Filomat 29:9 (2015), 2021–2026 DOI 10.2298/FIL1509021L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Distance Spectral Radius of Trees with Fixed Maximum Degree

Zuojuan Luo^a, Bo Zhou^{a,*}

^a School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P.R. China

Abstract. We determine the unique trees with minimum distance spectral radius in the class of all trees on *n* vertices with a fixed maximum degree bounded below by $\lceil \frac{n}{2} \rceil$, and in the class of all trees on 2*m* vertices with perfect matching and a fixed maximum degree bounded below by $\lceil \frac{m}{2} \rceil + 1$.

1. Introduction

We consider simple and undirected graphs. Let *G* be a connected graph on *n* vertices with vertex set V(G) and edge set E(G). For $u, v \in V(G)$, the distance between *u* and *v*, denoted by $d_G(u, v)$, is the length of a shortest path from *u* to *v* in *G*. The distance matrix of *G* is the $n \times n$ matrix $D(G) = (d_G(u, v))_{u,v \in V(G)}$. Since D(G) is real symmetric, all its eigenvalues are real. The distance spectral radius of *G*, denoted by $\rho(G)$, is the largest eigenvalue of D(G). By the Perron-Frobenius Theorem, there is a unique unit positive eigenvector of D(G) corresponding to $\rho(G)$, which is called the distance Perron vector of *G*.

The distance spectral radius has received much attention. Ruzieh and Powers [3] and Stevanović and Ilić [4] showed that the *n*-vertex path P_n is the unique *n*-vertex connected graph with maximum distance spectral radius. Stevanović and Ilić [4] showed that the star S_n is the unique *n*-vertex tree with minimum distance spectral radius, and determined the unique *n*-vertex tree with maximum distance spectral radius when the maximum degree is fixed. Ilić [5] determined the unique *n*-vertex tree with minimum distance spectral radius when the matching number is fixed. Wang and Zhou [6] determined the unique *n*-vertex tree with minimum distance spectral radius when the matching number is fixed. Wang and Zhou [6] determined the unique *n*-vertex tree with minimum (maximum, respectively) distance spectral radius when the domination number is fixed. More results in this line may be found in, e.g., [1, 2, 7].

In this paper, we determine the unique *n*-vertex tree with minimum distance spectral radius when the maximum degree is at least $\lceil \frac{n}{2} \rceil$, and the unique 2*m*-vertex perfect matching tree with minimum distance spectral radius when the maximum degree is at least $\lceil \frac{m}{2} \rceil + 1$.

Let *T* be a tree. For $u \in V(T)$, $N_T(u)$ denotes the set of neighbors of *u* in *T*, and $d_T(u)$ denotes the degree of *u* in *T*, i.e., $d_T(u) = |N_T(u)|$. Let $\Delta(T)$ be the maximum degree of *T*. Let |T| = |V(T)|.

Let *G* be a graph with complement \overline{G} . For $E \subseteq E(G)$, let G - E be the graph obtained from *G* by deleting all edges of *E*. For $F \subseteq E(\overline{G})$, let G + F be the graph obtained from *G* by adding all edges of *F*.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C50; Secondary 05C35, 05C12, 05C70

Keywords. distance spectral radius, maximum degree, tree, perfect matching

Received: 04 Feburary 2014; Accepted: 03 May 2015

Communicated by Francesco Belardo

Research supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20124407110002) * Corresponding author

Email address: zhoubo@scnu.edu.cn (Bo Zhou)

A path $u_1u_2...u_r$ (with $r \ge 2$) in a graph *G* is called a pendent path (of length r - 1) at u_1 if $d_G(u_1) \ge 3$, the degrees of $u_2, ..., u_{r-1}$ (if any exists) are all equal to 2 in *G*, and $d_G(u_r) = 1$.

If *x* is the distance Perron vector of a (connected) graph *G*, then x_u denotes the component of *x* corresponding to vertex *u* in *G*, and $s(W) = \sum_{u \in W} x_u$ for $W \subseteq V(G)$.

2. Distance Spectral Radius of Trees with Fixed Maximum Degree

We give several lemmas that will be used in our proof.

