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Abstract. In this paper, we define the superposition operator P1 where 1 : N2
× R → R by P1 ((xks)) =

1 (k, s, xks) for all real double sequence (xks). Chew & Lee [4] and Petranuarat & Kemprasit [7] have char-
acterized P1 : lp → l1 and P1 : lp → lq where 1 ≤ p, q < ∞, respectively. The main goal of this paper is to
construct the necessary and sufficient conditions for the continuity of P1 : Lp → L1 and P1 : Lp → Lq where
1 ≤ p, q < ∞.

1. Introduction

Let R be set of all real numbers, N be the set of all natural numbers, N2 = N × N and Ω denotes
the space of all real double sequences which is the vector space with coordinatewise addition and scalar
multiplication. Let x = (xks) ∈ Ω . If for any ε > 0 there exist N ∈ N and l ∈ R such that |xks − l| < ε for all
k, s ≥ N, then we call that the double sequence x = (xks) is convergent in the Pringsheim’s sense and denoted
by p− lim xks = l. The space of all convergent double sequences in the Pringsheim’s sense is denoted by Cp.
The space of all bounded double sequences is denoted by Mu, that is,

Mu :=

x = (xks) ∈ Ω : ‖x‖Mu
= sup

k,s∈N
|xks| < ∞


which is a Banach space with the norm ‖·‖Mu

. It’s known that there are such sequences in the space Cp, but
not in the space Mu. The space Lp is defined by

Lp :=

x = (xks) ∈ Ω :
∞∑

k,s=1

|xks|
p < ∞


where 1 ≤ p < ∞ and

∞∑
k,s=1

=
∞∑

k=1

∞∑
s=1

. Lp is a Banach space with the norm

‖x‖p =

 ∞∑
k,s=1

|xks|
p


1
p

.
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It’s know that Lp ⊂ Mu and Lp ⊂ Lq where 1 ≤ p < q < ∞ . If given the sequence f : N ×N→ R defined
by f (k, s) = xks and given the increasing functions i : N → N defined by i (k) = ik, j : N → N defined by
j (s) = js , then we define h :N×N→N×Nwith h (k, s) =

(
ik, js

)
. In this case, the composite function such

that f ◦ h (k, s) = xik js is called subsequence of the sequence (xks). The sequence eks =
(
eks

i j

)
defined by

eks
i j =

1, (k, s) = (i, j)
0, otherwise

.

If we consider the sequence (snm) defined by snm =
n∑

k=1

m∑
s=1

xks (n, m ∈N), then the pair of ((xks) , (snm)) is called

double series. Also (xks) is called general term of the series and (snm) is called the sequence of partial sum.
If the sequence of partial sum (snm) is convergent to a real number s in the Pringsheim’s sense, i.e.,

p − lim
n,m

n∑
k=1

m∑
s=1

xks = s

then the series ((xks) , (snm)) is called convergent in the Pringsheim’s sense ,i.e., p−convergent and the sum
of series equal to s, and is denoted by

∞∑
k,s=1

xks = s.

It’s know that if the series is p−convergent, then the p−limit of the general term of the series is zero. The

remaining term of the series
∞∑

k=1

∞∑
s=1

xks is defined by

Rnm =

n−1∑
k=1

∞∑
s=m

xks +

∞∑
k=n

m−1∑
s=1

xks +

∞∑
k=n

∞∑
s=m

xks. (1)

We will demonstrate the formula (1) briefly with∑
max{k,s}≥N

xks

for n = m = N. It’s known that if the series is p−convergent, then the p−limit of the remaining term of the
series is zero. Once find before mentioned and more details in [1], [2], [3], [10].

Superposition operators on sequence spaces are discussed by some authors. Chew and Lee [4] have
given the necessary and sufficient conditions for the superposition operator acting from the sequence space
lp into l1 with the continuity hypothesis. The characterization of the superposition operator acting from
the sequence space lp into lq with 1 ≤ p, q < ∞ has given by Dedagich and Zabrejko [5]. Petranuarat
and Kemprasit [7] have characterized the superposition operator acting from sequence space lp into lq
with 1 ≤ p, q < ∞ by generalizing works in [4]. The reader may refer for relevant terminology on the
superposition operators to [4], [5], [6], [7], [8], [9].

