Continuity of Superposition Operators on the Double Sequence Spaces \mathcal{L}_{p}

Birsen Sağır ${ }^{\text {a }}$, Nihan Güngör ${ }^{\text {b }}$
${ }^{a}$ Ondokuz Mayıs University, Faculty Of Sciences And Arts, Department Of Mathematics, 55139 Kurupelit Samsun/ Turkey
${ }^{b}$ Gümüşhane University, Faculty Of Engineering, Department Of Mathematical Engineering, 29100 Gümüşhane / Turkey

Abstract

In this paper, we define the superposition operator P_{g} where $g: \mathbb{N}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ by $P_{g}\left(\left(x_{k s}\right)\right)=$ $g\left(k, s, x_{k s}\right)$ for all real double sequence $\left(x_{k s}\right)$. Chew \& Lee [4] and Petranuarat \& Kemprasit [7] have characterized $P_{g}: l_{p} \rightarrow l_{1}$ and $P_{g}: l_{p} \rightarrow l_{q}$ where $1 \leq p, q<\infty$, respectively. The main goal of this paper is to construct the necessary and sufficient conditions for the continuity of $P_{g}: \mathcal{L}_{p} \rightarrow \mathcal{L}_{1}$ and $P_{g}: \mathcal{L}_{p} \rightarrow \mathcal{L}_{q}$ where $1 \leq p, q<\infty$.

1. Introduction

Let \mathbb{R} be set of all real numbers, \mathbb{N} be the set of all natural numbers, $\mathbb{N}^{2}=\mathbb{N} \times \mathbb{N}$ and Ω denotes the space of all real double sequences which is the vector space with coordinatewise addition and scalar multiplication. Let $x=\left(x_{k s}\right) \in \Omega$. If for any $\varepsilon>0$ there exist $N \in \mathbb{N}$ and $l \in \mathbb{R}$ such that $\left|x_{k s}-l\right|<\varepsilon$ for all $k, s \geq N$, then we call that the double sequence $x=\left(x_{k s}\right)$ is convergent in the Pringsheim's sense and denoted by $p-\lim x_{k s}=l$. The space of all convergent double sequences in the Pringsheim's sense is denoted by C_{p}. The space of all bounded double sequences is denoted by M_{u}, that is,

$$
M_{u}:=\left\{x=\left(x_{k s}\right) \in \Omega:\|x\|_{M_{u}}=\sup _{k, s \in \mathbb{N}}\left|x_{k s}\right|<\infty\right\}
$$

which is a Banach space with the norm $\|\cdot\|_{M_{u}}$. It's known that there are such sequences in the space C_{p}, but not in the space M_{u}. The space \mathcal{L}_{p} is defined by

$$
\mathcal{L}_{p}:=\left\{x=\left(x_{k s}\right) \in \Omega: \sum_{k, s=1}^{\infty}\left|x_{k s}\right|^{p}<\infty\right\}
$$

where $1 \leq p<\infty$ and $\sum_{k, s=1}^{\infty}=\sum_{k=1}^{\infty} \sum_{s=1}^{\infty} \cdot \mathcal{L}_{p}$ is a Banach space with the norm

$$
\|x\|_{p}=\left(\sum_{k, s=1}^{\infty}\left|x_{k s}\right|^{p}\right)^{\frac{1}{p}}
$$

[^0]It's know that $\mathcal{L}_{p} \subset M_{u}$ and $\mathcal{L}_{p} \subset \mathcal{L}_{q}$ where $1 \leq p<q<\infty$. If given the sequence $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}$ defined by $f(k, s)=x_{k s}$ and given the increasing functions $i: \mathbb{N} \rightarrow \mathbb{N}$ defined by $i(k)=i_{k}, j: \mathbb{N} \rightarrow \mathbb{N}$ defined by $j(s)=j_{s}$, then we define $h: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ with $h(k, s)=\left(i_{k}, j_{s}\right)$. In this case, the composite function such that $f \circ h(k, s)=x_{i_{k} j_{s}}$ is called subsequence of the sequence $\left(x_{k s}\right)$. The sequence $e^{k s}=\left(e_{i j}^{k s}\right)$ defined by

$$
e_{i j}^{k s}= \begin{cases}1, & (k, s)=(i, j) \\ 0, & \text { otherwise }\end{cases}
$$

If we consider the sequence $\left(s_{n m}\right)$ defined by $s_{n m}=\sum_{k=1 s=1}^{n} \sum_{k s}^{m}(n, m \in \mathbb{N})$, then the pair of $\left(\left(x_{k s}\right),\left(s_{n m}\right)\right)$ is called double series. Also $\left(x_{k s}\right)$ is called general term of the series and $\left(s_{n m}\right)$ is called the sequence of partial sum. If the sequence of partial sum $\left(s_{n m}\right)$ is convergent to a real number s in the Pringsheim's sense, i.e.,

$$
p-\lim _{n, m} \sum_{k=1}^{n} \sum_{s=1}^{m} x_{k s}=s
$$

then the series $\left(\left(x_{k s}\right),\left(s_{n m}\right)\right)$ is called convergent in the Pringsheim's sense ,i.e., p-convergent and the sum of series equal to s, and is denoted by

$$
\sum_{k, s=1}^{\infty} x_{k s}=s
$$

It's know that if the series is p-convergent, then the p-limit of the general term of the series is zero. The remaining term of the series $\sum_{k=1 s=1}^{\infty} \sum_{s=1}^{\infty} x_{k s}$ is defined by

$$
\begin{equation*}
R_{n m}=\sum_{k=1}^{n-1} \sum_{s=m}^{\infty} x_{k s}+\sum_{k=n}^{\infty} \sum_{s=1}^{m-1} x_{k s}+\sum_{k=n}^{\infty} \sum_{s=m}^{\infty} x_{k s} . \tag{1}
\end{equation*}
$$