Lemma 2.1. Let T be a tree and u_1v , u_2v be two non-pendent edges of T. Let $T' = T - \{u_2w : w \in N_T(u_2) \setminus \{v\}\} + \{u_1w : w \in N_T(u_2) \setminus \{v\}\}$. Then $\rho(T') < \rho(T)$.

Proof. Let T_1 (T_2 , T_3 , respectively) be the component of $T - \{u_1v, u_2v\}$ containing u_1 (u_2 , v, respectively), and let $V_i = V(T_i)$ for i = 1, 2, 3. Let x be the distance Perron vector of T'. Then

$$\rho(T) - \rho(T') \ge x^T D(T) x - x^T D(T') x = 4s(V_2 \setminus \{u_2\})(s(V_1) - x_{u_2}).$$

Since $u_2 v$ is a non-pendent edge of T, $|V_2| \ge 2$ and thus $s(V_2 \setminus \{u_2\}) > 0$.

Next we show that $s(V_1) - x_{u_2} > 0$. Since u_1v is a non-pendent edge of T, $|V_1| \ge 2$. Let z be a neighbor of u_1 in T_1 .

Case 1. $d_T(z) = 1$. Then

$$\rho(T')(s(V_1) - x_{u_2}) \geq \rho(T')(x_z + x_{u_1} - x_{u_2}) \\
= \sum_{w \in V(T') \setminus \{z, u_1, u_2\}} (d_{T'}(z, w) + d_{T'}(u_1, w) - d_{T'}(u_2, w))x_w \\
+ 5x_{u_2} - x_{u_1} - 2x_z \\
= \sum_{w \in V_1 \cup V_2 \setminus \{u_1, u_2, z\}} (d_{T'}(z, w) - 2)x_w \\
+ \sum_{w \in V_3} d_{T'}(z, w)x_w + 5x_{u_2} - x_{u_1} - 2x_z \\
> 2x_{u_2} - 2x_{u_1} - 2x_z \\
\geq 2x_{u_2} - 2s(V_1).$$

So we have $(\rho(T') + 2)(s(V_1) - x_{u_2}) > 0$, and thus $s(V_1) > x_{u_2}$. **Case 2.** $d_T(z) \ge 2$. Let z_1 be a neighbor of z different from u_1 in T_1 . Then

$$\begin{split} \rho(T')(s(V_1) - x_{u_2}) &\geq \rho(T')(x_z + x_{z_1} + x_{u_1} - x_{u_2}) \\ &= \sum_{w \in V(T') \setminus \{z, z_1, u_1, u_2\}} (d_{T'}(z, w) + d_{T'}(z_1, w)) x_w \\ &+ \sum_{w \in V(T') \setminus \{z, z_1, u_1, u_2\}} (d_{T'}(u_1, w) - d_{T'}(u_2, w)) x_w \\ &+ 9x_{u_2} + x_{u_1} - x_z - x_{z_1} \\ &= \sum_{w \in V_1 \cup V_2 \setminus \{z, z_1, u_1, u_2\}} (d_{T'}(z, w) + d_{T'}(z_1, w) - 2) x_w \\ &+ \sum_{w \in V_3} (d_{T'}(z, w) + d_{T'}(z_1, w)) x_w \\ &+ 9x_{u_2} + x_{u_1} - x_z - x_{z_1} \\ &> x_{u_2} - x_{u_1} - x_z - x_{z_1} \\ &\geq x_{u_2} - s(V_1). \end{split}$$

So we have $(\rho(T') + 1)(s(V_1) - x_{u_2}) > 0$, and thus $s(V_1) > x_{u_2}$.

Combining Cases 1 and 2, we have $s(V_1) > x_{u_2}$, and thus $\rho(T') < \rho(T)$. \Box

Lemma 2.2. [6] Let G be a connected graph and uv a non-pendent cut edge of G. Let G' be the graph obtained from G by contracting uv and attaching a new pendent vertex to u(v). Then $\rho(G') < \rho(G)$.

Let \mathcal{T}_n^{Δ} be the set of trees on *n* vertices with maximum degree Δ . Let q(T) be the number of non-pendent vertices of a tree *T*. Let $\mathcal{T}_n^{\Delta}(q) = \{T \in \mathcal{T}_n^{\Delta} : q(T) = q\}$.

