On Distance Spectral Radius of Trees with Fixed Maximum Degree

Zuojuan Luo ${ }^{\text {a }}$, Bo Zhou ${ }^{\text {a,* }}$
${ }^{a}$ School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P.R. China

Abstract

We determine the unique trees with minimum distance spectral radius in the class of all trees on n vertices with a fixed maximum degree bounded below by $\left\lceil\frac{n}{2}\right\rceil$, and in the class of all trees on $2 m$ vertices with perfect matching and a fixed maximum degree bounded below by $\left\lceil\frac{m}{2}\right\rceil+1$.

1. Introduction

We consider simple and undirected graphs. Let G be a connected graph on n vertices with vertex set $V(G)$ and edge set $E(G)$. For $u, v \in V(G)$, the distance between u and v, denoted by $d_{G}(u, v)$, is the length of a shortest path from u to v in G. The distance matrix of G is the $n \times n$ matrix $D(G)=\left(d_{G}(u, v)\right)_{u, v \in V(G)}$. Since $D(G)$ is real symmetric, all its eigenvalues are real. The distance spectral radius of G, denoted by $\rho(G)$, is the largest eigenvalue of $D(G)$. By the Perron-Frobenius Theorem, there is a unique unit positive eigenvector of $D(G)$ corresponding to $\rho(G)$, which is called the distance Perron vector of G.

The distance spectral radius has received much attention. Ruzieh and Powers [3] and Stevanović and Ilić [4] showed that the n-vertex path P_{n} is the unique n-vertex connected graph with maximum distance spectral radius. Stevanović and Ilić [4] showed that the star S_{n} is the unique n-vertex tree with minimum distance spectral radius, and determined the unique n-vertex tree with maximum distance spectral radius when the maximum degree is fixed. Ilić [5] determined the unique n-vertex tree with minimum distance spectral radius when the matching number is fixed. Wang and Zhou [6] determined the unique n-vertex tree with minimum (maximum, respectively) distance spectral radius when the domination number is fixed. More results in this line may be found in, e.g., [1, 2, 7].

In this paper, we determine the unique n-vertex tree with minimum distance spectral radius when the maximum degree is at least $\left\lceil\frac{n}{2}\right\rceil$, and the unique $2 m$-vertex perfect matching tree with minimum distance spectral radius when the maximum degree is at least $\left\lceil\frac{m}{2}\right\rceil+1$.

Let T be a tree. For $u \in V(T), N_{T}(u)$ denotes the set of neighbors of u in T, and $d_{T}(u)$ denotes the degree of u in T, i.e., $d_{T}(u)=\left|N_{T}(u)\right|$. Let $\Delta(T)$ be the maximum degree of T. Let $|T|=|V(T)|$.

Let G be a graph with complement \bar{G}. For $E \subseteq E(G)$, let $G-E$ be the graph obtained from G by deleting all edges of E. For $F \subseteq E(\bar{G})$, let $G+F$ be the graph obtained from G by adding all edges of F.

[^0]A path $u_{1} u_{2} \ldots u_{r}$ (with $r \geq 2$) in a graph G is called a pendent path (of length $r-1$) at u_{1} if $d_{G}\left(u_{1}\right) \geq 3$, the degrees of u_{2}, \ldots, u_{r-1} (if any exists) are all equal to 2 in G, and $d_{G}\left(u_{r}\right)=1$.

If x is the distance Perron vector of a (connected) graph G, then x_{u} denotes the component of x corresponding to vertex u in G, and $s(W)=\sum_{u \in W} x_{u}$ for $W \subseteq V(G)$.

2. Distance Spectral Radius of Trees with Fixed Maximum Degree

We give several lemmas that will be used in our proof.
Lemma 2.1. Let T be a tree and $u_{1} v, u_{2} v$ be two non-pendent edges of T. Let $T^{\prime}=T-\left\{u_{2} w: w \in N_{T}\left(u_{2}\right) \backslash\{v\}\right\}+\left\{u_{1} w\right.$: $\left.w \in N_{T}\left(u_{2}\right) \backslash\{v\}\right\}$. Then $\rho\left(T^{\prime}\right)<\rho(T)$.