We will demonstrate the formula (1) briefly with

$$
\sum_{\max \{k, s\} \geq N} x_{k s}
$$

for $n=m=N$. It's known that if the series is p-convergent, then the p-limit of the remaining term of the series is zero. Once find before mentioned and more details in [1], [2], [3], [10].

Superposition operators on sequence spaces are discussed by some authors. Chew and Lee [4] have given the necessary and sufficient conditions for the superposition operator acting from the sequence space l_{p} into l_{1} with the continuity hypothesis. The characterization of the superposition operator acting from the sequence space l_{p} into l_{q} with $1 \leq p, q<\infty$ has given by Dedagich and Zabrejko [5]. Petranuarat and Kemprasit [7] have characterized the superposition operator acting from sequence space l_{p} into l_{q} with $1 \leq p, q<\infty$ by generalizing works in [4]. The reader may refer for relevant terminology on the superposition operators to [4], [5], [6], [7], [8], [9].

We extend the definition of superposition operators to double sequence spaces as follows. Let X, Y be two double sequence spaces. A superposition operator P_{g} on X is a mapping from X into Ω defined by $P_{g}(x)=\left(g\left(k, s, x_{k s}\right)\right)_{k, s=1}^{\infty}$ where the function $g: \mathbb{N}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies
(1) $g(k, s, 0)=0$ for all $k, s \in \mathbb{N}$.

If $P_{g}(x) \in Y$ for all $x \in X$, we say that P_{g} acts from X into Y and write $P_{g}: X \rightarrow Y$. Moreover, we shall assume the additionally some of the following conditions:
(2) $g(k, s,$.$) is continuous for all k, s \in \mathbb{N}$
(2') $g(k, s,$.$) is bounded on every bounded subset of \mathbb{R}$ for all $k, s \in \mathbb{N}$.
It's obvious that if the function $g(k, s,$.$) satisfies (2), then g$ satisfies (2') from [9].

In this paper, we characterize the superposition operator acting from the double sequence space \mathcal{L}_{p} into \mathcal{L}_{1} where $1 \leq p<\infty$ under the hypothesis that the function $g(k, s,$.$) satisfies (2^{\prime}$) and its continuity by using the methods in [4], [7]. Then we generalize our works as the superposition operator acting from the space \mathcal{L}_{p} into \mathcal{L}_{q} where $1 \leq p, q<\infty$ without assuming that the function $g(k, s,$.$) is satisfies (2^{\prime}$) by using the methods in [7].

2. Superposition Operators of \mathcal{L}_{p} into $\mathcal{L}_{1}(1 \leq p<\infty)$

Theorem 2.1. Let us suppose that $g: \mathbb{N}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies (2'). Then $P_{g}: \mathcal{L}_{p} \rightarrow \mathcal{L}_{1}$ if and only if there exist $\alpha, \beta>0$ and $\left(c_{k s}\right)_{k, s=1}^{\infty} \in \mathcal{L}_{1}$ such that

$$
|g(k, s, t)| \leq c_{k s}+\alpha|t|^{p}
$$

for each $k, s \in \mathbb{N}$ whenever $|t| \leq \beta$.
Proof. Assume that there exist $\alpha, \beta>0$ and $\left(c_{k s}\right)_{k, s=1}^{\infty} \in \mathcal{L}_{1}$ such that $|g(k, s, t)| \leq c_{k s}+\alpha|t|^{p}$ for each $k, s \in \mathbb{N}$ whenever $|t| \leq \beta$. Let $x=\left(x_{k s}\right) \in \mathcal{L}_{p}$. Then, $\sum_{\max |k, s| \geq N}\left|x_{k s}\right|^{p}<\varepsilon<\beta^{p}$ for sufficiently large $N \in \mathbb{N}$. Hence it's obvious that $\left|x_{k s}\right|<\beta$ for all $k, s \in \mathbb{N}$ such that $\max \{k, s\} \geq N$. Thus,

$$
\left|g\left(k, s, x_{k s}\right)\right| \leq c_{k s}+\alpha\left|x_{k s}\right|^{p}
$$

for all $k, s \in \mathbb{N}$ such that $\max \{k, s\} \geq N$. Then we get

$$
\begin{aligned}
\sum_{k, s=1}^{\infty}\left|g\left(k, s, x_{k s}\right)\right| & =\sum_{k, s=1}^{N-1}\left|g\left(k, s, x_{k s}\right)\right|+\sum_{\max \{\mid k s\} \leq \geq N}\left|g\left(k, s, x_{k s}\right)\right| \\
& \leq A+\sum_{\max \{k, s\} \geq N} c_{k s}+\alpha \sum_{\max \{k, s\} \geq N}\left|x_{k s}\right|^{p} \\
& \leq A+\sum_{k, s=1}^{\infty} c_{k s}+\alpha \sum_{k, s=1}^{\infty}\left|x_{k s}\right|^{p}<\infty .
\end{aligned}
$$

