Filomat 29:9 (2015), 2107–2118 DOI 10.2298/FIL1509107S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Continuity of Superposition Operators on the Double Sequence Spaces \mathcal{L}_p

Birsen Sağır^a, Nihan Güngör^b

^aOndokuz Mayıs University, Faculty Of Sciences And Arts, Department Of Mathematics, 55139 Kurupelit Samsun/Turkey ^bGümüşhane University, Faculty Of Engineering, Department Of Mathematical Engineering, 29100 Gümüşhane / Turkey

Abstract. In this paper, we define the superposition operator P_g where $g : \mathbb{N}^2 \times \mathbb{R} \to \mathbb{R}$ by $P_g((x_{ks})) = g(k, s, x_{ks})$ for all real double sequence (x_{ks}) . Chew & Lee [4] and Petranuarat & Kemprasit [7] have characterized $P_g : l_p \to l_1$ and $P_g : l_p \to l_q$ where $1 \le p, q < \infty$, respectively. The main goal of this paper is to construct the necessary and sufficient conditions for the continuity of $P_g : \mathcal{L}_p \to \mathcal{L}_1$ and $P_g : \mathcal{L}_p \to \mathcal{L}_q$ where $1 \le p, q < \infty$.

1. Introduction

Let \mathbb{R} be set of all real numbers, \mathbb{N} be the set of all natural numbers, $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ and Ω denotes the space of all real double sequences which is the vector space with coordinatewise addition and scalar multiplication. Let $x = (x_{ks}) \in \Omega$. If for any $\varepsilon > 0$ there exist $N \in \mathbb{N}$ and $l \in \mathbb{R}$ such that $|x_{ks} - l| < \varepsilon$ for all $k, s \ge N$, then we call that the double sequence $x = (x_{ks})$ is convergent in the Pringsheim's sense and denoted by $p - \lim x_{ks} = l$. The space of all convergent double sequences in the Pringsheim's sense is denoted by C_p . The space of all bounded double sequences is denoted by M_u , that is,

$$M_u := \left\{ x = (x_{ks}) \in \Omega : ||x||_{M_u} = \sup_{k,s \in \mathbb{N}} |x_{ks}| < \infty \right\}$$

which is a Banach space with the norm $\|\cdot\|_{M_u}$. It's known that there are such sequences in the space C_p , but not in the space M_u . The space \mathcal{L}_p is defined by

$$\mathcal{L}_p := \left\{ x = (x_{ks}) \in \Omega : \sum_{k,s=1}^{\infty} |x_{ks}|^p < \infty \right\}$$

where $1 \le p < \infty$ and $\sum_{k,s=1}^{\infty} = \sum_{k=1}^{\infty} \sum_{s=1}^{\infty} \cdot \mathcal{L}_p$ is a Banach space with the norm

$$||x||_p = \left(\sum_{k,s=1}^{\infty} |x_{ks}|^p\right)^{\frac{1}{p}}.$$

Keywords. Superposition Operators, Continuity, Double Sequence Spaces, Pringsheim's convergent Received: 12 February 2014; Accepted: 08 August 2014

²⁰¹⁰ Mathematics Subject Classification. Primary 47H30; Secondary 46A45

Communicated by Dragan S. Djordjević

Email addresses: bduyar@omu.edu.tr (Birsen Sağır), nihangungor@gumushane.edu.tr (Nihan Güngör)

It's know that $\mathcal{L}_p \subset M_u$ and $\mathcal{L}_p \subset \mathcal{L}_q$ where $1 \leq p < q < \infty$. If given the sequence $f : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ defined by $f(k,s) = x_{ks}$ and given the increasing functions $i : \mathbb{N} \to \mathbb{N}$ defined by $i(k) = i_k$, $j : \mathbb{N} \to \mathbb{N}$ defined by $j(s) = j_s$, then we define $h : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ with $h(k,s) = (i_k, j_s)$. In this case, the composite function such that $f \circ h(k,s) = x_{i_k j_s}$ is called subsequence of the sequence (x_{ks}) . The sequence $e^{ks} = (e_{i_s}^{ks})$ defined by

$$e_{ij}^{ks} = \begin{cases} 1, & (k,s) = (i,j) \\ 0, & \text{otherwise} \end{cases}$$

If we consider the sequence (s_{nm}) defined by $s_{nm} = \sum_{k=1}^{n} \sum_{s=1}^{m} x_{ks}$ $(n, m \in \mathbb{N})$, then the pair of $((x_{ks}), (s_{nm}))$ is called double series. Also (x_{ks}) is called general term of the series and (s_{nm}) is called the sequence of partial sum. If the sequence of partial sum (s_{nm}) is convergent to a real number s in the Pringsheim's sense, i.e.,

$$p - \lim_{n,m} \sum_{k=1}^{n} \sum_{s=1}^{m} x_{ks} = s$$

then the series $((x_{ks}), (s_{nm}))$ is called convergent in the Pringsheim's sense ,i.e., *p*-convergent and the sum of series equal to *s*, and is denoted by

$$\sum_{k,s=1}^{\infty} x_{ks} = s$$

It's know that if the series is *p*-convergent, then the *p*-limit of the general term of the series is zero. The remaining term of the series $\sum_{k=1}^{\infty} \sum_{s=1}^{\infty} x_{ks}$ is defined by

$$R_{nm} = \sum_{k=1}^{n-1} \sum_{s=m}^{\infty} x_{ks} + \sum_{k=n}^{\infty} \sum_{s=1}^{m-1} x_{ks} + \sum_{k=n}^{\infty} \sum_{s=m}^{\infty} x_{ks}.$$
(1)

We will demonstrate the formula (1) briefly with

$$\sum_{\max\{k,s\}\geq N} x_{ks}$$

for n = m = N. It's known that if the series is *p*-convergent, then the *p*-limit of the remaining term of the series is zero. Once find before mentioned and more details in [1], [2], [3], [10].

Superposition operators on sequence spaces are discussed by some authors. Chew and Lee [4] have given the necessary and sufficient conditions for the superposition operator acting from the sequence space l_p into l_1 with the continuity hypothesis. The characterization of the superposition operator acting from the sequence space l_p into l_q with $1 \le p, q < \infty$ has given by Dedagich and Zabrejko [5]. Petranuarat and Kemprasit [7] have characterized the superposition operator acting from sequence space l_p into l_q with $1 \le p, q < \infty$ has given by Dedagich and Zabrejko [5]. Petranuarat and Kemprasit [7] have characterized the superposition operator acting from sequence space l_p into l_q with $1 \le p, q < \infty$ by generalizing works in [4]. The reader may refer for relevant terminology on the superposition operators to [4], [5], [6], [7], [8], [9].