Proof. Let $T_{1}\left(T_{2}, T_{3}\right.$, respectively) be the component of $T-\left\{u_{1} v, u_{2} v\right\}$ containing u_{1} (u_{2}, v, respectively), and let $V_{i}=V\left(T_{i}\right)$ for $i=1,2,3$. Let x be the distance Perron vector of T^{\prime}. Then

$$
\rho(T)-\rho\left(T^{\prime}\right) \geq x^{T} D(T) x-x^{T} D\left(T^{\prime}\right) x=4 s\left(V_{2} \backslash\left\{u_{2}\right\}\right)\left(s\left(V_{1}\right)-x_{u_{2}}\right) .
$$

Since $u_{2} v$ is a non-pendent edge of $T,\left|V_{2}\right| \geq 2$ and thus $s\left(V_{2} \backslash\left\{u_{2}\right\}\right)>0$.
Next we show that $s\left(V_{1}\right)-x_{u_{2}}>0$. Since $u_{1} v$ is a non-pendent edge of $T,\left|V_{1}\right| \geq 2$. Let z be a neighbor of u_{1} in T_{1}.
Case 1. $d_{T}(z)=1$. Then

$$
\begin{aligned}
\rho\left(T^{\prime}\right)\left(s\left(V_{1}\right)-x_{u_{2}}\right) \geq & \rho\left(T^{\prime}\right)\left(x_{z}+x_{u_{1}}-x_{u_{2}}\right) \\
= & \sum_{w \in V\left(T^{\prime}\right) \backslash\left\{z, u_{1}, u_{2}\right\}}\left(d_{T^{\prime}}(z, w)+d_{T^{\prime}}\left(u_{1}, w\right)-d_{T^{\prime}}\left(u_{2}, w\right)\right) x_{w} \\
= & +5 x_{u_{2}}-x_{u_{1}}-2 x_{z} \\
& \sum_{w \in V_{1} \cup V_{2} \backslash\left\{u_{1}, u_{2}, z\right\}}\left(d_{T^{\prime}}(z, w)-2\right) x_{w} \\
& +\sum_{w \in V_{3}} d_{T^{\prime}}(z, w) x_{w}+5 x_{u_{2}}-x_{u_{1}}-2 x_{z} \\
> & 2 x_{u_{2}}-2 x_{u_{1}}-2 x_{z} \\
\geq & 2 x_{u_{2}}-2 s\left(V_{1}\right)
\end{aligned}
$$

So we have $\left(\rho\left(T^{\prime}\right)+2\right)\left(s\left(V_{1}\right)-x_{u_{2}}\right)>0$, and thus $s\left(V_{1}\right)>x_{u_{2}}$.
Case 2. $d_{T}(z) \geq 2$. Let z_{1} be a neighbor of z different from u_{1} in T_{1}. Then

$$
\begin{aligned}
\rho\left(T^{\prime}\right)\left(s\left(V_{1}\right)-x_{u_{2}}\right) \geq & \rho\left(T^{\prime}\right)\left(x_{z}+x_{z_{1}}+x_{u_{1}}-x_{u_{2}}\right) \\
= & \sum_{w \in V\left(T^{\prime}\right) \backslash\left\{z, z_{1}, u_{1}, u_{2}\right\}}\left(d_{T^{\prime}}(z, w)+d_{T^{\prime}}\left(z_{1}, w\right)\right) x_{w} \\
& +\sum_{w \in V\left(T^{\prime}\right) \backslash\left\{z, z_{1}, u_{1}, u_{2}\right\}}\left(d_{T^{\prime}}\left(u_{1}, w\right)-d_{T^{\prime}}\left(u_{2}, w\right)\right) x_{w} \\
= & +9 x_{u_{2}}+x_{u_{1}}-x_{z}-x_{z_{1}} \\
& \sum_{\left.w \in V_{1} \cup V_{2} \backslash \backslash z, z_{1}, u_{1}, u_{2}\right\}}\left(d_{T^{\prime}}(z, w)+d_{T^{\prime}}\left(z_{1}, w\right)-2\right) x_{w} \\
& +\sum_{w \in V_{3}}\left(d_{T^{\prime}}(z, w)+d_{T^{\prime}}\left(z_{1}, w\right)\right) x_{w} \\
& +9 x_{u_{2}}+x_{u_{1}}-x_{z}-x_{z_{1}} \\
> & x_{u_{2}}-x_{u_{1}}-x_{z}-x_{z_{1}} \\
\geq & x_{u_{2}}-s\left(V_{1}\right) .
\end{aligned}
$$