Since $P_{g}(x)=\left(g\left(k, s, x_{k s}\right)\right)_{k, s=1}^{\infty}$, we obtain that $P_{g}(x) \in \mathcal{L}_{1}$. So, P_{g} acts from \mathcal{L}_{p} to \mathcal{L}_{1}.
Conversely, suppose that P_{g} acts from \mathcal{L}_{p} to \mathcal{L}_{1}. For all $\alpha, \beta>0$ and $k, s \in \mathbb{N}$, we define

$$
A(k, s, \alpha, \beta)=\left\{t \in \mathbb{R}:|t|^{p} \leq \min \left\{\beta, \alpha^{-1}|g(k, s, t)|\right\}\right\}
$$

and

$$
B(k, s, \alpha, \beta)=\sup \{|g(k, s, t)|: t \in A(k, s, \alpha, \beta)\} .
$$

If $|t| \leq \beta$ and $t \in A(k, s, \alpha, \beta)$, then $|g(k, s, t)| \leq B(k, s, \alpha, \beta)$. If $|t| \leq \beta$ and $t \notin A(k, s, \alpha, \beta)$, then $|g(k, s, t)|<\alpha|t|^{p}$. Thus we have

$$
|g(k, s, t)| \leq B(k, s, \alpha, \beta)+\alpha|t|^{p}
$$

whenever $|t| \leq \beta$. Now, we shall show that $B(k, s, \alpha, \beta) \in \mathcal{L}_{1}$ for some $\alpha, \beta>0$. Suppose that this does not hold, i.e., for all $\alpha, \beta>0, \sum_{k, s=1}^{\infty} B(k, s, \alpha, \beta)=\infty$. Therefore for every $i \in \mathbb{N}, \sum_{k, s=1}^{\infty} B\left(k, s, 2^{i}, 2^{-i}\right)=\infty$. Then there exist the increasing sequences of positive integers $\left(n_{i}\right)$ and $\left(m_{i}\right)$ such that the pair of n_{i}, m_{i} is the least positive integers satisfying

$$
\sum_{k=n_{i-1}+1 s=m_{i-1}+1}^{n_{i}} \sum_{i}^{m_{i}} B\left(k, s, 2^{i}, 2^{-i}\right)>1
$$

So, we see that

$$
\begin{equation*}
\sum_{k=n_{i-1}+1}^{n_{i}-1} \sum_{s=m_{i-1}+1}^{m_{i}-1} B\left(k, s, 2^{i}, 2^{-i}\right) \leq 1 \tag{2}
\end{equation*}
$$

For each $i \in \mathbb{N}$, there is $\varepsilon_{i}>0$ such that

$$
\begin{equation*}
\sum_{k=n_{i-1}+1 s=m_{i-1}+1}^{n_{i}} \sum_{i}^{m_{i}} B\left(k, s, 2^{i}, 2^{-i}\right)-\varepsilon_{i}\left(n_{i}-n_{i-1}\right)\left(m_{i}-m_{i-1}\right)>1 . \tag{3}
\end{equation*}
$$

Let $i \in \mathbb{N}$ be fixed. Since g satisfies $\left(2^{\prime}\right), 0 \leq B\left(k, s, 2^{i}, 2^{-i}\right)<\infty$ for all $k, s \in \mathbb{N}$ such that $n_{i-1}+1 \leq k \leq n_{i}$ and $m_{i-1}+1 \leq s \leq m_{i}$. From the definition of $B\left(k, s, 2^{i}, 2^{-i}\right)$ for all $k, s \in \mathbb{N}$ with $n_{i-1}+1 \leq k \leq n_{i}$ and $m_{i-1}+1 \leq s \leq m_{i}$, there is $x_{k s} \in A\left(k, s, 2^{i}, 2^{-i}\right)$ such that

$$
\begin{equation*}
\left|g\left(k, s, x_{k s}\right)\right|>B\left(k, s, 2^{i}, 2^{-i}\right)-\varepsilon_{i} . \tag{4}
\end{equation*}
$$

From (3) and (4), we have

$$
\begin{aligned}
\sum_{k=n_{i-1}+1 s=m_{i-1}+1}^{n_{i}} \sum_{m_{i}}^{m_{i}}\left|g\left(k, s, x_{k s}\right)\right| & >\sum_{k=n_{i-1}+1 s=m_{i-1}+1}^{n_{i}} \sum_{k=n_{i-1}+1 s=m_{i-1}+1}^{m_{i}} B\left(k, s, 2^{i}, 2^{-i}\right)-\sum_{i}^{n_{i}} \sum_{i}^{m_{i}} \sum_{k=n_{i-1}+1 s=m_{i-1}+1}^{n_{i}} B\left(k, s, 2^{i}, 2^{-i}\right)-\varepsilon_{i}\left(n_{i}-n_{i-1}\right)\left(m_{i}-m_{i-1}\right) \\
& \left.=\sum_{i}^{m_{i}} \sum_{k}\right) \\
& >1
\end{aligned}
$$