We extend the definition of superposition operators to double sequence spaces as follows. Let *X*, *Y* be two double sequence spaces. A superposition operator P_g on *X* is a mapping from *X* into Ω defined by $P_g(x) = (g(k, s, x_{ks}))_{k,s=1}^{\infty}$ where the function $g : \mathbb{N}^2 \times \mathbb{R} \to \mathbb{R}$ satisfies (1) g(k, s, 0) = 0 for all $k, s \in \mathbb{N}$.

If $P_g(x) \in Y$ for all $x \in X$, we say that P_g acts from X into Y and write $P_g : X \to Y$. Moreover, we shall assume the additionally some of the following conditions:

(2) q(k, s, .) is continuous for all $k, s \in \mathbb{N}$

(2') g(k, s, .) is bounded on every bounded subset of \mathbb{R} for all $k, s \in \mathbb{N}$.

It's obvious that if the function g(k, s, .) satisfies (2), then g satisfies (2') from [9].

In this paper, we characterize the superposition operator acting from the double sequence space \mathcal{L}_p into \mathcal{L}_1 where $1 \le p < \infty$ under the hypothesis that the function g(k, s, .) satisfies (2') and its continuity by using the methods in [4], [7]. Then we generalize our works as the superposition operator acting from the space \mathcal{L}_p into \mathcal{L}_q where $1 \le p, q < \infty$ without assuming that the function g(k, s, .) is satisfies (2') by using the methods in [7].

2. Superposition Operators of \mathcal{L}_p into \mathcal{L}_1 $(1 \le p < \infty)$

Theorem 2.1. Let us suppose that $g : \mathbb{N}^2 \times \mathbb{R} \to \mathbb{R}$ satisfies (2'). Then $P_g : \mathcal{L}_p \to \mathcal{L}_1$ if and only if there exist $\alpha, \beta > 0$ and $(c_{ks})_{k,s=1}^{\infty} \in \mathcal{L}_1$ such that

$$\left|g\left(k,s,t\right)\right| \le c_{ks} + \alpha \left|t\right|^{p}$$

for each $k, s \in \mathbb{N}$ whenever $|t| \leq \beta$.

Proof. Assume that there exist $\alpha, \beta > 0$ and $(c_{ks})_{k,s=1}^{\infty} \in \mathcal{L}_1$ such that $|g(k,s,t)| \leq c_{ks} + \alpha |t|^p$ for each $k, s \in \mathbb{N}$ whenever $|t| \leq \beta$. Let $x = (x_{ks}) \in \mathcal{L}_p$. Then, $\sum_{\max\{k,s\} \geq N} |x_{ks}|^p < \varepsilon < \beta^p$ for sufficiently large $N \in \mathbb{N}$. Hence it's obvious that $|x_{ks}| < \beta$ for all $k, s \in \mathbb{N}$ such that $\max\{k, s\} \geq N$. Thus,

$$\left|g\left(k,s,x_{ks}\right)\right| \leq c_{ks} + \alpha \left|x_{ks}\right|^{p}$$

for all $k, s \in \mathbb{N}$ such that max $\{k, s\} \ge N$. Then we get

$$\begin{split} \sum_{k,s=1}^{\infty} \left| g\left(k,s,x_{ks}\right) \right| &= \sum_{k,s=1}^{N-1} \left| g\left(k,s,x_{ks}\right) \right| + \sum_{\max\{k,s\} \ge N} \left| g\left(k,s,x_{ks}\right) \right| \\ &\leq A + \sum_{\max\{k,s\} \ge N} c_{ks} + \alpha \sum_{\max\{k,s\} \ge N} |x_{ks}|^{p} \\ &\leq A + \sum_{k,s=1}^{\infty} c_{ks} + \alpha \sum_{k,s=1}^{\infty} |x_{ks}|^{p} < \infty. \end{split}$$

Since $P_g(x) = (g(k, s, x_{ks}))_{k,s=1}^{\infty}$, we obtain that $P_g(x) \in \mathcal{L}_1$. So, P_g acts from \mathcal{L}_p to \mathcal{L}_1 .

Conversely, suppose that P_g acts from \mathcal{L}_p to \mathcal{L}_1 . For all $\alpha, \beta > 0$ and $k, s \in \mathbb{N}$, we define

$$A(k, s, \alpha, \beta) = \left\{ t \in \mathbb{R} : |t|^{p} \le \min\left\{\beta, \alpha^{-1} \left| g(k, s, t) \right| \right\} \right\}$$

and

$$B(k, s, \alpha, \beta) = \sup \left\{ \left| g(k, s, t) \right| : t \in A(k, s, \alpha, \beta) \right\}$$

If $|t| \leq \beta$ and $t \in A(k, s, \alpha, \beta)$, then $|g(k, s, t)| \leq B(k, s, \alpha, \beta)$. If $|t| \leq \beta$ and $t \notin A(k, s, \alpha, \beta)$, then $|g(k, s, t)| < \alpha |t|^p$. Thus we have

$$\left|g\left(k,s,t\right)\right| \le B\left(k,s,\alpha,\beta\right) + \alpha \left|t\right|^{p}$$

whenever $|t| \leq \beta$. Now, we shall show that $B(k, s, \alpha, \beta) \in \mathcal{L}_1$ for some $\alpha, \beta > 0$. Suppose that this does not hold, i.e., for all $\alpha, \beta > 0$, $\sum_{k,s=1}^{\infty} B(k, s, \alpha, \beta) = \infty$. Therefore for every $i \in \mathbb{N}$, $\sum_{k,s=1}^{\infty} B(k, s, 2^i, 2^{-i}) = \infty$. Then there exist the increasing sequences of positive integers (n_i) and (m_i) such that the pair of n_i, m_i is the least positive integers satisfying

$$\sum_{k=n_{i-1}+1}^{n_i} \sum_{s=m_{i-1}+1}^{m_i} B\left(k, s, 2^i, 2^{-i}\right) > 1.$$

So, we see that

$$\sum_{k=n_{i-1}+1}^{n_i-1} \sum_{s=m_{i-1}+1}^{m_i-1} B\left(k, s, 2^i, 2^{-i}\right) \le 1.$$
(2)