We extend the definition of superposition operators to double sequence spaces as follows. Let X, Y be
two double sequence spaces. A superposition operator P1 on X is a mapping from X into Ω defined by
P1 (x) =

(
1 (k, s, xks)

)∞
k,s=1 where the function 1 :N2

×R→ R satisfies
(1) 1 (k, s, 0) = 0 for all k, s ∈N.
If P1 (x) ∈ Y for all x ∈ X, we say that P1 acts from X into Y and write P1 : X → Y. Moreover, we shall
assume the additionally some of the following conditions:
(2) 1 (k, s, .) is continuous for all k, s ∈N
(2′) 1 (k, s, .) is bounded on every bounded subset of R for all k, s ∈N.
It’s obvious that if the function 1 (k, s, .) satisfies (2), then 1 satisfies (2′) from [9].
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In this paper, we characterize the superposition operator acting from the double sequence spaceLp into
L1 where 1 ≤ p < ∞ under the hypothesis that the function 1 (k, s, .) satisfies (2′) and its continuity by using
the methods in [4], [7]. Then we generalize our works as the superposition operator acting from the space
Lp into Lq where 1 ≤ p, q < ∞ without assuming that the function 1 (k, s, .) is satisfies (2′) by using the
methods in [7].

2. Superposition Operators ofLp intoL1 (1 ≤ p < ∞)

Theorem 2.1. Let us suppose that 1 : N2
× R → R satisfies (2′). Then P1 : Lp → L1 if and only if there exist

α, β > 0 and (cks)
∞

k,s=1 ∈ L1 such that∣∣∣1 (k, s, t)
∣∣∣ ≤ cks + α |t|p

for each k, s ∈N whenever |t| ≤ β.

Proof. Assume that there exist α, β > 0 and (cks)
∞

k,s=1 ∈ L1 such that
∣∣∣1 (k, s, t)

∣∣∣ ≤ cks + α |t|p for each k, s ∈ N
whenever |t| ≤ β. Let x = (xks) ∈ Lp. Then,

∑
max{k,s}≥N

|xks|
p < ε < βp for sufficiently large N ∈ N. Hence it’s

obvious that |xks| < β for all k, s ∈N such that max {k, s} ≥ N. Thus,∣∣∣1 (k, s, xks)
∣∣∣ ≤ cks + α |xks|

p

for all k, s ∈N such that max {k, s} ≥ N. Then we get

∞∑
k,s=1

∣∣∣1 (k, s, xks)
∣∣∣ =

N−1∑
k,s=1

∣∣∣1 (k, s, xks)
∣∣∣ +

∑
max{k,s}≥N

∣∣∣1 (k, s, xks)
∣∣∣

≤ A +
∑

max{k,s}≥N

cks + α
∑

max{k,s}≥N

|xks|
p

≤ A +

∞∑
k,s=1

cks + α
∞∑

k,s=1

|xks|
p < ∞.

Since P1 (x) =
(
1 (k, s, xks)

)∞
k,s=1, we obtain that P1 (x) ∈ L1. So, P1 acts from Lp to L1.

Conversely, suppose that P1 acts from Lp to L1. For all α, β > 0 and k, s ∈N, we define

A
(
k, s, α, β

)
=

{
t ∈ R : |t|p ≤ min

{
β, α−1

∣∣∣1 (k, s, t)
∣∣∣}}

and

B
(
k, s, α, β

)
= sup

{∣∣∣1 (k, s, t)
∣∣∣ : t ∈ A

(
k, s, α, β

)}
.

If |t| ≤ β and t ∈ A
(
k, s, α, β

)
, then

∣∣∣1 (k, s, t)
∣∣∣ ≤ B

(
k, s, α, β

)
. If |t| ≤ β and t < A

(
k, s, α, β

)
, then

∣∣∣1 (k, s, t)
∣∣∣ < α |t|p.

Thus we have∣∣∣1 (k, s, t)
∣∣∣ ≤ B

(
k, s, α, β

)
+ α |t|p

whenever |t| ≤ β. Now, we shall show that B
(
k, s, α, β

)
∈ L1 for some α, β > 0. Suppose that this does not

hold, i.e., for all α, β > 0,
∞∑

k,s=1
B
(
k, s, α, β

)
= ∞. Therefore for every i ∈ N,

∞∑
k,s=1

B
(
k, s, 2i, 2−i

)
= ∞. Then there

exist the increasing sequences of positive integers (ni) and (mi) such that the pair of ni, mi is the least positive
integers satisfying

ni∑
k=ni−1+1

mi∑
s=mi−1+1

B
(
k, s, 2i, 2−i

)
> 1.
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So, we see that

ni−1∑
k=ni−1+1

mi−1∑
s=mi−1+1

B
(
k, s, 2i, 2−i

)
≤ 1. (2)