Thus $\sum_{i=1}^{\infty}\left(\sum_{k=n_{i-1}+1 s=m_{i-1}+1}^{n_{i}} \sum_{m_{i}}^{m_{i}}\left|g\left(k, s, x_{k s}\right)\right|\right)=\infty$, that is, $\left(g\left(k, s, x_{k s}\right)\right)_{k, s=1}^{\infty} \notin \mathcal{L}_{1}$. Since $x_{k s} \in A\left(k, s, 2^{i}, 2^{-i}\right)$,

$$
\begin{equation*}
\left|x_{k s}\right|^{p} \leq \frac{1}{2^{i}} \text { and }\left|x_{k s}\right|^{p} \leq 2^{-i}\left|g\left(k, s, x_{k s}\right)\right| \tag{5}
\end{equation*}
$$

for all $k, s \in \mathbb{N}$ with $n_{i-1}+1 \leq k \leq n_{i}$ and $m_{i-1}+1 \leq s \leq m_{i}$. Therefore, we obtain using (2) and (5) that

$$
\begin{aligned}
\sum_{k=n_{i-1}+1 s=m_{i-1}+1}^{n_{i}} \sum_{m_{i}}^{m_{i}} \mid x^{p} & =\sum_{k=n_{i-1}+1}^{n_{i}-1} \sum_{m_{i-1}+1}^{m_{i}-1}\left|x_{k s}\right|^{p}+\left|x_{n_{i} m_{i}}\right|^{p} \\
& \leq \sum_{k=n_{i-1}+1 s=m_{i-1}+1}^{n_{i}-1} 2^{-i}\left|g\left(k, s, x_{k s}\right)\right|+\frac{1}{2^{i}} \\
& \leq 2^{-i} \sum_{k=n_{i-1}+1 s=m_{i-1}+1}^{n_{i}-1} \sum_{m_{i}-1}^{m_{i}}\left(k, s, 2^{i}, 2^{-i}\right)+\frac{1}{2^{i}} \\
& \leq \frac{1}{2^{i}}+\frac{1}{2^{i}}=\frac{2}{2^{i}}
\end{aligned}
$$

which shows that $\left(x_{k s}\right) \in \mathcal{L}_{p}$. This contradicts the assumption that $P_{g}: \mathcal{L}_{p} \rightarrow \mathcal{L}_{1}$.
Example 2.2. Let $g: \mathbb{N}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
g(k, s, t)=\frac{|t|}{3^{k+s}}+|t|^{p+1}
$$

for all $k, s \in \mathbb{N}$ and for all $t \in \mathbb{R}$. Since $g(k, s,$.$) is continuous on \mathbb{R}$ for all $k, s \in \mathbb{N}, g$ satisfies (2^{\prime}). Let $\beta=2$ and $|t| \leq 2$. Then for all $k, s \in \mathbb{N}$,

$$
\begin{aligned}
|g(k, s, t)| & =\frac{|t|}{3^{k+s}}+|t|^{p+1} \\
& =\frac{|t|}{3^{k+s}}+|t|^{p}|t| \\
& \leq \frac{2}{3^{k+s}}+2|t|^{p}
\end{aligned}
$$

Since $\sum_{k, s=1}^{\infty} \frac{2}{3^{k+s}}<\infty$, we put $c_{k s}=\frac{2}{3^{k+s}}$ for all $k, s \in \mathbb{N}$. If we take $\alpha=2$, then we have $|g(k, s, t)| \leq c_{k s}+\alpha|t|^{p}$ whenever $|t| \leq \beta$. By Theorem 2.1, we find that P_{g} acts from \mathcal{L}_{p} to \mathcal{L}_{1}.

Theorem 2.3. If $P_{g}: \mathcal{L}_{p} \rightarrow \mathcal{L}_{1}$, then P_{g} is continuous on \mathcal{L}_{p} if and only if the function $g(k, s,$.$) is continuous on \mathbb{R}$ for all $k, s \in \mathbb{N}$.

Proof. Assume that P_{g} is continuous on \mathcal{L}_{p}. Let $\varepsilon>0$ be given. Also, let $m, n \in \mathbb{N}$ and $t \in \mathbb{R}$. Since P_{g} is continuous at $t e^{m n} \in \mathcal{L}_{p}$, there exists $\delta>0$ such that $\left\|z-t e^{m n}\right\|_{p}<\delta$ implies $\left\|P_{g}(z)-P_{g}\left(t e^{m n}\right)\right\|_{1}<\varepsilon$ for all $z=\left(z_{k s}\right) \in \mathcal{L}_{p}$. Let $u \in \mathbb{R}$ such that $|u-t|<\delta$ and define $y_{k s}$ by

$$
y_{k s}= \begin{cases}u, & k=m \text { and } s=n \\ 0, & \text { otherwise }\end{cases}
$$

Hence $y=\left(y_{k s}\right) \in \mathcal{L}_{p}$ and $|u-t|=\left\|y-t e^{m n}\right\|_{p}<\delta$. Therefore, we get $|g(k, s, u)-g(k, s, t)|=\left\|P_{g}(y)-P_{g}\left(t e^{m n}\right)\right\|_{1}<$ ε.