So we have $\left(\rho\left(T^{\prime}\right)+1\right)\left(s\left(V_{1}\right)-x_{u_{2}}\right)>0$, and thus $s\left(V_{1}\right)>x_{u_{2}}$.
Combining Cases 1 and 2, we have $s\left(V_{1}\right)>x_{u_{2}}$, and thus $\rho\left(T^{\prime}\right)<\rho(T)$.
Lemma 2.2. [6] Let G be a connected graph and uv a non-pendent cut edge of G. Let G^{\prime} be the graph obtained from G by contracting uv and attaching a new pendent vertex to $u(v)$. Then $\rho\left(G^{\prime}\right)<\rho(G)$.

Let \mathcal{T}_{n}^{Δ} be the set of trees on n vertices with maximum degree Δ.
Let $q(T)$ be the number of non-pendent vertices of a tree T. Let $\mathcal{T}_{n}^{\Delta}(q)=\left\{T \in \mathcal{T}_{n}^{\Delta}: q(T)=q\right\}$.
Lemma 2.3. Let $T \in \mathcal{T}_{n}^{\Delta}(q)$, where $\left\lceil\frac{n}{2}\right\rceil \leq \Delta \leq n-1$ and $q \geq 3$. Then there is a tree T^{\prime} in $\mathcal{T}_{n}^{\Delta}(q-1)$ such that $\rho\left(T^{\prime}\right)<\rho(T)$.

Proof. Let v be a vertex of T such that $d_{T}(v)=\Delta$.
Case 1. Each non-pendent edge of T is incident with v. Let u_{1}, u_{2} be two distinct non-pendent vertices different from v, and let

$$
T^{\prime}=T-\left\{u_{2} y: y \in N_{T}\left(u_{2}\right) \backslash\{v\}\right\}+\left\{u_{1} y: y \in N_{T}\left(u_{2}\right) \backslash\{v\}\right\}
$$

Obviously, $T^{\prime} \in \mathcal{T}_{n}^{\Delta}$ as $\Delta \geq\left\lceil\frac{n}{2}\right\rceil$, and the non-pendent edge $v u_{2}$ of T becomes pendent in T^{\prime}, and thus $T^{\prime} \in \mathcal{T}_{n}^{\Delta}(q-1)$. By Lemma 2.1, $\rho\left(T^{\prime}\right)<\rho(T)$.
Case 2. There is a non-pendent edge $u w$ of T, where u and w are different from v. Suppose without loss of generality that $d_{T}(v, u)<d_{T}(v, w)$. Let

$$
T^{\prime}=T-\left\{w z: z \in N_{T}(w) \backslash\{u\}\right\}+\left\{u z: z \in N_{T}(w) \backslash\{u\}\right\} .
$$

Obviously, $T^{\prime} \in \mathcal{T}_{n}^{\Delta}(q-1)$. By Lemma 2.2, $\rho\left(T^{\prime}\right)<\rho(T)$.
Let $S_{n, i}$ be the double star obtained by attaching $i-1$ and $n-i-1$ pendent vertices to the two end vertices of P_{2} respectively, where $\left\lceil\frac{n}{2}\right\rceil \leq i \leq n-1$. In particular, $S_{n, n-1}=S_{n}$.

Theorem 2.4. Let $T \in \mathcal{T}_{n}^{\Delta}$, where $\left\lceil\frac{n}{2}\right\rceil \leq \Delta \leq n-1$. Then $\rho(T) \geq \rho\left(S_{n, \Delta}\right)$ with equality if and only if $T \cong S_{n, \Delta}$.
Proof. Let T be a tree in \mathcal{T}_{n}^{Δ} with minimal distance spectral radius. We only need to show that $T \cong S_{n, \Delta}$.
The case $\Delta=n-1$ is trivial as $\mathcal{T}_{n}^{n-1}=\left\{S_{n}\right\}$.
Suppose that $\Delta \leq n-2$. Then $q(T) \geq 2$. By Lemma 2.3, $q(T)=2$, and then $T \cong S_{n, \Delta}$.
Stevanović and Ilić [4] conjectured that a complete Δ-ary tree has the minimum distance spectral radius among trees \mathcal{T}_{n}^{Δ}. Theorem 2.4 shows that this is true for $\Delta \geq\left\lceil\frac{n}{2}\right\rceil$.