For each $i \in \mathbb{N}$, there is $\varepsilon_i > 0$ such that

$$\sum_{k=n_{i-1}+1}^{n_i} \sum_{s=m_{i-1}+1}^{m_i} B\left(k, s, 2^i, 2^{-i}\right) - \varepsilon_i \left(n_i - n_{i-1}\right) \left(m_i - m_{i-1}\right) > 1.$$
(3)

Let $i \in \mathbb{N}$ be fixed. Since g satisfies (2'), $0 \le B(k, s, 2^i, 2^{-i}) < \infty$ for all $k, s \in \mathbb{N}$ such that $n_{i-1} + 1 \le k \le n_i$ and $m_{i-1} + 1 \le s \le m_i$. From the definition of $B(k, s, 2^i, 2^{-i})$ for all $k, s \in \mathbb{N}$ with $n_{i-1} + 1 \le k \le n_i$ and $m_{i-1} + 1 \le s \le m_i$, there is $x_{ks} \in A(k, s, 2^i, 2^{-i})$ such that

$$\left|g\left(k,s,x_{ks}\right)\right| > B\left(k,s,2^{i},2^{-i}\right) - \varepsilon_{i}.$$
(4)

From (3) and (4), we have

$$\sum_{k=n_{i-1}+1}^{n_i} \sum_{s=m_{i-1}+1}^{m_i} \left| g\left(k, s, x_{ks}\right) \right| > \sum_{k=n_{i-1}+1}^{n_i} \sum_{s=m_{i-1}+1}^{m_i} B\left(k, s, 2^i, 2^{-i}\right) - \sum_{k=n_{i-1}+1}^{n_i} \sum_{s=m_{i-1}+1}^{m_i} \varepsilon_i$$

$$= \sum_{k=n_{i-1}+1}^{n_i} \sum_{s=m_{i-1}+1}^{m_i} B\left(k, s, 2^i, 2^{-i}\right) - \varepsilon_i \left(n_i - n_{i-1}\right) \left(m_i - m_{i-1}\right)$$

$$> 1.$$

Thus $\sum_{i=1}^{\infty} \left(\sum_{k=n_{i-1}+1}^{n_i} \sum_{s=m_{i-1}+1}^{m_i} |g(k, s, x_{ks})| \right) = \infty$, that is, $(g(k, s, x_{ks}))_{k,s=1}^{\infty} \notin \mathcal{L}_1$. Since $x_{ks} \in A(k, s, 2^i, 2^{-i})$, $|x_{ks}|^p \le \frac{1}{2^i}$ and $|x_{ks}|^p \le 2^{-i} |g(k, s, x_{ks})|$ (5)

for all $k, s \in \mathbb{N}$ with $n_{i-1} + 1 \le k \le n_i$ and $m_{i-1} + 1 \le s \le m_i$. Therefore, we obtain using (2) and (5) that

$$\sum_{k=n_{i-1}+1}^{n_i} \sum_{s=m_{i-1}+1}^{m_i} |x_{ks}|^p = \sum_{k=n_{i-1}+1}^{n_i-1} \sum_{s=m_{i-1}+1}^{m_i-1} |x_{ks}|^p + |x_{n_im_i}|^p$$

$$\leq \sum_{k=n_{i-1}+1}^{n_i-1} \sum_{s=m_{i-1}+1}^{m_i-1} 2^{-i} |g(k, s, x_{ks})| + \frac{1}{2^i}$$

$$\leq 2^{-i} \sum_{k=n_{i-1}+1}^{n_i-1} \sum_{s=m_{i-1}+1}^{m_i-1} B(k, s, 2^i, 2^{-i}) + \frac{1}{2^i}$$

$$\leq \frac{1}{2^i} + \frac{1}{2^i} = \frac{2}{2^i}$$

which shows that $(x_{ks}) \in \mathcal{L}_p$. This contradicts the assumption that $P_g : \mathcal{L}_p \to \mathcal{L}_1$. \Box

Example 2.2. Let $g : \mathbb{N}^2 \times \mathbb{R} \to \mathbb{R}$ defined by

$$g(k,s,t) = \frac{|t|}{3^{k+s}} + |t|^{p+1}$$

2110

for all $k, s \in \mathbb{N}$ and for all $t \in \mathbb{R}$. Since g(k, s, .) is continuous on \mathbb{R} for all $k, s \in \mathbb{N}$, g satisfies (2'). Let $\beta = 2$ and $|t| \le 2$. Then for all $k, s \in \mathbb{N}$,

$$g(k, s, t) = \frac{|t|}{3^{k+s}} + |t|^{p+1}$$
$$= \frac{|t|}{3^{k+s}} + |t|^p |t|$$
$$\leq \frac{2}{3^{k+s}} + 2 |t|^p.$$

Since $\sum_{k,s=1}^{\infty} \frac{2}{3^{k+s}} < \infty$, we put $c_{ks} = \frac{2}{3^{k+s}}$ for all $k, s \in \mathbb{N}$. If we take $\alpha = 2$, then we have $|g(k, s, t)| \le c_{ks} + \alpha |t|^p$ whenever $|t| \le \beta$. By Theorem 2.1, we find that P_g acts from \mathcal{L}_p to \mathcal{L}_1 .

Theorem 2.3. If $P_g : \mathcal{L}_p \to \mathcal{L}_1$, then P_g is continuous on \mathcal{L}_p if and only if the function g(k, s, .) is continuous on \mathbb{R} for all $k, s \in \mathbb{N}$.

Proof. Assume that P_g is continuous on \mathcal{L}_p . Let $\varepsilon > 0$ be given. Also, let $m, n \in \mathbb{N}$ and $t \in \mathbb{R}$. Since P_g is continuous at $te^{mn} \in \mathcal{L}_p$, there exists $\delta > 0$ such that $||z - te^{mn}||_p < \delta$ implies $||P_g(z) - P_g(te^{mn})||_1 < \varepsilon$ for all $z = (z_{ks}) \in \mathcal{L}_p$. Let $u \in \mathbb{R}$ such that $|u - t| < \delta$ and define y_{ks} by

$$y_{ks} = \begin{cases} u, & k = m \text{ and } s = n \\ 0, & \text{otherwise} \end{cases}$$

Hence $y = (y_{ks}) \in \mathcal{L}_p$ and $|u - t| = ||y - te^{mn}||_p < \delta$. Therefore, we get $|g(k, s, u) - g(k, s, t)| = ||P_g(y) - P_g(te^{mn})||_1 < \varepsilon$.

