).

So s(V1) > xv2 + xz2 , and thus ρ(T′) < ρ(T).
In either case, M(T′) = M(T), all edges in M(T′) are pendent edges of T′, and thus T′ ∈ X0

2m. Moreover,
|T̂′| = |T̂| − 1 and ∆(T′) = dT′ (v) = dT(v) = ∆(T) since ∆(T) ≥ dm

2 e + 1.

Let S∗2m,i be the tree in T2m obtained by attaching a new pendent edge at each vertex of Sm,i−1, where
d

m
2 e + 1 ≤ i ≤ m.

Theorem 3.5. Let T ∈ T2m with ∆(T) = ∆, where dm
2 e + 1 ≤ ∆ ≤ m. Then ρ(T) ≥ ρ(S∗2m,∆) with equality if and

only if T � S∗2m,∆.
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Proof. Let T be a tree in T2m with ∆(T) = ∆ having minimal distance spectral radius. We only need to show
that T � S∗2m,∆.

By Lemma 3.3, T ∈ X0
2m. If ∆ = m, then T � Am � S∗2m,∆, and thus the result holds trivially. Suppose that

∆ ≤ m − 1. Then |T̂| ≥ 2. By Lemma 3.4, |T̂| = 2, and thus T̂ = P2, or equivalently, T � S∗2m,∆.

For a graph G with v ∈ V(G) and nonnegative integers k and l with k ≥ max{l, 1}, let Gv(k, l) be the graph
obtained from G by attaching a path of length k and a path of length l at v (if l = 0, then only a path of length
k is attached).

Lemma 3.6. [4, 7] Let G be a connected graph with at least two vertices and v ∈ V(G). If k ≥ l ≥ 1, then
ρ(Gv(k, l)) < ρ(Gv(k + 1, l − 1)).

Let B∗2m,i be the tree in T2m obtained by adding an edge between the center of S∗2(i−1),i−1 and a pendent
vertex of P2(m−i+1), where 2 ≤ i ≤ m. In particular, B∗2m,2 = P2m. For a graph G with W ⊆ V(G), G[W] denotes
the subgraph of G induced by W. The following theorem was given in [5]. For completeness, however, we
include a proof here.

Theorem 3.7. Let T ∈ T2m with ∆(T) = ∆, where 2 ≤ ∆ ≤ m. Then ρ(T) ≤ ρ(B∗2m,∆) with equality if and only if
T � B∗2m,∆.

Proof. Let T be a tree in T2m with ∆(T) = ∆ having maximal distance spectral radius. We only need to show
that T � B∗2m,∆. The case ∆ = 2 is trivial. Suppose that ∆ ≥ 3. Let u ∈ V(G) with dT(u) = ∆.

Suppose that there are at least two vertices with degree at least 3 in T. Choose a vertex v with degree at
least 3 such that the distance between u and v is as large as possible. There are at least two pendent paths,
say P1 = vu1 . . . uk and P2 = vv1 . . . vl at v in T, where k ≥ l ≥ 1. Let G = T[V(T) \ {u1, . . . ,uk, v1, . . . , vl}]. Then
T � Gv(k, l). Let T′ = T − vu1 + v1u1 if l = 1 and T′ = T − vl−2vl−1 + ukvl−1 if l ≥ 2 (where vl−2 = v for l = 2).
Then M(T′) = M(T), T′ ∈ T2m, and ∆(T′) = ∆. Note that T′ � Gv(k + 1, 0) if l = 1 and T′ � Gv(k + 2, l − 2) if
l ≥ 2. By Lemma 3.6, ρ(T′) > ρ(T), a contradiction. Thus u is the unique vertex of T with degree at least 3,
i.e., T consists of ∆ pendent paths at u.

Suppose that there are at least two pendent paths at u in T with length at least 3, say Q1 = uw1 . . .wk
and Q2 = uz1 . . . zl, where k ≥ l ≥ 3. Then T = Hu(k, l) with H = T[V(T) \ {w1, . . . ,wk, z1, . . . , zl}]. Let
T′′ = T − zl−2zl−1 + wkzl−1. Then M(T′′) = M(T), T′′ ∈ T2m, and ∆(T′′) = ∆. Note that T′′ � Hu(k + 2, l− 2). By
Lemma 3.6, ρ(T′′) > ρ(T), a contradiction. Thus there is exactly one pendent path at u with length at least
3. Since T ∈ T2m, we have T � B∗2m,∆.
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