3. Distance Spectral Radius of Perfect Matching Trees with Fixed Maximum Degree

It is well known that if a tree has a perfect matching, then it is unique. Let $\mathcal{T}_{2 m}$ be the set of trees on $2 m$ vertices with a perfect matching. For $T \in \mathcal{T}_{2 m}$, let $M(T)$ be the unique perfect matching of T. For $0 \leq j \leq m-2$, let $X_{2 m}^{j}=\left\{T \in \mathcal{T}_{2 m}\right.$: there are exactly j non-pendent edges in $\left.M(T)\right\}$. Obviously, $\mathcal{T}_{2 m}=\cup_{j=0}^{m-2} X_{2 m}^{j}$.

Let A_{m} be the tree with $2 m$ vertices obtained from the star S_{m+1} by attaching a pendent vertex to each of certain $m-1$ non-central vertices. The center of the star S_{m+1} is also the center of A_{m}. Obviously, $A_{m} \in \mathcal{T}_{2 m}$, and all edges in $M\left(A_{m}\right)$ are pendent in A_{m}. Let $\mathcal{H}=\left\{A_{k}: k\right.$ is a positive integer $\}$.

Lemma 3.1. $T \in X_{2 m}^{0}$ if and only if T is a tree with $2 m$ vertices obtainable from the union of some graphs in \mathcal{H} by joining centers with edges.

Proof. Suppose that T is a tree with $2 m$ vertices obtained from union of $H_{1}, H_{2}, \ldots, H_{t} \in \mathcal{H}$ by joining centers with edges. Then T has a unique perfect matching $M(T)=\cup_{i=1}^{t} M\left(H_{i}\right)$ and all edges in $M(T)$ are pendent edges of T. Thus $T \in X_{2 m}^{0}$.

Suppose that $T \in X_{2 m}^{0}$. If $m=1$, then $T=P_{2}=A_{1} \in \mathcal{H}$, and if $m=2$, then $T=P_{4}=A_{2} \in \mathcal{H}$. Suppose that $m \geq 3$. Let $N=\left\{v \in V(T): d_{T}(v) \geq 3\right\}$ and $P=\{u v \in E(T): u, v \in N\}$. Note that $P \cap M(T)=\emptyset$. Obviously, $T-P$ is a forest on $2 m$ vertices. Let C be a component of $T-P$. If there are two vertices, say u and v with degree at least 3 in C, then each internal vertex (if any exists) in the path connecting u and v is of degree at least 3 (because each non-pendent vertex has a pendent neighbor), and thus all edges in this path should be in P, a contradiction. Then C contains at most one vertex with degree at least 3 , and thus $C \in \mathcal{H}$. Obviously, the vertices in N are their centers of components $T-P$.

Lemma 3.2. Let $T \in \mathcal{T}_{2 m}$ with $u, v \in V(T)$ and $u \neq v$. Then $d_{T}(u)+d_{T}(v) \leq m+2$.
Proof. Let T_{1} be the subgraph of T induced by $N_{T}(u) \cup N_{T}(v) \cup\{u, v\}$. Obviously, $\left|E\left(T_{1}\right)\right| \geq d_{T}(u)+d_{T}(v)-1$ and $E\left(T_{1}\right)$ contains at most 2 edges in $M(T)$. Thus there are at most $2 m-1-\left(d_{T}(u)+d_{T}(v)-1\right)$ edges outside T_{1}. If $d_{T}(u)+d_{T}(v)>m+2$, then there are at most $2 m-1-(m+3-1)=m-3$ edges outside T_{1}, and thus $|M(T)| \leq 2+m-3=m-1$, a contradiction.

Lemma 3.3. Let $T \in X_{2 m^{\prime}}^{j}$ where $1 \leq j \leq m-2$. If $\Delta(T) \geq\left\lceil\frac{m}{2}\right\rceil+1$, then there is a tree $T^{\prime} \in X_{2 m}^{j-1}$ with $\Delta\left(T^{\prime}\right)=\Delta(T)$ such that $\rho\left(T^{\prime}\right)<\rho(T)$.