For each i ∈N, there is εi > 0 such that

ni∑
k=ni−1+1

mi∑
s=mi−1+1

B
(
k, s, 2i, 2−i

)
− εi (ni − ni−1) (mi −mi−1) > 1. (3)

Let i ∈ N be fixed. Since 1 satisfies (2′), 0 ≤ B
(
k, s, 2i, 2−i

)
< ∞ for all k, s ∈ N such that ni−1 + 1 ≤ k ≤ ni

and mi−1 + 1 ≤ s ≤ mi. From the definition of B
(
k, s, 2i, 2−i

)
for all k, s ∈ N with ni−1 + 1 ≤ k ≤ ni and

mi−1 + 1 ≤ s ≤ mi, there is xks ∈ A
(
k, s, 2i, 2−i

)
such that∣∣∣1 (k, s, xks)

∣∣∣ > B
(
k, s, 2i, 2−i

)
− εi. (4)

From (3) and (4), we have
ni∑

k=ni−1+1

mi∑
s=mi−1+1

∣∣∣1 (k, s, xks)
∣∣∣ >

ni∑
k=ni−1+1

mi∑
s=mi−1+1

B
(
k, s, 2i, 2−i

)
−

ni∑
k=ni−1+1

mi∑
s=mi−1+1

εi

=

ni∑
k=ni−1+1

mi∑
s=mi−1+1

B
(
k, s, 2i, 2−i

)
− εi (ni − ni−1) (mi −mi−1)

> 1.

Thus
∞∑

i=1

(
ni∑

k=ni−1+1

mi∑
s=mi−1+1

∣∣∣1 (k, s, xks)
∣∣∣) = ∞, that is,

(
1 (k, s, xks)

)∞
k,s=1 < L1. Since xks ∈ A

(
k, s, 2i, 2−i

)
,

|xks|
p
≤

1
2i and |xks|

p
≤ 2−i

∣∣∣1 (k, s, xks)
∣∣∣ (5)

for all k, s ∈Nwith ni−1 + 1 ≤ k ≤ ni and mi−1 + 1 ≤ s ≤ mi. Therefore, we obtain using (2) and (5) that

ni∑
k=ni−1+1

mi∑
s=mi−1+1

|xks|
p =

ni−1∑
k=ni−1+1

mi−1∑
s=mi−1+1

|xks|
p +

∣∣∣xnimi

∣∣∣p
≤

ni−1∑
k=ni−1+1

mi−1∑
s=mi−1+1

2−i
∣∣∣1 (k, s, xks)

∣∣∣ +
1
2i

≤ 2−i
ni−1∑

k=ni−1+1

mi−1∑
s=mi−1+1

B
(
k, s, 2i, 2−i

)
+

1
2i

≤
1
2i +

1
2i =

2
2i

which shows that (xks) ∈ Lp. This contradicts the assumption that P1 : Lp → L1.

Example 2.2. Let 1 :N2
×R→ R defined by

1 (k, s, t) =
|t|

3k+s
+ |t|p+1
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for all k, s ∈ N and for all t ∈ R. Since 1 (k, s, .) is continuous on R for all k, s ∈ N, 1 satisfies (2′). Let β = 2 and
|t| ≤ 2. Then for all k, s ∈N,∣∣∣1 (k, s, t)

∣∣∣ =
|t|

3k+s
+ |t|p+1

=
|t|

3k+s
+ |t|p |t|

≤
2

3k+s
+ 2 |t|p .

Since
∞∑

k,s=1

2
3k+s < ∞, we put cks = 2

3k+s for all k, s ∈N. If we take α = 2, then we have
∣∣∣1 (k, s, t)

∣∣∣ ≤ cks + α |t|p whenever

|t| ≤ β. By Theorem 2.1, we find that P1 acts from Lp to L1.

Theorem 2.3. If P1 : Lp → L1, then P1 is continuous on Lp if and only if the function 1 (k, s, .) is continuous on R
for all k, s ∈N.

Proof. Assume that P1 is continuous on Lp. Let ε > 0 be given. Also, let m,n ∈ N and t ∈ R. Since P1 is
continuous at temn

∈ Lp, there exists δ > 0 such that ‖z − temn
‖p < δ implies

∥∥∥P1 (z) − P1 (temn)
∥∥∥

1
< ε for all

z = (zks) ∈ Lp. Let u ∈ R such that |u − t| < δ and define yks by

yks =

u, k = m and s = n
0, otherwise

.