Conversely, suppose that g(k, s, .) is continuous on \mathbb{R} for all $k, s \in \mathbb{N}$. So, g satisfies (2'). Since $P_g : \mathcal{L}_p \to \mathcal{L}_1$, there exist $\alpha, \beta > 0$ and $(c_{ks})_{k,s=1}^{\infty} \in \mathcal{L}_1$ such that for each $k, s \in \mathbb{N}$,

$$\left|g\left(k,s,t\right)\right| \le c_{ks} + \alpha \left|t\right|^{p} \text{ whenever } \left|t\right| \le \beta$$
(6)

by Theorem 2.1. Since $x = (x_{ks}) \in \mathcal{L}_p$ and $(c_{ks}) \in \mathcal{L}_1$, there exists sufficiently large $N \in \mathbb{N}$ such that

$$\sum_{\max\{k,s\}\geq N} |x_{ks}|^p < \min\left\{\frac{\varepsilon}{6\alpha}, \frac{1}{2^p}\left(\frac{\varepsilon}{6\alpha}\right)\right\}$$
(7)

$$|x_{ks}| < \frac{\beta}{2}$$
 for all $k, s \in \mathbb{N}$ such that $\max\{k, s\} \ge N$

and

$$\sum_{\max\{k,s\}\geq N} |c_{ks}| < \frac{\varepsilon}{6}$$

From (6) and (8), we find $|g(k, s, x_{ks})| \le c_{ks} + \alpha |x_{ks}|^p$ for all $k, s \in \mathbb{N}$ such that max $\{k, s\} \ge N$. Hence, we find

$$\sum_{\max\{k,s\}\geq N} \left| g\left(k,s,x_{ks}\right) \right| \leq \sum_{\max\{k,s\}\geq N} c_{ks} + \alpha \sum_{\max\{k,s\}\geq N} \left| x_{ks} \right|^p < \frac{\varepsilon}{3}.$$
(9)

There exists $\delta > 0$ with $\delta < \min\left\{\frac{\beta}{2}, \frac{1}{2}\left(\frac{\varepsilon}{6\alpha}\right)^{\frac{1}{p}}\right\}$ such that for all $k, s \in \{1, 2, ..., N-1\}$ and $t \in \mathbb{R}$,

$$|t - x_{ks}| < \delta \text{ implies } \left| g\left(k, s, t\right) - g\left(k, s, x_{ks}\right) \right| < \frac{\varepsilon}{3\left(N-1\right)^2}$$

$$\tag{10}$$

(8)

because g(k, s, .) is continuous at x_{ks} for all $k, s \in \{1, 2, ..., N - 1\}$. Let $z \in \mathcal{L}_p$ such that $||z - x||_p < \delta$. Then

$$|z_{ks} - x_{ks}| < \delta \tag{11}$$

for all $k, s \in \mathbb{N}$. For all $k, s \in \{1, 2, ..., N - 1\}$, we find

$$\left|g\left(k,s,z_{ks}\right)-g\left(k,s,x_{ks}\right)\right| < \frac{\varepsilon}{3\left(N-1\right)^2}$$

by (10). Therefore

$$\sum_{k,s=1}^{N-1} \left| g\left(k,s,z_{ks}\right) - g\left(k,s,x_{ks}\right) \right| < \frac{\varepsilon}{3}.$$
(12)

We see that $\left\| (z_{ks})_{\max\{k,s\} \ge N} - (x_{ks})_{\max\{k,s\} \ge N} \right\|_p < \frac{1}{2} \left(\frac{\varepsilon}{6\alpha} \right)^{\frac{1}{p}}$. So,

$$\begin{split} \left(\sum_{\max\{k,s\}\geq N} |z_{ks}|^p\right)^{\frac{1}{p}} &= \|(z_{ks})_{\max\{k,s\}\geq N}\|_p \\ &\leq \|(z_{ks})_{\max\{k,s\}\geq N} - (x_{ks})_{\max\{k,s\}\geq N}\|_p + \|(x_{ks})_{\max\{k,s\}\geq N}\| \\ &< \left(\frac{\varepsilon}{6\alpha}\right)^{\frac{1}{p}} \end{split}$$

from (7). For all $k, s \in \mathbb{N}$ such that max $\{k, s\} \ge N$, we find

$$|z_{ks}| \leq |z_{ks} - x_{ks}| + |x_{ks}| < \delta + \frac{\beta}{2} < \beta$$

by (11). It's follows that,

$$\left|g\left(k,s,z_{ks}\right)\right| \leq c_{ks} + \alpha \left|z_{ks}\right|^{p}$$

for all $k, s \in \mathbb{N}$ such that max $\{k, s\} \ge N$ from (6). Therefore,

$$\sum_{\max\{k,s\}\geq N} \left| g\left(k,s,z_{ks}\right) \right| \leq \sum_{\max\{k,s\}\geq N} c_{ks} + \alpha \sum_{\max\{k,s\}\geq N} \left| z_{ks} \right|^p < \frac{\varepsilon}{3}.$$

Then, we obtain

$$\begin{split} \left\| P_{g}(z) - P_{g}(x) \right\|_{1} &= \sum_{k,s=1}^{N-1} \left| g\left(k, s, z_{ks}\right) - g\left(k, s, x_{ks}\right) \right| + \sum_{\max\{k,s\} \ge N} \left| g\left(k, s, z_{ks}\right) - g\left(k, s, x_{ks}\right) \right| \\ &\leq \sum_{k,s=1}^{N-1} \left| g\left(k, s, z_{ks}\right) - g\left(k, s, x_{ks}\right) \right| + \sum_{\max\{k,s\} \ge N} \left| g\left(k, s, z_{ks}\right) \right| + \sum_{\max\{k,s\} \ge N} \left| g\left(k, s, z_{ks}\right) \right| \\ &< \varepsilon \end{split}$$

by (9) and (12).

3. Superposition Operators of \mathcal{L}_p into \mathcal{L}_q $(1 \le p, q < \infty)$

Proposition 3.1. Let X be a double sequence space. If $\mathcal{L}_1 \subseteq X$ and $P_g : X \to M_u$, then there exist $N \in \mathbb{N}$ and $\alpha > 0$ such that $(g(k, s, .))_{k,s=N}^{\infty}$ is uniformly bounded on $[-\alpha, \alpha]$.