Proof. Let v be a vertex of T with $d_{T}(v)=\Delta(T)$.
Case 1. v is not incident with any non-pendent edge in $M(T)$. Let $u w$ be a non-pendent edge in $M(T)$. Let $T^{\prime}=T-\left\{w y: y \in N_{T}(w) \backslash\{u\}\right\}+\left\{u y: y \in N_{T}(w) \backslash\{u\}\right\}$. Obviously, $M\left(T^{\prime}\right)=M(T)$ and $T^{\prime} \in X_{2 m}^{j-1}$. By Lemma 3.2 and the fact that $\Delta(T) \geq\left\lceil\frac{m}{2}\right\rceil+1$, we have

$$
\begin{aligned}
d_{T^{\prime}}(u) & \leq m+2-d_{T^{\prime}}(v)=m+2-d_{T}(v)=m+2-\Delta(T) \\
& \leq m+2-\left(\left\lceil\frac{m}{2}\right\rceil+1\right)=\left\lfloor\frac{m}{2}\right\rfloor+1 \\
& \leq \Delta(T) .
\end{aligned}
$$

Then $\Delta\left(T^{\prime}\right)=\max \left\{d_{T^{\prime}}(u), d_{T^{\prime}}(v)\right\}=\Delta(T)$. By Lemma 2.2, $\rho\left(T^{\prime}\right)<\rho(T)$.
Case 2. v is incident with some non-pendent edge in $M(T)$, say $v w$ is a non-pendent edge in $M(T)$. Let z be a neighbor of v different from w. Since $v w \in M(T), z v$ is also a non-pendent edge of T. Let $T^{\prime}=T-\left\{w y: y \in N_{T}(w) \backslash\{v\}\right\}+\left\{z y: y \in N_{T}(w) \backslash\{v\}\right\}$. Obviously, $M\left(T^{\prime}\right)=M(T)$ and $T^{\prime} \in X_{2 m}^{j-1}$. By Lemma 3.2 and the fact that $\Delta(T) \geq\left\lceil\frac{m}{2}\right\rceil+1$, we have $d_{T^{\prime}}(z) \leq m+2-d_{T^{\prime}}(v)=m+2-\Delta(T) \leq \Delta(T)$, and thus $\Delta\left(T^{\prime}\right)=\max \left\{d_{T^{\prime}}(v), d_{T^{\prime}}(z)\right\}=\Delta(T)$. By Lemma 2.1, $\rho\left(T^{\prime}\right)<\rho(T)$.

For $T \in X_{2 m}^{0}$ with $m \geq 3$, let $P=\left\{u v \in E(T): d_{T}(u), d_{T}(v) \geq 3\right\}$. By the proof of Lemma 3.1, $T-P$ is a forest, whose components are trees in \mathcal{H}. Let H_{i} be the component of $T-P$ and v_{i} be the center of H_{i} for $i=1,2, \ldots, t$, where $t \geq 1$. The contracted tree of T, denoted by \widehat{T}, is defined to be the tree obtained from T by replacing H_{i} with v_{i} for $i=1,2, \ldots, t$, i.e., $V(\widehat{T})=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ and $v_{i} v_{j} \in \widehat{T}$ if and only if $v_{i} v_{j} \in T$. For $T \in X_{2 m}^{0}$ with $m=1,2$, let $\widehat{T}=K_{1}$.

Lemma 3.4. Let $T \in X_{2 m}^{0}$ with $\Delta(T) \geq\left\lceil\frac{m}{2}\right\rceil+1$. If $|\widehat{T}| \geq 3$, then there is a tree $T^{\prime} \in X_{2 m}^{0}$ with $\Delta\left(T^{\prime}\right)=\Delta(T)$ and $\left|\widehat{T^{\prime}}\right|=|\widehat{T}|-1$ such that $\rho\left(T^{\prime}\right)<\rho(T)$.

Proof. Let v be a vertex of T with $d_{T}(v)=\Delta(T)$. Obviously, \widehat{T} has at least two pendent edges.
Case 1. \widehat{T} has a pendent edge $u y$, where $u \neq v$ and $d_{\widehat{T}}(y)=1$. Let z be a neighbor of u in \widehat{T} different from y, and $y y_{1}, u u_{1}, z z_{1}$ pendent edges of T. Let $T_{1}\left(T_{2}\right.$, respectively) be the component of $T-\{u y\}$ containing
u (y, respectively), and $V_{i}=V\left(T_{i}\right)$ for $i=1,2$. Note that $d_{T}(y) \geq 3$. Then $\left|N_{T}(y) \backslash\left\{u, y_{1}\right\}\right| \geq 1$. Let $T^{\prime}=T-\left\{y w: w \in N_{T}(y) \backslash\left\{u, y_{1}\right\}\right\}+\left\{u w: w \in N_{T}(y) \backslash\left\{u, y_{1}\right\}\right\}$. Let x be the distance Perron vector of T^{\prime}. Then

$$
\rho(T)-\rho\left(T^{\prime}\right) \geq x^{T} D(T) x-x^{T} D\left(T^{\prime}\right) x=2 s\left(V_{2} \backslash\left\{y, y_{1}\right\}\right)\left(s\left(V_{1}\right)-x_{y}-x_{y_{1}}\right)
$$