Hence y =
(
yks

)
∈ Lp and |u − t| =

∥∥∥y − temn
∥∥∥

p < δ . Therefore, we get
∣∣∣1 (k, s,u) − 1 (k, s, t)

∣∣∣ =
∥∥∥P1

(
y
)
− P1 (temn)

∥∥∥
1
<

ε.
Conversely, suppose that 1 (k, s, .) is continuous on R for all k, s ∈N. So, 1 satisfies (2′). Since P1 : Lp →

L1, there exist α, β > 0 and (cks)
∞

k,s=1 ∈ L1 such that for each k, s ∈N,∣∣∣1 (k, s, t)
∣∣∣ ≤ cks + α |t|p whenever |t| ≤ β (6)

by Theorem 2.1. Since x = (xks) ∈ Lp and (cks) ∈ L1, there exists sufficiently large N ∈N such that∑
max{k,s}≥N

|xks|
p < min

{
ε

6α
,

1
2p

(
ε

6α

)}
(7)

|xks| <
β

2
for all k, s ∈N such that max {k, s} ≥ N (8)

and ∑
max{k,s}≥N

|cks| <
ε
6

.

From (6) and (8), we find
∣∣∣1 (k, s, xks)

∣∣∣ ≤ cks + α |xks|
p for all k, s ∈N such that max {k, s} ≥ N. Hence, we find∑

max{k,s}≥N

∣∣∣1 (k, s, xks)
∣∣∣ ≤ ∑

max{k,s}≥N

cks + α
∑

max{k,s}≥N

|xks|
p <

ε
3

. (9)

There exists δ > 0 with δ < min
{
β
2 ,

1
2

(
ε

6α

) 1
p
}

such that for all k, s ∈ {1, 2, ...,N − 1} and t ∈ R,

|t − xks| < δ implies
∣∣∣1 (k, s, t) − 1 (k, s, xks)

∣∣∣ < ε

3 (N − 1)2 (10)
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because 1 (k, s, .) is continuous at xks for all k, s ∈ {1, 2, ...,N − 1}. Let z ∈ Lp such that ‖z − x‖p < δ. Then

|zks − xks| < δ (11)

for all k, s ∈N. For all k, s ∈ {1, 2, ...,N − 1}, we find∣∣∣1 (k, s, zks) − 1 (k, s, xks)
∣∣∣ < ε

3 (N − 1)2

by (10). Therefore

N−1∑
k,s=1

∣∣∣1 (k, s, zks) − 1 (k, s, xks)
∣∣∣ < ε

3
. (12)

We see that
∥∥∥(zks)max{k,s}≥N − (xks)max{k,s}≥N

∥∥∥
p <

1
2

(
ε

6α

) 1
p . So,

 ∑
max{k,s}≥N

|zks|
p


1
p

=
∥∥∥(zks)max{k,s}≥N

∥∥∥
p

≤

∥∥∥(zks)max{k,s}≥N − (xks)max{k,s}≥N

∥∥∥
p +

∥∥∥(xks)max{k,s}≥N

∥∥∥
<

(
ε

6α

) 1
p

from (7). For all k, s ∈N such that max {k, s} ≥ N, we find

|zks| ≤ |zks − xks| + |xks| < δ +
β

2
< β

by (11). It’s follows that,∣∣∣1 (k, s, zks)
∣∣∣ ≤ cks + α |zks|

p

for all k, s ∈N such that max {k, s} ≥ N from (6). Therefore,∑
max{k,s}≥N

∣∣∣1 (k, s, zks)
∣∣∣ ≤ ∑

max{k,s}≥N

cks + α
∑

max{k,s}≥N

|zks|
p <

ε
3

.

Then, we obtain

∥∥∥P1 (z) − P1 (x)
∥∥∥

1
=

N−1∑
k,s=1

∣∣∣1 (k, s, zks) − 1 (k, s, xks)
∣∣∣ +

∑
max{k,s}≥N

∣∣∣1 (k, s, zks) − 1 (k, s, xks)
∣∣∣

≤

N−1∑
k,s=1

∣∣∣1 (k, s, zks) − 1 (k, s, xks)
∣∣∣ +

∑
max{k,s}≥N

∣∣∣1 (k, s, zks)
∣∣∣ +

∑
max{k,s}≥N

∣∣∣1 (k, s, xks)
∣∣∣

< ε

by (9) and (12).