Conversely, suppose that $g(k, s,$.$) is continuous on \mathbb{R}$ for all $k, s \in \mathbb{N}$. So, g satisfies (2'). Since $P_{g}: \mathcal{L}_{p} \rightarrow$ \mathcal{L}_{1}, there exist $\alpha, \beta>0$ and $\left(c_{k s}\right)_{k, s=1}^{\infty} \in \mathcal{L}_{1}$ such that for each $k, s \in \mathbb{N}$,

$$
\begin{equation*}
|g(k, s, t)| \leq c_{k s}+\alpha|t|^{p} \text { whenever }|t| \leq \beta \tag{6}
\end{equation*}
$$

by Theorem 2.1. Since $x=\left(x_{k s}\right) \in \mathcal{L}_{p}$ and $\left(c_{k s}\right) \in \mathcal{L}_{1}$, there exists sufficiently large $N \in \mathbb{N}$ such that

$$
\begin{align*}
& \sum_{\max \{k, s \mid \geq N}\left|x_{k s}\right|^{p}<\min \left\{\frac{\varepsilon}{6 \alpha}, \frac{1}{2^{p}}\left(\frac{\varepsilon}{6 \alpha}\right)\right\} \tag{7}\\
& \left|x_{k s}\right|<\frac{\beta}{2} \text { for all } k, s \in \mathbb{N} \text { such that } \max \{k, s\} \geq N \tag{8}
\end{align*}
$$

and

$$
\sum_{\max \{k, s\} \geq N}\left|c_{k s}\right|<\frac{\varepsilon}{6}
$$

From (6) and (8), we find $\left|g\left(k, s, x_{k s}\right)\right| \leq c_{k s}+\alpha\left|x_{k s}\right|^{p}$ for all $k, s \in \mathbb{N}$ such that $\max \{k, s\} \geq N$. Hence, we find

$$
\begin{equation*}
\sum_{\max \{\langle, s\} \geq N}\left|g\left(k, s, x_{k s}\right)\right| \leq \sum_{\max \{k, s\} \geq N} c_{k s}+\alpha \sum_{\max \{k, s \mid \geq N}\left|x_{k s}\right|^{p}<\frac{\varepsilon}{3} . \tag{9}
\end{equation*}
$$

There exists $\delta>0$ with $\delta<\min \left\{\frac{\beta}{2}, \frac{1}{2}\left(\frac{\varepsilon}{6 \alpha}\right)^{\frac{1}{p}}\right\}$ such that for all $k, s \in\{1,2, \ldots, N-1\}$ and $t \in \mathbb{R}$,

$$
\begin{equation*}
\left|t-x_{k s}\right|<\delta \text { implies }\left|g(k, s, t)-g\left(k, s, x_{k s}\right)\right|<\frac{\varepsilon}{3(N-1)^{2}} \tag{10}
\end{equation*}
$$

because $g(k, s,$.$) is continuous at x_{k s}$ for all $k, s \in\{1,2, \ldots, N-1\}$. Let $z \in \mathcal{L}_{p}$ such that $\|z-x\|_{p}<\delta$. Then

$$
\begin{equation*}
\left|z_{k s}-x_{k s}\right|<\delta \tag{11}
\end{equation*}
$$

for all $k, s \in \mathbb{N}$. For all $k, s \in\{1,2, \ldots, N-1\}$, we find

$$
\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|<\frac{\varepsilon}{3(N-1)^{2}}
$$

by (10). Therefore

$$
\begin{equation*}
\sum_{k, s=1}^{N-1}\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|<\frac{\varepsilon}{3} \tag{12}
\end{equation*}
$$

We see that $\left\|\left(z_{k s}\right)_{\max \{k, s\} \geq N}-\left(x_{k s}\right)_{\max \{k, s \mid \geq N}\right\|_{p}<\frac{1}{2}\left(\frac{\varepsilon}{6 \alpha}\right)^{\frac{1}{p}}$. So,

$$
\begin{aligned}
\left(\sum_{\max \{k, s \mid \geq N}\left|z_{k s}\right|^{p}\right)^{\frac{1}{p}} & =\left\|\left(z_{k s}\right)_{\max \{k, s \mid \geq N}\right\|_{p} \\
& \leq\left\|\left(z_{k s}\right)_{\max |k, s| \geq N}-\left(x_{k s}\right)_{\max |k, s| \geq N}\right\|_{p}+\left\|\left(x_{k s}\right)_{\max \{k, s \mid \geq N}\right\| \\
& <\left(\frac{\varepsilon}{6 \alpha}\right)^{\frac{1}{p}}
\end{aligned}
$$

from (7). For all $k, s \in \mathbb{N}$ such that $\max \{k, s\} \geq N$, we find

$$
\left|z_{k s}\right| \leq\left|z_{k s}-x_{k s}\right|+\left|x_{k s}\right|<\delta+\frac{\beta}{2}<\beta
$$

by (11). It's follows that,

$$
\left|g\left(k, s, z_{k s}\right)\right| \leq c_{k s}+\alpha\left|z_{k s}\right|^{p}
$$

for all $k, s \in \mathbb{N}$ such that $\max \{k, s\} \geq N$ from (6). Therefore,

$$
\sum_{\max \{k, s \mid \geq N}\left|g\left(k, s, z_{k s}\right)\right| \leq \sum_{\max \{|k, s| \geq N} c_{k s}+\alpha \sum_{\max \{|k, s| \geq N}\left|z_{k s}\right|^{p}<\frac{\varepsilon}{3} .
$$