Note that

$$
\begin{aligned}
\rho\left(T^{\prime}\right)\left(s\left(V_{1}\right)-x_{y}-x_{y_{1}}\right) \geq & \rho\left(T^{\prime}\right)\left(x_{z}+x_{z_{1}}+x_{u}+x_{u_{1}}-x_{y}-x_{y_{1}}\right) \\
= & \sum_{w \in V_{1} \backslash\left\{z, z_{1}, u, u_{1}\right\}}\left(d_{T^{\prime}}(z, w)+d_{T^{\prime}}\left(z_{1}, w\right)-2\right) x_{w} \\
& +\sum_{\left.w \in V_{2} \backslash \backslash y, y_{1}\right\}}\left(d_{T^{\prime}}(u, w)+d_{T^{\prime}}\left(u_{1}, w\right)\right) x_{w} \\
& +7 x_{y}+11 x_{y_{1}}-x_{z}-x_{z_{1}}+x_{u}+x_{u_{1}} \\
> & x_{y}+x_{y_{1}}-x_{z}-x_{z_{1}}-x_{u}-x_{u_{1}} \\
\geq & x_{y}+x_{y_{1}}-s\left(V_{1}\right) .
\end{aligned}
$$

So $s\left(V_{1}\right)>x_{y}+x_{y_{1}}$, and thus $\rho\left(T^{\prime}\right)<\rho(T)$.
Case 2. All pendent edges of \widehat{T} are incident with v. Obviously, $\widehat{T}=S_{t}$ with center v. Let $v v_{1}, v v_{2}$ be two edges in \widehat{T}. Then $d_{T}\left(v_{1}\right), d_{T}\left(v_{2}\right) \geq 3$. Let z be a non-pendent neighbor of v_{1} different from v in T, and $v_{1} z_{1}, v_{2} z_{2}, z z_{3}$ pendent edges of T. Let $T_{1}\left(T_{2}, T_{3}\right.$, respectively) be the component of $T-\left\{v v_{1}, v v_{2}\right\}$ containing $v_{1}\left(v_{2}, v\right.$, respectively), and $V_{i}=V\left(T_{i}\right)$ for $i=1,2,3$. Obviously, $\left|N_{T}\left(v_{2}\right) \backslash\left\{v, z_{2}\right\}\right| \geq 1$. Let $T^{\prime}=T-\left\{v_{2} w: w \in N_{T}\left(v_{2}\right) \backslash\left\{v, z_{2}\right\}\right\}+\left\{v_{1} w: w \in N_{T}\left(v_{2}\right) \backslash\left\{v, z_{2}\right\}\right\}$. Let x be the distance Perron vector of T^{\prime}. Then

$$
\rho(T)-\rho\left(T^{\prime}\right) \geq x^{T} D(T) x-x^{T} D\left(T^{\prime}\right) x=4 s\left(V_{2} \backslash\left\{v_{2}, z_{2}\right\}\right)\left(s\left(V_{1}\right)-x_{v_{2}}-x_{z_{2}}\right)
$$