B. Sağır, N. Güngör / Filomat 29:9 (2015), 2107–2118 2113

3. Superposition Operators ofLp intoLq (1 ≤ p, q < ∞)

Proposition 3.1. Let X be a double sequence space. If L1 ⊆ X and P1 : X→Mu, then there exist N ∈N and α > 0
such that

(
1 (k, s, .)

)∞
k,s=N is uniformly bounded on [−α, α].

Proof. Suppose that the converse of this holds. Then there is a subsequence
(
ik, js

)∞
k,s=1 of

(
i, j

)∞
i, j=1 and a

sequence
(
xik js

)∞
k,s=1

such that

xik js ∈
[
−2−(k+s), 2−(k+s)

]
and

∣∣∣∣1 (ik, js, xik js

)∣∣∣∣ > k + s

for all k, s ∈N. Then we find
(
xik js

)∞
k,s=1
∈ L1 and

(
1
(
ik, js, xik js

))∞
k,s=1
<Mu. Let

(
yi j

)∞
i, j=1

defined by

yi j =

xik js , ik = i and js = j
0, otherwise

.

Hence, we obtain
(
yi j

)∞
i, j=1
∈ L1 ⊆ X and

(
1
(
i, j, yi j

))∞
i, j=1
<Mu. Therefore, P1 : X9Mu.

Theorem 3.2. P1 : Lp → Lq if and only if there exist α > 0, β > 0, N ∈N and (cks)
∞

k,s=1 ∈ L1 such that∣∣∣1 (k, s, t)
∣∣∣q ≤ cks + α |t|p whenever |t| ≤ β (13)

for all k, s ∈N with max {k, s} ≥ N.

Proof. Suppose that P1 acts from Lp to Lq. Since Lq ⊂ Mu, P1 : Lp → Mu. Also since L1 ⊆ Lp, we see
that there exist α0 and N ∈N such that

(
1 (k, s, .)

)∞
k,s=N is uniformly bounded on [−α0, α0] by Proposition 3.1.

Therefore,

sup
t∈[−α0,α0]

∣∣∣1 (k, s, t)
∣∣∣q < ∞

for all k, s ≥ N. We define A
(
k, s, α, β

)
⊆ [−α0, α0] by

A
(
k, s, α, β

)
=

{
t ∈ [−α0, α0] : |t|p ≤ min

{
β, α−1

∣∣∣1 (k, s, t)
∣∣∣q}} (14)

and

B
(
k, s, α, β

)
= sup

{∣∣∣1 (k, s, t)
∣∣∣q : t ∈ A

(
k, s, α, β

)}
(15)

for all α > 0, β > 0 and k, s ≥ N. We assert that
∞∑

k,s=N
B
(
k, s, α, β

)
< ∞ for some α, β > 0 . To show the validity

of this fact, we assume the converse, that is,
∞∑

k,s=N
B
(
k, s, 2 j, 2− j

)
= ∞ for each j ∈ N ∪ {0}. Therefore, we see

that for all j ∈N ∪ {0} and n ≥ N there exist n′ > n and m′ > n such that

n′∑
k=n

m′∑
s=n

B
(
k, s, 2 j, 2− j

)
> 1. (16)

Then there exist n′1 > N and m′1 > N such that

n′1∑
k=N+1

m′1∑
s=N+1

B
(
k, s, 20, 2−0

)
> 1.
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Let

n1 = min

n′ ∈N|m′ ∈N, n′,m′ > N, and
n′∑

k=N+1

m′∑
s=N+1

B
(
k, s, 20, 2−0

)
> 1


m1 = min

m′ ∈N|n′ ∈N, n′,m′ > N, and
n′∑

k=N+1

m′∑
s=N+1

B
(
k, s, 20, 2−0

)
> 1

 .

Also there exist n′2 > n1 and m′2 > m1 such that

n′2∑
k=n1+1

m′2∑
s=m1+1

B
(
k, s, 21, 2−1

)
> 1

by using (16) . We write

n2 = min

n′ ∈N|m′ ∈N, n′ > n1, m′ > m1, and
n′∑

k=n1+1

m′∑
s=m1+1

B
(
k, s, 21, 2−1

)
> 1


m2 = min

m′ ∈N|n′ ∈N, n′ > n1, m′ > m1, and
n′∑

k=n1+1

m′∑
s=m1+1

B
(
k, s, 21, 2−1

)
> 1

 .