Lemma 2.3. Let $T \in \mathcal{T}_n^{\Delta}(q)$, where $\lceil \frac{n}{2} \rceil \leq \Delta \leq n-1$ and $q \geq 3$. Then there is a tree T' in $\mathcal{T}_n^{\Delta}(q-1)$ such that $\rho(T') < \rho(T)$.

Proof. Let *v* be a vertex of *T* such that $d_T(v) = \Delta$.

Case 1. Each non-pendent edge of *T* is incident with *v*. Let u_1, u_2 be two distinct non-pendent vertices different from *v*, and let

 $T' = T - \{u_2 y : y \in N_T(u_2) \setminus \{v\}\} + \{u_1 y : y \in N_T(u_2) \setminus \{v\}\}.$

Obviously, $T' \in \mathcal{T}_n^{\Delta}$ as $\Delta \geq \lceil \frac{n}{2} \rceil$, and the non-pendent edge vu_2 of T becomes pendent in T', and thus $T' \in \mathcal{T}_n^{\Delta}(q-1)$. By Lemma 2.1, $\rho(T') < \rho(T)$.

Case 2. There is a non-pendent edge uw of T, where u and w are different from v. Suppose without loss of generality that $d_T(v, u) < d_T(v, w)$. Let

$$T' = T - \{wz : z \in N_T(w) \setminus \{u\}\} + \{uz : z \in N_T(w) \setminus \{u\}\}.$$

Obviously, $T' \in \mathcal{T}_n^{\Delta}(q-1)$. By Lemma 2.2, $\rho(T') < \rho(T)$.

Let $S_{n,i}$ be the double star obtained by attaching i-1 and n-i-1 pendent vertices to the two end vertices of P_2 respectively, where $\lceil \frac{n}{2} \rceil \le i \le n-1$. In particular, $S_{n,n-1} = S_n$.

Theorem 2.4. Let $T \in \mathcal{T}_n^{\Delta}$, where $\lceil \frac{n}{2} \rceil \leq \Delta \leq n-1$. Then $\rho(T) \geq \rho(S_{n,\Delta})$ with equality if and only if $T \cong S_{n,\Delta}$.

Proof. Let *T* be a tree in \mathcal{T}_n^{Δ} with minimal distance spectral radius. We only need to show that $T \cong S_{n,\Delta}$. The case $\Delta = n - 1$ is trivial as $\mathcal{T}_n^{n-1} = \{S_n\}$. Suppose that $\Delta \leq n - 2$. Then $q(T) \geq 2$. By Lemma 2.3, q(T) = 2, and then $T \cong S_{n,\Delta}$. \Box

Stevanović and Ilić [4] conjectured that a complete Δ -ary tree has the minimum distance spectral radius among trees \mathcal{T}_n^{Δ} . Theorem 2.4 shows that this is true for $\Delta \geq \lceil \frac{n}{2} \rceil$.

3. Distance Spectral Radius of Perfect Matching Trees with Fixed Maximum Degree

It is well known that if a tree has a perfect matching, then it is unique. Let \mathcal{T}_{2m} be the set of trees on 2m vertices with a perfect matching. For $T \in \mathcal{T}_{2m}$, let M(T) be the unique perfect matching of T. For $0 \le j \le m-2$, let $X_{2m}^j = \{T \in \mathcal{T}_{2m} : \text{there are exactly } j \text{ non-pendent edges in } M(T)\}$. Obviously, $\mathcal{T}_{2m} = \bigcup_{j=0}^{m-2} X_{2m}^j$.

Let A_m be the tree with 2m vertices obtained from the star S_{m+1} by attaching a pendent vertex to each of certain m - 1 non-central vertices. The center of the star S_{m+1} is also the center of A_m . Obviously, $A_m \in \mathcal{T}_{2m}$, and all edges in $M(A_m)$ are pendent in A_m . Let $\mathcal{H} = \{A_k: k \text{ is a positive integer}\}$.

Lemma 3.1. $T \in X_{2m}^0$ if and only if T is a tree with 2m vertices obtainable from the union of some graphs in \mathcal{H} by joining centers with edges.