Note that

$$
\begin{aligned}
\rho\left(T^{\prime}\right)\left(s\left(V_{1}\right)-x_{v_{2}}-x_{z_{2}}\right) \geq & \rho\left(T^{\prime}\right)\left(x_{z}+x_{z_{1}}+x_{z_{3}}+x_{v_{1}}-x_{v_{2}}-x_{z_{2}}\right) \\
= & \sum_{w \in V_{1} \backslash\left\{\left(z, z_{1}, z_{3}, v_{1}\right\}\right.}\left(d_{T^{\prime}}\left(v_{1}, w\right)+d_{T^{\prime}}\left(z_{1}, w\right)-2\right) x_{w} \\
& +\sum_{\left.w \in V_{2} \backslash \backslash z_{2}, v_{2}\right\}}\left(d_{T^{\prime}}\left(v_{1}, w\right)+d_{T^{\prime}}\left(z_{1}, w\right)-2\right) x_{w} \\
& +\sum_{w \in V_{3}}\left(d_{T^{\prime}}(z, w)+d_{T^{\prime}}\left(z_{3}, w\right)\right) x_{w} \\
& +11 x_{v_{2}}+15 x_{z_{2}}-x_{v_{1}}-x_{z_{1}}-3 x_{z}-3 x_{z_{3}} \\
> & 3 x_{v_{2}}+3 x_{z_{2}}-3 x_{v_{1}}-3 x_{z_{1}}-3 x_{z}-3 x_{z_{3}} \\
\geq & 3\left(x_{v_{2}}+x_{z_{2}}-s\left(V_{1}\right)\right) .
\end{aligned}
$$

So $s\left(V_{1}\right)>x_{v_{2}}+x_{z_{2}}$, and thus $\rho\left(T^{\prime}\right)<\rho(T)$.
In either case, $M\left(T^{\prime}\right)=M(T)$, all edges in $M\left(T^{\prime}\right)$ are pendent edges of T^{\prime}, and thus $T^{\prime} \in X_{2 m}^{0}$. Moreover, $\left|\widehat{T^{\prime}}\right|=|\widehat{T}|-1$ and $\Delta\left(T^{\prime}\right)=d_{T^{\prime}}(v)=d_{T}(v)=\Delta(T)$ since $\Delta(T) \geq\left\lceil\frac{m}{2}\right\rceil+1$.

Let $S_{2 m, i}^{*}$ be the tree in $\mathcal{T}_{2 m}$ obtained by attaching a new pendent edge at each vertex of $S_{m, i-1}$, where $\left\lceil\frac{m}{2}\right\rceil+1 \leq i \leq m$.

Theorem 3.5. Let $T \in \mathcal{T}_{2 m}$ with $\Delta(T)=\Delta$, where $\left\lceil\frac{m}{2}\right\rceil+1 \leq \Delta \leq m$. Then $\rho(T) \geq \rho\left(S_{2 m, \Delta}^{*}\right)$ with equality if and only if $T \cong S_{2 m, \Delta}^{*}$.

Proof. Let T be a tree in $\mathcal{T}_{2 m}$ with $\Delta(T)=\Delta$ having minimal distance spectral radius. We only need to show that $T \cong S_{2 m, \Delta}^{*}$.

By Lemma 3.3, $T \in X_{2 m}^{0}$. If $\Delta=m$, then $T \cong A_{m} \cong S_{2 m, \Delta^{\prime}}^{*}$ and thus the result holds trivially. Suppose that $\Delta \leq m-1$. Then $|\widehat{T}| \geq 2$. By Lemma 3.4, $\mid \widehat{T \mid}=2$, and thus $\widehat{T}=P_{2}$, or equivalently, $T \cong S_{2 m, \Delta}^{*}$.

For a graph G with $v \in V(G)$ and nonnegative integers k and l with $k \geq \max \{l, 1\}$, let $G_{v}(k, l)$ be the graph obtained from G by attaching a path of length k and a path of length l at v (if $l=0$, then only a path of length k is attached).

Lemma 3.6. [4, 7] Let G be a connected graph with at least two vertices and $v \in V(G)$. If $k \geq l \geq 1$, then $\rho\left(G_{v}(k, l)\right)<\rho\left(G_{v}(k+1, l-1)\right)$.

Let $B_{2 m, i}^{*}$ be the tree in $\mathcal{T}_{2 m}$ obtained by adding an edge between the center of $S_{2(i-1), i-1}^{*}$ and a pendent vertex of $P_{2(m-i+1)}$, where $2 \leq i \leq m$. In particular, $B_{2 m, 2}^{*}=P_{2 m}$. For a graph G with $W \subseteq V(G), G[W]$ denotes the subgraph of G induced by W. The following theorem was given in [5]. For completeness, however, we include a proof here.

Theorem 3.7. Let $T \in \mathcal{T}_{2 m}$ with $\Delta(T)=\Delta$, where $2 \leq \Delta \leq m$. Then $\rho(T) \leq \rho\left(B_{2 m, \Delta}^{*}\right)$ with equality if and only if $T \cong B_{2 m, \Delta}^{*}$.