Proof. Suppose that the converse of this holds. Then there is a subsequence $(i_k, j_s)_{k,s=1}^{\infty}$ of $(i, j)_{i,j=1}^{\infty}$ and a sequence $(x_{i_k j_s})_{k_s=1}^{\infty}$ such that

$$x_{i_k j_s} \in \left[-2^{-(k+s)}, 2^{-(k+s)}\right] \text{ and } \left|g(i_k, j_s, x_{i_k j_s})\right| > k+s$$

for all $k, s \in \mathbb{N}$. Then we find $(x_{i_k j_s})_{k,s=1}^{\infty} \in \mathcal{L}_1$ and $(g(i_k, j_s, x_{i_k j_s}))_{k,s=1}^{\infty} \notin M_u$. Let $(y_{ij})_{i,j=1}^{\infty}$ defined by

$$y_{ij} = \begin{cases} x_{i_k j_s}, & i_k = i \text{ and } j_s = j \\ 0, & \text{otherwise} \end{cases}$$

Hence, we obtain $(y_{ij})_{i,j=1}^{\infty} \in \mathcal{L}_1 \subseteq X$ and $(g(i, j, y_{ij}))_{i,j=1}^{\infty} \notin M_u$. Therefore, $P_g : X \twoheadrightarrow M_u$. \Box

Theorem 3.2. $P_g : \mathcal{L}_p \to \mathcal{L}_q$ if and only if there exist $\alpha > 0$, $\beta > 0$, $N \in \mathbb{N}$ and $(c_{ks})_{k,s=1}^{\infty} \in \mathcal{L}_1$ such that

$$\left|g\left(k,s,t\right)\right|^{\gamma} \le c_{ks} + \alpha \left|t\right|^{p} \text{ whenever } \left|t\right| \le \beta$$
(13)

for all $k, s \in \mathbb{N}$ with max $\{k, s\} \ge N$.

Proof. Suppose that P_g acts from \mathcal{L}_p to \mathcal{L}_q . Since $\mathcal{L}_q \subset M_u$, $P_g : \mathcal{L}_p \to M_u$. Also since $\mathcal{L}_1 \subseteq \mathcal{L}_p$, we see that there exist α_0 and $N \in \mathbb{N}$ such that $(g(k, s, .))_{k,s=N}^{\infty}$ is uniformly bounded on $[-\alpha_0, \alpha_0]$ by Proposition 3.1. Therefore,

$$\sup_{t\in[-\alpha_0,\alpha_0]}\left|g\left(k,s,t\right)\right|^q<\infty$$

for all $k, s \ge N$. We define $A(k, s, \alpha, \beta) \subseteq [-\alpha_0, \alpha_0]$ by

$$A(k, s, \alpha, \beta) = \left\{ t \in [-\alpha_0, \alpha_0] : |t|^p \le \min\left\{\beta, \alpha^{-1} \left| g(k, s, t) \right|^q \right\} \right\}$$
(14)

and

$$B(k,s,\alpha,\beta) = \sup\left\{ \left| g(k,s,t) \right|^{q} : t \in A(k,s,\alpha,\beta) \right\}$$
(15)

for all $\alpha > 0$, $\beta > 0$ and $k, s \ge N$. We assert that $\sum_{k,s=N}^{\infty} B(k, s, \alpha, \beta) < \infty$ for some $\alpha, \beta > 0$. To show the validity of this fact, we assume the converse, that is, $\sum_{k,s=N}^{\infty} B(k, s, 2^j, 2^{-j}) = \infty$ for each $j \in \mathbb{N} \cup \{0\}$. Therefore, we see that for all $j \in \mathbb{N} \cup \{0\}$ and $n \ge N$ there exist n' > n and m' > n such that

$$\sum_{k=n}^{n'} \sum_{s=n}^{m'} B\left(k, s, 2^{j}, 2^{-j}\right) > 1.$$
(16)

Then there exist $n'_1 > N$ and $m'_1 > N$ such that

$$\sum_{k=N+1}^{n_1'}\sum_{s=N+1}^{m_1'}B\left(k,s,2^0,2^{-0}\right)>1.$$

Let

$$n_{1} = \min\left\{n' \in \mathbb{N} | m' \in \mathbb{N}, n', m' > N, \text{ and } \sum_{k=N+1}^{n'} \sum_{s=N+1}^{m'} B\left(k, s, 2^{0}, 2^{-0}\right) > 1\right\}$$
$$m_{1} = \min\left\{m' \in \mathbb{N} | n' \in \mathbb{N}, n', m' > N, \text{ and } \sum_{k=N+1}^{n'} \sum_{s=N+1}^{m'} B\left(k, s, 2^{0}, 2^{-0}\right) > 1\right\}$$

Also there exist $n'_2 > n_1$ and $m'_2 > m_1$ such that

$$\sum_{k=n_1+1}^{n_2'} \sum_{s=m_1+1}^{m_2'} B\left(k, s, 2^1, 2^{-1}\right) > 1$$

by using (16). We write

$$n_{2} = \min\left\{n' \in \mathbb{N} | m' \in \mathbb{N}, n' > n_{1}, m' > m_{1}, \text{ and } \sum_{k=n_{1}+1}^{n'} \sum_{s=m_{1}+1}^{m'} B\left(k, s, 2^{1}, 2^{-1}\right) > 1\right\}$$
$$m_{2} = \min\left\{m' \in \mathbb{N} | n' \in \mathbb{N}, n' > n_{1}, m' > m_{1}, \text{ and } \sum_{k=n_{1}+1}^{n'} \sum_{s=m_{1}+1}^{m'} B\left(k, s, 2^{1}, 2^{-1}\right) > 1\right\}.$$

Hence by induction, there exist a subsequence $(n_k)_{k=1}^{\infty}$ of $(n)_{n=1}^{\infty}$ and a subsequence $(m_k)_{k=1}^{\infty}$ of $(m)_{m=1}^{\infty}$ such that $n_1, m_1 > N$ and

$$n_{j+1} = \min\left\{n' \in \mathbb{N} | m' \in \mathbb{N}, n' > n_1, m' > m_1 \text{ and } \sum_{k=n_j+1}^{n'} \sum_{s=m_j+1}^{m'} B\left(k, s, 2^j, 2^{-j}\right) > 1\right\}$$
$$m_{j+1} = \min\left\{m' \in \mathbb{N} | n' \in \mathbb{N}, m' > m_1, n' > n_1 \text{ and } \sum_{k=n_j+1}^{n'} \sum_{s=m_j+1}^{m'} B\left(k, s, 2^j, 2^{-j}\right) > 1\right\}.$$