Then, we obtain

$$
\begin{aligned}
\left\|P_{g}(z)-P_{g}(x)\right\|_{1} & =\sum_{k, s=1}^{N-1}\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|+\sum_{\max \{k, s \mid \geq N}\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right| \\
& \leq \sum_{k, s=1}^{N-1}\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|+\sum_{\max \{k, s \mid \geq N}\left|g\left(k, s, z_{k s}\right)\right|+\sum_{\max \{k, s \mid \geq N}\left|g\left(k, s, x_{k s}\right)\right| \\
& <\varepsilon
\end{aligned}
$$

by (9) and (12).

3. Superposition Operators of \mathcal{L}_{p} into $\mathcal{L}_{q}(1 \leq p, q<\infty)$

Proposition 3.1. Let X be a double sequence space. If $\mathcal{L}_{1} \subseteq X$ and $P_{g}: X \rightarrow M_{u}$, then there exist $N \in \mathbb{N}$ and $\alpha>0$ such that $(g(k, s, .))_{k, s=N}^{\infty}$ is uniformly bounded on $[-\alpha, \alpha]$.

Proof. Suppose that the converse of this holds. Then there is a subsequence $\left(i_{k}, j_{s}\right)_{k, s=1}^{\infty}$ of $(i, j)_{i, j=1}^{\infty}$ and a sequence $\left(x_{i_{k} j_{s}}\right)_{k, s=1}^{\infty}$ such that

$$
x_{i_{k} j_{s}} \in\left[-2^{-(k+s)}, 2^{-(k+s)}\right] \text { and }\left|g\left(i_{k}, j_{s}, x_{i_{k} j_{s}}\right)\right|>k+s
$$

for all $k, s \in \mathbb{N}$. Then we find $\left(x_{i_{k} j_{s}}\right)_{k, s=1}^{\infty} \in \mathcal{L}_{1}$ and $\left(g\left(i_{k}, j_{s}, x_{i_{k} j_{s}}\right)\right)_{k, s=1}^{\infty} \notin M_{u}$. Let $\left(y_{i j}\right)_{i, j=1}^{\infty}$ defined by

$$
y_{i j}= \begin{cases}x_{i_{k} j_{s}}, & i_{k}=i \text { and } j_{s}=j \\ 0, & \text { otherwise }\end{cases}
$$

Hence, we obtain $\left(y_{i j}\right)_{i, j=1}^{\infty} \in \mathcal{L}_{1} \subseteq X$ and $\left(g\left(i, j, y_{i j}\right)\right)_{i, j=1}^{\infty} \notin M_{u}$. Therefore, $P_{g}: X \nrightarrow M_{u}$.
Theorem 3.2. $P_{g}: \mathcal{L}_{p} \rightarrow \mathcal{L}_{q}$ if and only if there exist $\alpha>0, \beta>0, N \in \mathbb{N}$ and $\left(c_{k s}\right)_{k, s=1}^{\infty} \in \mathcal{L}_{1}$ such that

$$
\begin{equation*}
|g(k, s, t)|^{q} \leq c_{k s}+\alpha|t|^{p} \text { whenever }|t| \leq \beta \tag{13}
\end{equation*}
$$

for all $k, s \in \mathbb{N}$ with $\max \{k, s\} \geq N$.
Proof. Suppose that P_{g} acts from \mathcal{L}_{p} to \mathcal{L}_{q}. Since $\mathcal{L}_{q} \subset M_{u}, P_{g}: \mathcal{L}_{p} \rightarrow M_{u}$. Also since $\mathcal{L}_{1} \subseteq \mathcal{L}_{p}$, we see that there exist α_{0} and $N \in \mathbb{N}$ such that $(g(k, s, .))_{k, s=N}^{\infty}$ is uniformly bounded on $\left[-\alpha_{0}, \alpha_{0}\right]$ by Proposition 3.1. Therefore,

$$
\sup _{t \in\left[-\alpha_{0}, \alpha_{0}\right]}|g(k, s, t)|^{q}<\infty
$$

for all $k, s \geq N$. We define $A(k, s, \alpha, \beta) \subseteq\left[-\alpha_{0}, \alpha_{0}\right]$ by

$$
\begin{equation*}
A(k, s, \alpha, \beta)=\left\{t \in\left[-\alpha_{0}, \alpha_{0}\right]:|t|^{p} \leq \min \left\{\beta, \alpha^{-1}|g(k, s, t)|^{q}\right\}\right\} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
B(k, s, \alpha, \beta)=\sup \left\{|g(k, s, t)|^{q}: t \in A(k, s, \alpha, \beta)\right\} \tag{15}
\end{equation*}
$$