Proof. Suppose that *T* is a tree with 2m vertices obtained from union of $H_1, H_2, ..., H_t \in \mathcal{H}$ by joining centers with edges. Then *T* has a unique perfect matching $M(T) = \bigcup_{i=1}^{t} M(H_i)$ and all edges in M(T) are pendent edges of *T*. Thus $T \in X_{2m}^0$.

edges of *T*. Thus $T \in X_{2m}^0$. Suppose that $T \in X_{2m}^0$. If m = 1, then $T = P_2 = A_1 \in \mathcal{H}$, and if m = 2, then $T = P_4 = A_2 \in \mathcal{H}$. Suppose that $m \ge 3$. Let $N = \{v \in V(T) : d_T(v) \ge 3\}$ and $P = \{uv \in E(T) : u, v \in N\}$. Note that $P \cap M(T) = \emptyset$. Obviously, T - P is a forest on 2m vertices. Let *C* be a component of T - P. If there are two vertices, say *u* and *v* with degree at least 3 in *C*, then each internal vertex (if any exists) in the path connecting *u* and *v* is of degree at least 3 (because each non-pendent vertex has a pendent neighbor), and thus all edges in this path should be in *P*, a contradiction. Then *C* contains at most one vertex with degree at least 3, and thus $C \in \mathcal{H}$. Obviously, the vertices in *N* are their centers of components T - P. \Box

Lemma 3.2. Let $T \in \mathcal{T}_{2m}$ with $u, v \in V(T)$ and $u \neq v$. Then $d_T(u) + d_T(v) \leq m + 2$.

Proof. Let T_1 be the subgraph of T induced by $N_T(u) \cup N_T(v) \cup \{u, v\}$. Obviously, $|E(T_1)| \ge d_T(u) + d_T(v) - 1$ and $E(T_1)$ contains at most 2 edges in M(T). Thus there are at most $2m - 1 - (d_T(u) + d_T(v) - 1)$ edges outside T_1 . If $d_T(u) + d_T(v) > m + 2$, then there are at most 2m - 1 - (m + 3 - 1) = m - 3 edges outside T_1 , and thus $|M(T)| \le 2 + m - 3 = m - 1$, a contradiction. \Box

Lemma 3.3. Let $T \in X_{2m}^{j}$, where $1 \le j \le m-2$. If $\Delta(T) \ge \lceil \frac{m}{2} \rceil + 1$, then there is a tree $T' \in X_{2m}^{j-1}$ with $\Delta(T') = \Delta(T)$ such that $\rho(T') < \rho(T)$.

Proof. Let *v* be a vertex of *T* with $d_T(v) = \Delta(T)$.

Case 1. *v* is not incident with any non-pendent edge in M(T). Let *uw* be a non-pendent edge in M(T). Let $T' = T - \{wy : y \in N_T(w) \setminus \{u\}\} + \{uy : y \in N_T(w) \setminus \{u\}\}$. Obviously, M(T') = M(T) and $T' \in X_{2m}^{j-1}$. By Lemma 3.2 and the fact that $\Delta(T) \ge \lceil \frac{m}{2} \rceil + 1$, we have

$$d_{T'}(u) \leq m+2-d_{T'}(v) = m+2-d_T(v) = m+2-\Delta(T)$$

$$\leq m+2-\left(\left\lceil \frac{m}{2} \right\rceil + 1\right) = \left\lfloor \frac{m}{2} \right\rfloor + 1$$

$$\leq \Delta(T).$$

Then $\Delta(T') = \max\{d_{T'}(u), d_{T'}(v)\} = \Delta(T)$. By Lemma 2.2, $\rho(T') < \rho(T)$.