Therefore, we see

$$\sum_{k=n_j+1}^{n_{j+1}-1} \sum_{s=m_j+1}^{m_{j+1}-1} B\left(k, s, 2^j, 2^{-j}\right) \le 1.$$
(17)

We set $\mathcal{F} = \{(k,s) : k \le n_1 \lor s \le m_1\}$. If $(k,s) \in \mathcal{F}$, let $x_{ks} = 0$. If $k > n_1$ and $s > m_1$, then there exists $j \in \mathbb{N}$ such that $n_j < k \le n_{j+1}$ and $m_j < s \le m_{j+1}$. Thus there is $(x_{ks}) \in A(k, s, 2^j, 2^{-j})$ and

$$0 \le B\left(k, s, 2^{j}, 2^{-j}\right) < \left|g\left(k, s, x_{ks}\right)\right|^{q} + 2^{-(k+s)}$$
(18)

by (15). Also from (14), we have

$$|x_{ks}| \le \min\left\{2^{-j}, 2^{-j} \left|g(k, s, x_{ks})\right|^{q}\right\}.$$
(19)

Therefore for each $r \in \mathbb{N}$, we find

`

$$r < \sum_{j=1}^{r} \left(\sum_{k=n_{j}+1}^{n_{j+1}} \sum_{s=m_{j}+1}^{m_{j+1}} B\left(k, s, 2^{j}, 2^{-j}\right) \right)$$

$$< \sum_{k=n_{1}+1}^{n_{r+1}} \sum_{s=m_{1}+1}^{m_{r+1}} \left\{ \left| g\left(k, s, x_{ks}\right) \right|^{q} + 2^{-(k+s)} \right\}$$

$$< \sum_{k=1}^{n_{r+1}} \sum_{s=1}^{m_{r+1}} \left| g\left(k, s, x_{ks}\right) \right|^{q} + \sum_{k=1}^{\infty} \sum_{s=1}^{\infty} 2^{-(k+s)}$$

by using (18). Since $\sum_{k=1}^{\infty} \sum_{s=1}^{\infty} 2^{-(k+s)} < \infty$, we find $P_g(x) = (g(k, s, x_{ks}))_{k,s=1}^{\infty} \notin \mathcal{L}_q$. We see by (17) and (19) that

$$\sum_{k,s=1}^{\infty} |x_{ks}|^{p} = \sum_{j=1}^{\infty} \left(\sum_{k=n_{j}+1}^{n_{j+1}} \sum_{s=m_{j}+1}^{m_{j+1}} |x_{ks}|^{p} \right)$$

$$\leq \sum_{j=1}^{\infty} \left(\sum_{k=n_{j}+1}^{n_{j+1}-1} \sum_{s=m_{j}+1}^{m_{j+1}-1} |x_{ks}|^{p} + |x_{n_{j+1}m_{j+1}}|^{p} \right)$$

$$\leq \sum_{j=1}^{\infty} \left(2^{-j} \sum_{k=n_{j}+1}^{n_{j+1}-1} \sum_{s=m_{j}+1}^{m_{j+1}-1} |g(k,s,x_{ks})|^{q} + 2^{-j} \right)$$

$$\leq \sum_{j=1}^{\infty} \left(2^{-j} \sum_{k=n_{j}+1}^{n_{j+1}-1} \sum_{s=m_{j}+1}^{m_{j+1}-1} B(k,s,2^{j},2^{-j}) + 2^{-j} \right)$$

$$\leq \sum_{j=1}^{\infty} 2.2^{-j}$$

which means that $(x_{ks}) \in \mathcal{L}_p$. But it contradicts that $P_g : \mathcal{L}_p \to \mathcal{L}_q$. So, we see that there exist $\alpha > 0$ and $\beta > 0$ such that $\sum_{k,s=N}^{\infty} B(k, s, \alpha, \beta) < \infty$. Let $\gamma = \min \left\{ \alpha_0, \beta^{\frac{1}{p}} \right\}$ and define (c_{ks}) by

$$c_{ks} = \begin{cases} B(k, s, \alpha, \beta), & k, s \ge N \\ 0, & \text{otherwise} \end{cases}$$

It's obvious that $(c_{ks})_{k,s=1}^{\infty} \in \mathcal{L}_1$. Also $[-\gamma, \gamma] \subseteq [-\alpha_0, \alpha_0]$ and $|t|^p \leq \beta$ for each $t \in [-\gamma, \gamma]$. Let $k, s \geq N$ and $t \in [-\gamma, \gamma]$. If $t \in A(k, s, \alpha, \beta)$, then $|g(k, s, t)|^q \leq B(k, s, \alpha, \beta) = c_{ks} \leq c_{ks} + \alpha |t|^p$. If $t \notin A(k, s, \alpha, \beta)$, then $|t|^p > \alpha^{-1} |g(k, s, t)|^q$ and so we find $|g(k, s, t)|^q < \alpha |t|^p \le c_{ks} + \alpha |t|^p$. Hence the inequality (13) holds. Conversely, suppose that there is $\alpha > 0$, $\beta > 0$, $N \in \mathbb{N}$ and $(c_{ks})_{k,s=1}^{\infty} \in \mathcal{L}_1$ such that

 $|g(k,s,t)|^q \le c_{ks} + \alpha |t|^p$ whenever $|t| \le \beta$

for all k, s with max $\{k, s\} \ge N$. Let $(x_{ks}) \in \mathcal{L}_p$. Then there is N' > N such that $\sum_{\max\{k,s\}\ge N'} |x_{ks}|^p < \varepsilon < \beta^p$. Hence for all $k, s \in \mathbb{N}$ such that max $\{k, s\} \ge N'$, it's obvious that $|x_{ks}| < \beta$. Therefore,

$$\left|g\left(k,s,x_{ks}\right)\right|^{q} \leq c_{ks} + \alpha \left|x_{ks}\right|^{p}$$

for all $k, s \in \mathbb{N}$ such that max $\{k, s\} \ge N'$. So, we have

$$\sum_{\max\{k,s\}\geq N'} \left| g\left(k,s,x_{ks}\right) \right|^q \leq \sum_{\max\{k,s\}\geq N'} c_{ks} + \alpha \sum_{\max\{k,s\}\geq N'} |x_{ks}|^p$$

Then we obtain that $\sum_{k,s=1}^{\infty} |g(k,s,x_{ks})|^q < \infty$. This completes the proof. \Box