for all $\alpha>0, \beta>0$ and $k, s \geq N$. We assert that $\sum_{k, s=N}^{\infty} B(k, s, \alpha, \beta)<\infty$ for some $\alpha, \beta>0$. To show the validity of this fact, we assume the converse, that is, $\sum_{k, s=N}^{\infty} B\left(k, s, 2^{j}, 2^{-j}\right)=\infty$ for each $j \in \mathbb{N} \cup\{0\}$. Therefore, we see that for all $j \in \mathbb{N} \cup\{0\}$ and $n \geq N$ there exist $n^{\prime}>n$ and $m^{\prime}>n$ such that

$$
\begin{equation*}
\sum_{k=n}^{n^{\prime}} \sum_{s=n}^{m^{\prime}} B\left(k, s, 2^{j}, 2^{-j}\right)>1 \tag{16}
\end{equation*}
$$

Then there exist $n_{1}^{\prime}>N$ and $m_{1}^{\prime}>N$ such that

$$
\sum_{k=N+1 s=N+1}^{n_{1}^{\prime}} \sum_{m_{1}^{\prime}}^{m_{s}^{\prime}} B\left(k, s, 2^{0}, 2^{-0}\right)>1
$$

Let

$$
\begin{aligned}
& n_{1}=\min \left\{n^{\prime} \in \mathbb{N} \mid m^{\prime} \in \mathbb{N}, n^{\prime}, m^{\prime}>N, \text { and } \sum_{k=N+1}^{n^{\prime}} \sum_{s=N+1}^{m^{\prime}} B\left(k, s, 2^{0}, 2^{-0}\right)>1\right\} \\
& m_{1}=\min \left\{m^{\prime} \in \mathbb{N} \mid n^{\prime} \in \mathbb{N}, n^{\prime}, m^{\prime}>N, \text { and } \sum_{k=N+1}^{n^{\prime}} \sum_{s=N+1}^{m^{\prime}} B\left(k, s, 2^{0}, 2^{-0}\right)>1\right\} .
\end{aligned}
$$

Also there exist $n_{2}^{\prime}>n_{1}$ and $m_{2}^{\prime}>m_{1}$ such that

$$
\sum_{k=n_{1}+1 s=m_{1}+1}^{n_{2}^{\prime}} \sum_{2}^{m_{2}^{\prime}} B\left(k, s, 2^{1}, 2^{-1}\right)>1
$$

by using (16). We write

$$
\begin{aligned}
& n_{2}=\min \left\{n^{\prime} \in \mathbb{N} \mid m^{\prime} \in \mathbb{N}, n^{\prime}>n_{1}, m^{\prime}>m_{1}, \text { and } \sum_{k=n_{1}+1 s=m_{1}+1}^{n^{\prime}} B\left(k, s, 2^{1}, 2^{-1}\right)>1\right\} \\
& m_{2}=\min \left\{m^{\prime} \in \mathbb{N} \mid n^{\prime} \in \mathbb{N}, n^{\prime}>n_{1}, m^{\prime}>m_{1}, \text { and } \sum_{k=n_{1}+1 s=m_{1}+1}^{n^{\prime}} \sum_{m^{\prime}} B\left(k, s, 2^{1}, 2^{-1}\right)>1\right\} .
\end{aligned}
$$

Hence by induction, there exist a subsequence $\left(n_{k}\right)_{k=1}^{\infty}$ of $(n)_{n=1}^{\infty}$ and a subsequence $\left(m_{k}\right)_{k=1}^{\infty}$ of $(m)_{m=1}^{\infty}$ such that $n_{1}, m_{1}>N$ and

$$
\begin{aligned}
& n_{j+1}=\min \left\{n^{\prime} \in \mathbb{N} \mid m^{\prime} \in \mathbb{N}, n^{\prime}>n_{1}, m^{\prime}>m_{1} \text { and } \sum_{k=n_{j}+1}^{n^{\prime}} \sum_{s=m_{j}+1}^{m^{\prime}} B\left(k, s, 2^{j}, 2^{-j}\right)>1\right\} \\
& m_{j+1}=\min \left\{m^{\prime} \in \mathbb{N} \mid n^{\prime} \in \mathbb{N}, m^{\prime}>m_{1}, n^{\prime}>n_{1} \text { and } \sum_{k=n_{j}+1 s=m_{j}+1}^{n^{\prime}} \sum_{m^{\prime}} B\left(k, s, 2^{j}, 2^{-j}\right)>1\right\} .
\end{aligned}
$$

Therefore, we see

$$
\begin{equation*}
\sum_{k=n_{j}+1 s=m_{j}+1}^{n_{j+1}-1} \sum_{m_{j+1}-1} B\left(k, s, 2^{j}, 2^{-j}\right) \leq 1 . \tag{17}
\end{equation*}
$$