Case 2. v is incident with some non-pendent edge in M(T), say vw is a non-pendent edge in M(T). Let z be a neighbor of v different from w. Since $vw \in M(T)$, zv is also a non-pendent edge of T. Let $T' = T - \{wy : y \in N_T(w) \setminus \{v\}\} + \{zy : y \in N_T(w) \setminus \{v\}\}$. Obviously, M(T') = M(T) and $T' \in X_{2m}^{j-1}$. By Lemma 3.2 and the fact that $\Delta(T) \ge \lceil \frac{m}{2} \rceil + 1$, we have $d_{T'}(z) \le m + 2 - d_{T'}(v) = m + 2 - \Delta(T) \le \Delta(T)$, and thus $\Delta(T') = \max\{d_{T'}(v), d_{T'}(z)\} = \Delta(T)$. By Lemma 2.1, $\rho(T') < \rho(T)$. \Box

For $T \in X_{2m}^0$ with $m \ge 3$, let $P = \{uv \in E(T) : d_T(u), d_T(v) \ge 3\}$. By the proof of Lemma 3.1, T - P is a forest, whose components are trees in \mathcal{H} . Let H_i be the component of T - P and v_i be the center of H_i for i = 1, 2, ..., t, where $t \ge 1$. The contracted tree of T, denoted by \widehat{T} , is defined to be the tree obtained from T by replacing H_i with v_i for i = 1, 2, ..., t, i.e., $V(\widehat{T}) = \{v_1, v_2, ..., v_i\}$ and $v_i v_j \in \widehat{T}$ if and only if $v_i v_j \in T$. For $T \in X_{2m}^0$ with m = 1, 2, let $\widehat{T} = K_1$.

Lemma 3.4. Let $T \in X_{2m}^0$ with $\Delta(T) \ge \lceil \frac{m}{2} \rceil + 1$. If $|\widehat{T}| \ge 3$, then there is a tree $T' \in X_{2m}^0$ with $\Delta(T') = \Delta(T)$ and $|\widehat{T'}| = |\widehat{T}| - 1$ such that $\rho(T') < \rho(T)$.

Proof. Let *v* be a vertex of *T* with $d_T(v) = \Delta(T)$. Obviously, \widehat{T} has at least two pendent edges.

Case 1. \widehat{T} has a pendent edge uy, where $u \neq v$ and $d_{\widehat{T}}(y) = 1$. Let z be a neighbor of u in \widehat{T} different from y, and yy_1, uu_1, zz_1 pendent edges of T. Let T_1 (T_2 , respectively) be the component of $T - \{uy\}$ containing

u(y, respectively), and $V_i = V(T_i)$ for i = 1, 2. Note that $d_T(y) \ge 3$. Then $|N_T(y) \setminus \{u, y_1\}| \ge 1$. Let $T' = T - \{yw : w \in N_T(y) \setminus \{u, y_1\}\} + \{uw : w \in N_T(y) \setminus \{u, y_1\}\}$. Let x be the distance Perron vector of T'. Then

$$\rho(T) - \rho(T') \ge x^T D(T) x - x^T D(T') x = 2s(V_2 \setminus \{y, y_1\})(s(V_1) - x_y - x_{y_1}).$$

Note that

$$\rho(T')(s(V_1) - x_y - x_{y_1}) \geq \rho(T')(x_z + x_{z_1} + x_u + x_{u_1} - x_y - x_{y_1}) \\
= \sum_{w \in V_1 \setminus \{z, z_1, u, u_1\}} (d_{T'}(z, w) + d_{T'}(z_1, w) - 2)x_w \\
+ \sum_{w \in V_2 \setminus \{y, y_1\}} (d_{T'}(u, w) + d_{T'}(u_1, w))x_w \\
+ 7x_y + 11x_{y_1} - x_z - x_{z_1} + x_u + x_{u_1} \\
\geq x_y + x_{y_1} - x_z - x_{z_1} - x_u - x_{u_1} \\
\geq x_y + x_{y_1} - s(V_1).$$

So $s(V_1) > x_y + x_{y_1}$, and thus $\rho(T') < \rho(T)$.