Proof. Let T be a tree in $\mathcal{T}_{2 m}$ with $\Delta(T)=\Delta$ having maximal distance spectral radius. We only need to show that $T \cong B_{2 m, \Delta}^{*}$. The case $\Delta=2$ is trivial. Suppose that $\Delta \geq 3$. Let $u \in V(G)$ with $d_{T}(u)=\Delta$.

Suppose that there are at least two vertices with degree at least 3 in T. Choose a vertex v with degree at least 3 such that the distance between u and v is as large as possible. There are at least two pendent paths, say $P_{1}=v u_{1} \ldots u_{k}$ and $P_{2}=v v_{1} \ldots v_{l}$ at v in T, where $k \geq l \geq 1$. Let $G=T\left[V(T) \backslash\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{l}\right\}\right]$. Then $T \cong G_{v}(k, l)$. Let $T^{\prime}=T-v u_{1}+v_{1} u_{1}$ if $l=1$ and $T^{\prime}=T-v_{l-2} v_{l-1}+u_{k} v_{l-1}$ if $l \geq 2$ (where $v_{l-2}=v$ for $l=2$). Then $M\left(T^{\prime}\right)=M(T), T^{\prime} \in \mathcal{T}_{2 m}$, and $\Delta\left(T^{\prime}\right)=\Delta$. Note that $T^{\prime} \cong G_{v}(k+1,0)$ if $l=1$ and $T^{\prime} \cong G_{v}(k+2, l-2)$ if $l \geq 2$. By Lemma 3.6, $\rho\left(T^{\prime}\right)>\rho(T)$, a contradiction. Thus u is the unique vertex of T with degree at least 3 , i.e., T consists of Δ pendent paths at u.

Suppose that there are at least two pendent paths at u in T with length at least 3 , say $Q_{1}=u w_{1} \ldots w_{k}$ and $Q_{2}=u z_{1} \ldots z_{l}$, where $k \geq l \geq 3$. Then $T=H_{u}(k, l)$ with $H=T\left[V(T) \backslash\left\{w_{1}, \ldots, w_{k}, z_{1}, \ldots, z_{l}\right\}\right]$. Let $T^{\prime \prime}=T-z_{l-2} z_{l-1}+w_{k} z_{l-1}$. Then $M\left(T^{\prime \prime}\right)=M(T), T^{\prime \prime} \in \mathcal{T}_{2 m}$, and $\Delta\left(T^{\prime \prime}\right)=\Delta$. Note that $T^{\prime \prime} \cong H_{u}(k+2, l-2)$. By Lemma 3.6, $\rho\left(T^{\prime \prime}\right)>\rho(T)$, a contradiction. Thus there is exactly one pendent path at u with length at least 3. Since $T \in \mathcal{T}_{2 m}$, we have $T \cong B_{2 m, \Delta}^{*}$.

References

[1] S. S. Bose, M. Nath, S. Paul, Distance spectral radius of graphs with r pendent vertices, Linear Algebra Appl. 435 (2011) $2828-2836$.
[2] M. Nath, S. Paul, On the distance spectral radius of trees, Linear Multilinear Algebra 61 (2013) 847-855.
[3] S. N. Ruzieh, D. L. Powers, The distance spectrum of the path P_{n} and the first distance eigenvector of connected graphs, Linear Multilinear Algebra 28 (1990) 75-81.
[4] D. Stevanović, A. Ilić, Distance spectral radius of trees with fixed maximum degree, Electron. J. Linear Algebra 20 (2010) 168-179.
[5] A. Ilić, Distance spetral radius of trees with given matching number, Discrete Appl. Math. 158 (2010) 1799-1806.
[6] Y. Wang, B. Zhou, On distance spectral radius of graphs, Linear Algebra Appl. 438 (2013) 3490-3503.
[7] R. Xing, B. Zhou, F. Dong, The effect of a graft transformation on distance spectral radius, Linear Algebra Appl. 457 (2014) 261-275.

[^0]: 2010 Mathematics Subject Classification. Primary 05C50; Secondary 05C35, 05C12, 05C70
 Keywords. distance spectral radius, maximum degree, tree, perfect matching
 Received: 04 Feburary 2014; Accepted: 03 May 2015
 Communicated by Francesco Belardo
 Research supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20124407110002)

 * Corresponding author

 Email address: zhoubo@scnu.edu.cn (Bo Zhou)