Hence by induction, there exist a subsequence (nk)∞k=1 of (n)∞n=1 and a subsequence (mk)∞k=1 of (m)∞m=1 such
that n1,m1 > N and

n j+1 = min

n′ ∈N|m′ ∈N, n′ > n1, m′ > m1 and
n′∑

k=n j+1

m′∑
s=m j+1

B
(
k, s, 2 j, 2− j

)
> 1


m j+1 = min

m′ ∈N|n′ ∈N, m′ > m1,n′ > n1 and
n′∑

k=n j+1

m′∑
s=m j+1

B
(
k, s, 2 j, 2− j

)
> 1

 .

Therefore, we see

n j+1−1∑
k=n j+1

m j+1−1∑
s=m j+1

B
(
k, s, 2 j, 2− j

)
≤ 1. (17)

We set F = {(k, s) : k ≤ n1 ∨ s ≤ m1}. If (k, s) ∈ F , let xks = 0. If k > n1 and s > m1, then there exists j ∈ N
such that n j < k ≤ n j+1 and m j < s ≤ m j+1. Thus there is (xks) ∈ A

(
k, s, 2 j, 2− j

)
and

0 ≤ B
(
k, s, 2 j, 2− j

)
<

∣∣∣1 (k, s, xks)
∣∣∣q + 2−(k+s) (18)

by (15). Also from (14), we have

|xks| ≤ min
{
2− j, 2− j

∣∣∣1 (k, s, xks)
∣∣∣q} . (19)

Therefore for each r ∈N, we find
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r <
r∑

j=1


n j+1∑

k=n j+1

m j+1∑
s=m j+1

B
(
k, s, 2 j, 2− j

)
<

nr+1∑
k=n1+1

mr+1∑
s=m1+1

{∣∣∣1 (k, s, xks)
∣∣∣q + 2−(k+s)

}
<

nr+1∑
k=1

mr+1∑
s=1

∣∣∣1 (k, s, xks)
∣∣∣q +

∞∑
k=1

∞∑
s=1

2−(k+s)

by using (18). Since
∞∑

k=1

∞∑
s=1

2−(k+s) < ∞, we find P1 (x) =
(
1 (k, s, xks)

)∞
k,s=1 < Lq. We see by (17) and (19) that

∞∑
k,s=1

|xks|
p =

∞∑
j=1


n j+1∑

k=n j+1

m j+1∑
s=m j+1

|xks|
p


≤

∞∑
j=1


n j+1−1∑
k=n j+1

m j+1−1∑
s=m j+1

|xks|
p +

∣∣∣xn j+1m j+1

∣∣∣p
≤

∞∑
j=1

2− j
n j+1−1∑
k=n j+1

m j+1−1∑
s=m j+1

∣∣∣1 (k, s, xks)
∣∣∣q + 2− j


≤

∞∑
j=1

2− j
n j+1−1∑
k=n j+1

m j+1−1∑
s=m j+1

B
(
k, s, 2 j, 2− j

)
+ 2− j


≤

∞∑
j=1

2.2− j

which means that (xks) ∈ Lp . But it contradicts that P1 : Lp → Lq. So, we see that there exist α > 0 and

β > 0 such that
∞∑

k,s=N
B
(
k, s, α, β

)
< ∞.

Let γ = min
{
α0, β

1
p
}

and define (cks) by

cks =

 B
(
k, s, α, β

)
, k, s ≥ N

0, otherwise
.

It’s obvious that (cks)
∞

k,s=1 ∈ L1. Also
[
−γ, γ

]
⊆ [−α0, α0] and |t|p ≤ β for each t ∈

[
−γ, γ

]
. Let k, s ≥ N

and t ∈
[
−γ, γ

]
. If t ∈ A

(
k, s, α, β

)
, then

∣∣∣1 (k, s, t)
∣∣∣q ≤ B

(
k, s, α, β

)
= cks ≤ cks + α |t|p. If t < A

(
k, s, α, β

)
, then

|t|p > α−1
∣∣∣1 (k, s, t)

∣∣∣q and so we find
∣∣∣1 (k, s, t)

∣∣∣q < α |t|p ≤ cks + α |t|p. Hence the inequality (13) holds.
Conversely, suppose that there is α > 0, β > 0, N ∈N and (cks)