Case 2. All pendent edges of \widehat{T} are incident with v. Obviously, $\widehat{T} = S_t$ with center v. Let vv_1, vv_2 be two edges in \widehat{T} . Then $d_T(v_1), d_T(v_2) \ge 3$. Let z be a non-pendent neighbor of v_1 different from v in T, and v_1z_1, v_2z_2, zz_3 pendent edges of T. Let T_1 (T_2 , T_3 , respectively) be the component of $T - \{vv_1, vv_2\}$ containing v_1 (v_2 , v, respectively), and $V_i = V(T_i)$ for i = 1, 2, 3. Obviously, $|N_T(v_2) \setminus \{v, z_2\}| \ge 1$. Let $T' = T - \{v_2w : w \in N_T(v_2) \setminus \{v, z_2\}\} + \{v_1w : w \in N_T(v_2) \setminus \{v, z_2\}\}$. Let x be the distance Perron vector of T'. Then

$$\rho(T) - \rho(T') \ge x^T D(T) x - x^T D(T') x = 4s(V_2 \setminus \{v_2, z_2\})(s(V_1) - x_{v_2} - x_{z_2}).$$

Note that

$$\rho(T')(s(V_1) - x_{v_2} - x_{z_2}) \geq \rho(T')(x_z + x_{z_1} + x_{z_3} + x_{v_1} - x_{v_2} - x_{z_2}) \\
= \sum_{w \in V_1 \setminus \{z, z_1, z_3, v_1\}} (d_{T'}(v_1, w) + d_{T'}(z_1, w) - 2)x_w \\
+ \sum_{w \in V_2 \setminus \{z_2, v_2\}} (d_{T'}(v_1, w) + d_{T'}(z_1, w) - 2)x_w \\
+ \sum_{w \in V_3} (d_{T'}(z, w) + d_{T'}(z_3, w))x_w \\
+ 11x_{v_2} + 15x_{z_2} - x_{v_1} - x_{z_1} - 3x_z - 3x_{z_3} \\
> 3x_{v_2} + 3x_{z_2} - 3x_{v_1} - 3x_{z_1} - 3x_z - 3x_{z_3} \\
\geq 3(x_{v_2} + x_{z_2} - s(V_1)).$$

So $s(V_1) > x_{v_2} + x_{z_2}$, and thus $\rho(T') < \rho(T)$.

In either case, M(T') = M(T), all edges in M(T') are pendent edges of T', and thus $T' \in X_{2m}^0$. Moreover, $|\widehat{T'}| = |\widehat{T}| - 1$ and $\Delta(T') = d_{T'}(v) = \Delta(T)$ since $\Delta(T) \ge \lceil \frac{m}{2} \rceil + 1$. \Box

Let $S_{2m,i}^*$ be the tree in \mathcal{T}_{2m} obtained by attaching a new pendent edge at each vertex of $S_{m,i-1}$, where $\lceil \frac{m}{2} \rceil + 1 \le i \le m$.

Theorem 3.5. Let $T \in \mathcal{T}_{2m}$ with $\Delta(T) = \Delta$, where $\lceil \frac{m}{2} \rceil + 1 \le \Delta \le m$. Then $\rho(T) \ge \rho(S^*_{2m,\Delta})$ with equality if and only if $T \cong S^*_{2m,\Delta}$.

Proof. Let *T* be a tree in \mathcal{T}_{2m} with $\Delta(T) = \Delta$ having minimal distance spectral radius. We only need to show that $T \cong S^*_{2m,\Delta}$.

By Lemma 3.3, $T \in X_{2m}^0$. If $\Delta = m$, then $T \cong A_m \cong S_{2m,\Delta'}^*$ and thus the result holds trivially. Suppose that $\Delta \leq m - 1$. Then $|\widehat{T}| \geq 2$. By Lemma 3.4, $|\widehat{T}| = 2$, and thus $\widehat{T} = P_2$, or equivalently, $T \cong S_{2m,\Delta}^*$. \Box

For a graph *G* with $v \in V(G)$ and nonnegative integers *k* and *l* with $k \ge \max\{l, 1\}$, let $G_v(k, l)$ be the graph obtained from *G* by attaching a path of length *k* and a path of length *l* at *v* (if l = 0, then only a path of length *k* is attached).

Lemma 3.6. [4, 7] Let G be a connected graph with at least two vertices and $v \in V(G)$. If $k \ge l \ge 1$, then $\rho(G_v(k,l)) < \rho(G_v(k+1,l-1))$.