Example 3.3. Let $g : \mathbb{N}^2 \times \mathbb{R} \to \mathbb{R}$ defined by

$$g(k,s,t) = \left(\frac{1}{2^{\frac{k+s}{q}}} + |t|^{\frac{p}{q}}\right)|t|$$

for all $k, s \in \mathbb{N}$ and for all $t \in \mathbb{R}$. Let N = 1, $\beta = 2$ and $|t| \le 2$. Then for all $k, s \in \mathbb{N}$,

$$\begin{split} \left| g\left(k,s,t\right) \right|^{q} &= \left(\frac{1}{2^{\frac{k+s}{q}}} + |t|^{\frac{p}{q}} \right)^{q} |t|^{q} \\ &\leq 2^{q} \max\left\{ \frac{1}{2^{\frac{k+s}{q}} \cdot q}, |t|^{\frac{p}{q}} \cdot q \right\} \cdot |t|^{q} \\ &\leq 2^{2q} \left(\frac{1}{2^{k+s}} + |t|^{p} \right) \\ &\leq \frac{4^{q}}{2^{k+s}} + 4^{q} |t|^{p} \,. \end{split}$$

Since $\sum_{k,s=1}^{\infty} \frac{4^{q}}{2^{k+s}} < \infty$, we put $c_{ks} = \frac{4^{q}}{2^{k+s}}$ for all $k, s \in \mathbb{N}$. If we take $\alpha = 4^{q}$, then we have $|g(k, s, t)| \le c_{ks} + \alpha |t|^{p}$ whenever $|t| \le \beta$. By Theorem 3.2, we find that P_{g} acts from \mathcal{L}_{p} to \mathcal{L}_{q} .

Proposition 3.4. Let X be a normed double sequence space containing all finite double sequences and Y be a normed double sequence space such that $Y \subseteq M_u$. Suppose that (i) $P_q : X \to Y$,

(ii) there exists $\alpha > 0$ such that $||e^{mn}||_X \le \alpha$ for all $m, n \in \mathbb{N}$, (iii) $||.||_{M_u} \le \beta ||.||_Y$ on Y for some $\beta > 0$. If P_g is continuous at x, then for any $\varepsilon > 0$ there exists $\delta > 0$ such that

 $|t - x_{ks}| < \delta$ implies $|g(k, s, t) - g(k, s, x_{ks})| < \varepsilon$

for all $k, s \in \mathbb{N}$ and $t \in \mathbb{R}$.

Proof. Let any $\varepsilon > 0$. Since P_g is continuous, there exists $\delta > 0$ such that

$$\|z - x\|_{X} < \delta \text{ implies } \|P_{g}(z) - P_{g}(x)\|_{Y} < \varepsilon$$

$$(20)$$

for all $z \in X$. Let $k, s \in \mathbb{N}$ and $t \in \mathbb{R}$ with $|t - x_{ks}| < \frac{\delta}{\alpha}$. Let $u = (t - x_{ks})e^{mn} + x$, hence $u \in X$, $u_{ks} = t$ and from (ii)

 $||u - x||_X = |t - x_{ks}| ||e^{mn}||_X < \delta.$

Thus, we find $\left\|P_{g}(u) - P_{g}(x)\right\|_{Y} < \frac{\varepsilon}{\beta}$ by (20). Therefore, we obtain

$$\left|g(k, s, t) - g(k, s, x_{ks})\right| \le \left\|P_g(u) - P_g(x)\right\|_{M_{ts}} \le \beta \left\|P_g(u) - P_g(x)\right\|_{Y} < \varepsilon$$

by (iii). 🛛

Theorem 3.5. Let the superposition operator $P_g : \mathcal{L}_p \to \mathcal{L}_q$. If P_g is continuous at $x \in \mathcal{L}_p$ if and only if g(k, s, .) is *continuous at* x_{ks} *for all* $k, s \in \mathbb{N}$ *.*

Proof. Since the conditions in Proposition 3.4 provided, we see that the necessary condition can be showed easily.

Conversely, suppose that g(k, s, .) is continuous at x_{ks} for all $k, s \in \mathbb{N}$. We need to show that P_g is continuous at $x \in \mathcal{L}_p$. Since $P_g : \mathcal{L}_p \to \mathcal{L}_q$, there exist $\alpha > 0, \beta > 0, N_1 \in \mathbb{N}$ and $(c_{ks})_{k,s=1}^{\infty} \in \mathcal{L}_1$ such that

$$\left|g\left(k,s,t\right)\right|^{q} \le c_{ks} + \alpha \left|t\right|^{p} \tag{21}$$

whenever $|t| \leq \beta$ for all k, s with max $\{k, s\} \geq N_1$. Let any $\varepsilon > 0$. Since $\mathcal{L}_p \subseteq M_u$,

$$p - \lim_{n,m \to \infty} \left[\sum_{k=0}^{n-1} \sum_{s=m}^{\infty} |x_{ks}|^p + \sum_{k=n}^{\infty} \sum_{s=1}^{m-1} |x_{ks}|^p + \sum_{k=n}^{\infty} \sum_{s=m}^{\infty} |x_{ks}|^p \right] = 0$$

and

$$p - \lim_{n,m \to \infty} \left[\sum_{k=0}^{n-1} \sum_{s=m}^{\infty} c_{ks} + \sum_{k=n}^{\infty} \sum_{s=1}^{m-1} c_{ks} + \sum_{k=n}^{\infty} \sum_{s=m}^{\infty} c_{ks} \right] = 0$$

respectively, there exists $N \in \mathbb{N}$ with $N \ge N_1$ such that

 $|x_{ks}| \leq \beta$ for all k, s with max $\{k, s\} \geq N$, (22)

$$\sum_{\max\{k,s\}\geq N} |x_{ks}|^p \le \min\left\{ \left(\frac{\beta}{2}\right)^p, \frac{\varepsilon^q}{\alpha 2^{q+3}}, \frac{1}{2^p} \left(\frac{\varepsilon^q}{\alpha 2^{q+3}}\right) \right\}$$
(23)

and

$$\sum_{\max\{k,s\}\geq N} c_{ks} \leq \frac{\varepsilon^q}{2^{q+3}}.$$
(24)

We write $|g(k, s, x_{ks})|^q \le c_{ks} + \alpha |x_{ks}|^p$ for all k, s with max $\{k, s\} \ge N$ by using (21) and (22). Since g(k, s, .) is continuous at x_{ks} for all $k, s \in \{1, 2, ..., N-1\}$, there is $\delta \in \mathbb{R}$ satisfying $0 < \delta \le \min\left\{\frac{\beta}{2}, \frac{1}{2}\left(\frac{\varepsilon^{q}}{\alpha 2^{q+3}}\right)^{\frac{1}{p}}\right\}$ such that

$$|t - x_{ks}| < \delta \text{ implies } |g(k, s, t) - g(k, s, x_{ks})| < \left(\frac{\varepsilon^q}{2(N-1)^2}\right)^{\frac{1}{q}}$$
 (25)

for all $t \in \mathbb{R}$ and $k, s \in \{1, 2, ..., N - 1\}$. Let $z \in \mathcal{L}_p$ with $||z - x||_p < \delta$. Then, we see that

 $\left\| (z_{ks})_{\max\{k,s\} \ge N} - (x_{ks})_{\max\{k,s\} \ge N} \right\|_p < \delta.$

...