∞

k,s=1 ∈ L1 such that∣∣∣1 (k, s, t)
∣∣∣q ≤ cks + α |t|p whenever |t| ≤ β

for all k, s with max {k, s} ≥ N. Let (xks) ∈ Lp. Then there is N′ > N such that
∑

max{k,s}≥N′
|xks|

p < ε < βp . Hence

for all k, s ∈N such that max {k, s} ≥ N′, it’s obvious that |xks| < β. Therefore,∣∣∣1 (k, s, xks)
∣∣∣q ≤ cks + α |xks|

p
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for all k, s ∈N such that max {k, s} ≥ N′. So, we have∑
max{k,s}≥N′

∣∣∣1 (k, s, xks)
∣∣∣q ≤ ∑

max{k,s}≥N′
cks + α

∑
max{k,s}≥N′

|xks|
p .

Then we obtain that
∞∑

k,s=1

∣∣∣1 (k, s, xks)
∣∣∣q < ∞. This completes the proof.

Example 3.3. Let 1 :N2
×R→ R defined by

1 (k, s, t) =

(
1

2
k+s

q

+ |t|
p
q

)
|t|

for all k, s ∈N and for all t ∈ R. Let N = 1, β = 2 and |t| ≤ 2. Then for all k, s ∈N,∣∣∣1 (k, s, t)
∣∣∣q =

(
1

2
k+s

q

+ |t|
p
q

)q

|t|q

≤ 2q max
{

1

2
k+s

q ·q
, |t|

p
q ·q

}
· |t|q

≤ 22q
( 1

2k+s
+ |t|p

)
≤

4q

2k+s
+ 4q
|t|p .

Since
∞∑

k,s=1

4q

2k+s < ∞, we put cks = 4q

2k+s for all k, s ∈N. If we take α = 4q, then we have
∣∣∣1 (k, s, t)

∣∣∣ ≤ cks +α |t|p whenever

|t| ≤ β. By Theorem 3.2, we find that P1 acts from Lp to Lq.

Proposition 3.4. Let X be a normed double sequence space containing all finite double sequences and Y be a normed
double sequence space such that Y ⊆Mu. Suppose that
(i) P1 : X→ Y,
(ii) there exists α > 0 such that ‖emn

‖X ≤ α for all m,n ∈N,
(iii) ‖.‖Mu

≤ β ‖.‖Y on Y for some β > 0.
If P1 is continuous at x, then for any ε > 0 there exists δ > 0 such that

|t − xks| < δ implies
∣∣∣1 (k, s, t) − 1 (k, s, xks)

∣∣∣ < ε
for all k, s ∈N and t ∈ R.

Proof. Let any ε > 0. Since P1 is continuous, there exists δ > 0 such that

‖z − x‖X < δ implies
∥∥∥P1 (z) − P1 (x)

∥∥∥
Y < ε (20)

for all z ∈ X. Let k, s ∈ N and t ∈ R with |t − xks| <
δ
α . Let u = (t − xks) emn + x, hence u ∈ X, uks = t and from

(ii)

‖u − x‖X = |t − xks| ‖emn
‖X < δ.

Thus, we find
∥∥∥P1 (u) − P1 (x)

∥∥∥
Y <

ε
β by (20). Therefore, we obtain∣∣∣1 (k, s, t) − 1 (k, s, xks)

∣∣∣ ≤ ∥∥∥P1 (u) − P1 (x)
∥∥∥

Mu
≤ β

∥∥∥P1 (u) − P1 (x)
∥∥∥

Y < ε

by (iii).
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Theorem 3.5. Let the superposition operator P1 : Lp → Lq. If P1 is continuous at x ∈ Lp if and only if 1 (k, s, .) is
continuous at xks for all k, s ∈N.

Proof. Since the conditions in Proposition 3.4 provided, we see that the necessary condition can be showed
easily.

Conversely, suppose that 1 (k, s, .) is continuous at xks for all k, s ∈ N. We need to show that P1 is
continuous at x ∈ Lp. Since P1 : Lp → Lq, there exist α > 0, β > 0, N1 ∈N and (cks)

∞

k,s=1 ∈ L1 such that∣∣∣1 (k, s, t)
∣∣∣q ≤ cks + α |t|p (21)

whenever |t| ≤ β for all k, s with max {k, s} ≥ N1. Let any ε > 0. Since Lp ⊆Mu,

p − lim
n,m→∞

n−1∑
k=0

∞∑
s=m

|xks|
p +

∞∑
k=n

m−1∑
s=1

|xks|
p +

∞∑
k=n

∞∑
s=m

|xks|
p

 = 0

and

p − lim
n,m→∞

n−1∑
k=0

∞∑
s=m

cks +

∞∑
k=n

m−1∑
s=1

cks +

∞∑
k=n

∞∑
s=m

cks

 = 0

respectively, there exists N ∈Nwith N ≥ N1 such that

|xks| ≤ β for all k, s with max {k, s} ≥ N, (22)