Let $B_{2m,i}^*$ be the tree in \mathcal{T}_{2m} obtained by adding an edge between the center of $S_{2(i-1),i-1}^*$ and a pendent vertex of $P_{2(m-i+1)}$, where $2 \le i \le m$. In particular, $B_{2m,2}^* = P_{2m}$. For a graph *G* with $W \subseteq V(G)$, *G*[*W*] denotes the subgraph of *G* induced by *W*. The following theorem was given in [5]. For completeness, however, we include a proof here.

Theorem 3.7. Let $T \in \mathcal{T}_{2m}$ with $\Delta(T) = \Delta$, where $2 \leq \Delta \leq m$. Then $\rho(T) \leq \rho(B^*_{2m,\Delta})$ with equality if and only if $T \cong B^*_{2m,\Delta}$.

Proof. Let *T* be a tree in \mathcal{T}_{2m} with $\Delta(T) = \Delta$ having maximal distance spectral radius. We only need to show that $T \cong B^*_{2m\Delta}$. The case $\Delta = 2$ is trivial. Suppose that $\Delta \ge 3$. Let $u \in V(G)$ with $d_T(u) = \Delta$.

Suppose that there are at least two vertices with degree at least 3 in *T*. Choose a vertex *v* with degree at least 3 such that the distance between *u* and *v* is as large as possible. There are at least two pendent paths, say $P_1 = vu_1 \dots u_k$ and $P_2 = vv_1 \dots v_l$ at *v* in *T*, where $k \ge l \ge 1$. Let $G = T[V(T) \setminus \{u_1, \dots, u_k, v_1, \dots, v_l\}]$. Then $T \cong G_v(k, l)$. Let $T' = T - vu_1 + v_1u_1$ if l = 1 and $T' = T - v_{l-2}v_{l-1} + u_kv_{l-1}$ if $l \ge 2$ (where $v_{l-2} = v$ for l = 2). Then M(T') = M(T), $T' \in \mathcal{T}_{2m}$, and $\Delta(T') = \Delta$. Note that $T' \cong G_v(k + 1, 0)$ if l = 1 and $T' \cong G_v(k + 2, l - 2)$ if $l \ge 2$. By Lemma 3.6, $\rho(T') > \rho(T)$, a contradiction. Thus *u* is the unique vertex of *T* with degree at least 3, i.e., *T* consists of Δ pendent paths at *u*.

Suppose that there are at least two pendent paths at *u* in *T* with length at least 3, say $Q_1 = uw_1 \dots w_k$ and $Q_2 = uz_1 \dots z_l$, where $k \ge l \ge 3$. Then $T = H_u(k, l)$ with $H = T[V(T) \setminus \{w_1, \dots, w_k, z_1, \dots, z_l\}]$. Let $T'' = T - z_{l-2}z_{l-1} + w_k z_{l-1}$. Then M(T'') = M(T), $T'' \in \mathcal{T}_{2m}$, and $\Delta(T'') = \Delta$. Note that $T'' \cong H_u(k + 2, l - 2)$. By Lemma 3.6, $\rho(T'') > \rho(T)$, a contradiction. Thus there is exactly one pendent path at *u* with length at least 3. Since $T \in \mathcal{T}_{2m}$, we have $T \cong B^*_{2m,\Lambda}$. \Box

References

- [1] S. S. Bose, M. Nath, S. Paul, Distance spectral radius of graphs with r pendent vertices, Linear Algebra Appl. 435 (2011) 2828–2836.
- [2] M. Nath, S. Paul, On the distance spectral radius of trees, Linear Multilinear Algebra 61 (2013) 847–855.
- [3] S. N. Ruzieh, D. L. Powers, The distance spectrum of the path P_n and the first distance eigenvector of connected graphs, Linear Multilinear Algebra 28 (1990) 75–81.
- [4] D. Stevanović, A. Ilić, Distance spectral radius of trees with fixed maximum degree, Electron. J. Linear Algebra 20 (2010) 168–179.
- [5] A. Ilić, Distance spetral radius of trees with given matching number, Discrete Appl. Math. 158 (2010) 1799–1806.
- [6] Y. Wang, B. Zhou, On distance spectral radius of graphs, Linear Algebra Appl. 438 (2013) 3490–3503.

^[7] R. Xing, B. Zhou, F. Dong, The effect of a graft transformation on distance spectral radius, Linear Algebra Appl. 457 (2014) 261–275.