Hence we find

$$\begin{aligned} |z_{ks}| &\leq \left\| (z_{ks})_{\max\{k,s\}\geq N} \right\|_{p} \\ &\leq \left\| (z_{ks})_{\max\{k,s\}\geq N} - (x_{ks})_{\max\{k,s\}\geq N} \right\|_{p} + \left\| (x_{ks})_{\max\{k,s\}\geq N} \right\|_{p} \\ &< \delta + \frac{\beta}{2} \leq \beta \end{aligned}$$

$$(26)$$

2118

by using (23), for all k, s with max $\{k, s\} \ge N$. Also, we find

$$\left(\sum_{\max\{k,s\}\geq N} |z_{ks}|^{p}\right)^{\frac{1}{p}} = \left\| (z_{ks})_{\max\{k,s\}\geq N} \right\|_{p}$$

$$\leq \left\| (z_{ks})_{\max\{k,s\}\geq N} - (x_{ks})_{\max\{k,s\}\geq N} \right\|_{p} + \left\| (x_{ks})_{\max\{k,s\}\geq N} \right\|_{p}$$

$$\leq \left(\frac{\varepsilon^{q}}{\alpha 2^{q+3}}\right)^{\frac{1}{p}}.$$
(27)

We write $|g(k, s, z_{ks})|^q \le c_{ks} + \alpha |z_{ks}|^p$ for all k, s with max $\{k, s\} \ge N$ by using (21) and (26). Therefore, we have

$$\begin{aligned} \left| g(k,s,z_{ks}) - g(k,s,x_{ks}) \right|^{q} &\leq 2^{q} \max \left\{ \left| g(k,s,z_{ks}) \right|^{q}, \left| g(k,s,x_{ks}) \right|^{q} \right\} \\ &\leq 2^{q} \left(\left| g(k,s,z_{ks}) \right|^{q} + \left| g(k,s,x_{ks}) \right|^{q} \right) \\ &\leq 2^{q} \left(2c_{ks} + \alpha \left| z_{ks} \right|^{p} + \alpha \left| x_{ks} \right|^{p} \right). \end{aligned}$$

Then we find

$$\begin{split} \sum_{\max\{k,s\} \ge N} \left| g\left(k,s,z_{ks}\right) - g\left(k,s,x_{ks}\right) \right|^{q} &\leq 2^{q+1} \sum_{\max\{k,s\} \ge N} c_{ks} + 2^{q} \alpha \sum_{\max\{k,s\} \ge N} |z_{ks}|^{p} + 2^{q} \alpha \sum_{\max\{k,s\} \ge N} |x_{ks}|^{p} \\ &< \frac{\varepsilon^{q}}{2} \end{split}$$

by using (23), (24) and (27). We know that $|z_{ks} - x_{ks}| \le ||z - x||_p < \delta$ for all $k, s \in \{1, 2, ..., N - 1\}$ and so $|g(k, s, z_{ks}) - g(k, s, x_{ks})|^q \le \frac{\varepsilon^q}{2(N-1)^2}$ from (25). Therefore, we obtain

$$\begin{split} \sum_{k,s=1}^{\infty} \left| g\left(k,s,z_{ks}\right) - g\left(k,s,x_{ks}\right) \right|^{q} &= \sum_{k,s=1}^{N-1} \left| g\left(k,s,z_{ks}\right) - g\left(k,s,x_{ks}\right) \right|^{q} + \sum_{\max\{k,s\} \ge N} \left| g\left(k,s,z_{ks}\right) - g\left(k,s,x_{ks}\right) \right|^{q} \\ &< \left(N-1\right)^{2} \frac{\varepsilon^{q}}{2\left(N-1\right)^{2}} + \frac{\varepsilon^{q}}{2} < \varepsilon^{q}. \end{split}$$

This completes the proof. \Box

4. Concluding Remarks

The necessary and sufficient conditions for the continuity of the superposition operator P_g have been formulated, as stated in Theorem 2.3 and Theorem 3.5. For the future, we will formulate the necessary and sufficient conditions for the boundedness of the superposition operator P_g .

References

- [1] Apostol T.M., Mathematical Analysis, Pearson Education Asia Limited and China Machine Press, 1974.
- [2] Başar F., Sever Y., The Space Of Double Sequences, Math. J. Okayama Univ., 51 (2009), 149-157.
- [3] Başar F., Summability Theory And Its Applications, Bentham Science Publishers, e-books, Monographs, İstanbul, 2012.
- [4] Chew T.S., Lee P.Y., Orthogonally Additive Functionals On Sequence Spaces, Southeast Asian Bull. Math. 9 (1985), 81-85.
- [5] Dedagich F., Zabreiko P.P., Operator Superpositions In The Spaces l_p, Sib. Math. J., 28 (1987), 86-98.
- [6] Kolk E., Raidjoe A., The Continuity Of Superposition Operators On Some Sequence Spaces Defined By Moduli, Czech. Math. J., 57 (2007), 777-792.
- [7] Petranuarat S., Kemprasit Y., Superposition Operators On l_p And c_0 Into l_q ($1 \le p, q < \infty$), Southeast Asian Bull. Math., **21** (1997), 139-147.
- [8] Pluciennik R., Continuity Of Superposition Operators On w₀ And W₀, Commentat. Math. Univ. Carol., 31(1990), 529-542.
- [9] Sama-ae A., Boundedness And Continuity Of Superposition Operator On $E_r(p)$ And $F_r(p)$, Songklanakarin J. Sci. Technol., 24 (2002), 452-466.

[10] Streit R. F., The Summation Of Convergent Double Series, Texas Tech University, 1972.