∑
max{k,s}≥N

|xks|
p
≤ min

{(
β

2

)p

,
εq

α2q+3 ,
1
2p

(
εq

α2q+3

)}
(23)

and ∑
max{k,s}≥N

cks ≤
εq

2q+3 . (24)

We write
∣∣∣1 (k, s, xks)

∣∣∣q ≤ cks + α |xks|
p for all k, s with max {k, s} ≥ N by using (21) and (22). Since 1 (k, s, .) is

continuous at xks for all k, s ∈ {1, 2, ...,N − 1}, there is δ ∈ R satisfying 0 < δ ≤ min
{
β
2 ,

1
2

(
εq

α2q+3

) 1
p
}

such that

|t − xks| < δ implies
∣∣∣1 (k, s, t) − 1 (k, s, xks)

∣∣∣ < (
εq

2 (N − 1)2

) 1
q

(25)

for all t ∈ R and k, s ∈ {1, 2, ...,N − 1}.
Let z ∈ Lp with ‖z − x‖p < δ. Then, we see that∥∥∥(zks)max{k,s}≥N − (xks)max{k,s}≥N

∥∥∥
p < δ.

Hence we find

|zks| ≤
∥∥∥(zks)max{k,s}≥N

∥∥∥
p

≤

∥∥∥(zks)max{k,s}≥N − (xks)max{k,s}≥N

∥∥∥
p +

∥∥∥(xks)max{k,s}≥N

∥∥∥
p

< δ +
β

2
≤ β (26)
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by using (23), for all k, s with max {k, s} ≥ N. Also, we find ∑
max{k,s}≥N

|zks|
p


1
p

=
∥∥∥(zks)max{k,s}≥N

∥∥∥
p

≤

∥∥∥(zks)max{k,s}≥N − (xks)max{k,s}≥N

∥∥∥
p +

∥∥∥(xks)max{k,s}≥N

∥∥∥
p

≤

(
εq

α2q+3

) 1
p

. (27)

We write
∣∣∣1 (k, s, zks)

∣∣∣q ≤ cks + α |zks|
p for all k, s with max {k, s} ≥ N by using (21) and (26). Therefore, we have∣∣∣1 (k, s, zks) − 1 (k, s, xks)

∣∣∣q ≤ 2q max
{∣∣∣1 (k, s, zks)

∣∣∣q , ∣∣∣1 (k, s, xks)
∣∣∣q}

≤ 2q
(∣∣∣1 (k, s, zks)

∣∣∣q +
∣∣∣1 (k, s, xks)

∣∣∣q)
≤ 2q (2cks + α |zks|

p + α |xks|
p) .

Then we find∑
max{k,s}≥N

∣∣∣1 (k, s, zks) − 1 (k, s, xks)
∣∣∣q ≤ 2q+1

∑
max{k,s}≥N

cks + 2qα
∑

max{k,s}≥N

|zks|
p + 2qα

∑
max{k,s}≥N

|xks|
p

<
εq

2
by using (23), (24) and (27). We know that |zks − xks| ≤ ‖z − x‖p < δ for all k, s ∈ {1, 2, ...,N − 1} and so∣∣∣1 (k, s, zks) − 1 (k, s, xks)

∣∣∣q ≤ εq

2(N−1)2 from (25). Therefore, we obtain

∞∑
k,s=1

∣∣∣1 (k, s, zks) − 1 (k, s, xks)
∣∣∣q =

N−1∑
k,s=1

∣∣∣1 (k, s, zks) − 1 (k, s, xks)
∣∣∣q +

∑
max{k,s}≥N

∣∣∣1 (k, s, zks) − 1 (k, s, xks)
∣∣∣q

< (N − 1)2 εq

2 (N − 1)2 +
εq

2
< εq.

This completes the proof.

4. Concluding Remarks

The necessary and sufficient conditions for the continuity of the superposition operator P1 have been
formulated, as stated in Theorem 2.3 and Theorem 3.5 . For the future, we will formulate the necessary and
sufficient conditions for the boundedness of the superposition operator P1.
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