We set $\mathcal{F}=\left\{(k, s): k \leq n_{1} \vee s \leq m_{1}\right\}$. If $(k, s) \in \mathcal{F}$, let $x_{k s}=0$. If $k>n_{1}$ and $s>m_{1}$, then there exists $j \in \mathbb{N}$ such that $n_{j}<k \leq n_{j+1}$ and $m_{j}<s \leq m_{j+1}$. Thus there is $\left(x_{k s}\right) \in A\left(k, s, 2^{j}, 2^{-j}\right)$ and

$$
\begin{equation*}
0 \leq B\left(k, s, 2^{j}, 2^{-j}\right)<\left|g\left(k, s, x_{k s}\right)\right|^{q}+2^{-(k+s)} \tag{18}
\end{equation*}
$$

by (15). Also from (14), we have

$$
\begin{equation*}
\left|x_{k s}\right| \leq \min \left\{2^{-j}, 2^{-j}\left|g\left(k, s, x_{k s}\right)\right|^{q}\right\} . \tag{19}
\end{equation*}
$$

Therefore for each $r \in \mathbb{N}$, we find

$$
\begin{aligned}
r & <\sum_{j=1}^{r}\left(\sum_{k=n_{j}+1}^{n_{j+1}} \sum_{s=m_{j}+1}^{m_{j+1}} B\left(k, s, 2^{j}, 2^{-j}\right)\right) \\
& <\sum_{k=n_{1}+1}^{n_{r+1}} \sum_{s=m_{1}+1}^{m_{r+1}}\left\{\left|g\left(k, s, x_{k s}\right)\right|^{q}+2^{-(k+s)}\right\} \\
& <\sum_{k=1}^{n_{r+1}} \sum_{s=1}^{m_{r+1}}\left|g\left(k, s, x_{k s}\right)\right|^{q}+\sum_{k=1}^{\infty} \sum_{s=1}^{\infty} 2^{-(k+s)}
\end{aligned}
$$

by using (18). Since $\sum_{k=1}^{\infty} \sum_{s=1}^{\infty} 2^{-(k+s)}<\infty$, we find $P_{g}(x)=\left(g\left(k, s, x_{k s}\right)\right)_{k, s=1}^{\infty} \notin \mathcal{L}_{q}$. We see by (17) and (19) that

$$
\begin{aligned}
\sum_{k, s=1}^{\infty}\left|x_{k s}\right|^{p} & =\sum_{j=1}^{\infty}\left(\sum_{k=n_{j}+1 s=m_{j}+1}^{n_{j+1}} \sum_{m_{j s}}^{m_{j+1}}| |^{p}\right) \\
& \leq \sum_{j=1}^{\infty}\left(\left.\sum_{k=n_{j}+1 s=m_{j}+1}^{n_{j+1}-1} \sum_{m_{j+1}-1}^{m_{s}}\right|^{p}+\left|x_{n_{j+1} m_{j+1}}\right|^{p}\right) \\
& \leq \sum_{j=1}^{\infty}\left(2^{-j} \sum_{k=n_{j}+1}^{n_{j+1}-1} \sum_{s=m_{j}+1}^{m_{j+1}-1}\left|g\left(k, s, x_{k s}\right)\right|^{q}+2^{-j}\right) \\
& \leq \sum_{j=1}^{\infty}\left(2^{-j} \sum_{k=n_{j}+1}^{n_{j+1}-1} \sum_{m_{j=m_{j}+1}-1}^{m_{j+1}} B\left(k, s, 2^{j}, 2^{-j}\right)+2^{-j}\right) \\
& \leq \sum_{j=1}^{\infty} 2.2^{-j}
\end{aligned}
$$

which means that $\left(x_{k s}\right) \in \mathcal{L}_{p}$. But it contradicts that $P_{g}: \mathcal{L}_{p} \rightarrow \mathcal{L}_{q}$. So, we see that there exist $\alpha>0$ and $\beta>0$ such that $\sum_{k, s=N}^{\infty} B(k, s, \alpha, \beta)<\infty$.
Let $\gamma=\min \left\{\alpha_{0}, \beta^{\frac{1}{p}}\right\}$ and define $\left(c_{k s}\right)$ by

$$
c_{k s}=\left\{\begin{array}{ll}
B(k, s, \alpha, \beta), & k, s \geq N \\
0, & \text { otherwise }
\end{array} .\right.
$$

It's obvious that $\left(c_{k s}\right)_{k, s=1}^{\infty} \in \mathcal{L}_{1}$. Also $[-\gamma, \gamma] \subseteq\left[-\alpha_{0}, \alpha_{0}\right]$ and $|t|^{p} \leq \beta$ for each $t \in[-\gamma, \gamma]$. Let $k, s \geq N$ and $t \in[-\gamma, \gamma]$. If $t \in A(k, s, \alpha, \beta)$, then $|g(k, s, t)|^{q} \leq B(k, s, \alpha, \beta)=c_{k s} \leq c_{k s}+\alpha|t|^{p}$. If $t \notin A(k, s, \alpha, \beta)$, then $|t|^{p}>\alpha^{-1}|g(k, s, t)|^{q}$ and so we find $|g(k, s, t)|^{q}<\alpha|t|^{p} \leq c_{k s}+\alpha|t|^{p}$. Hence the inequality (13) holds.

Conversely, suppose that there is $\alpha>0, \beta>0, N \in \mathbb{N}$ and $\left(c_{k s}\right)_{k, s=1}^{\infty} \in \mathcal{L}_{1}$ such that

$$
|g(k, s, t)|^{q} \leq c_{k s}+\alpha|t|^{p} \text { whenever }|t| \leq \beta
$$

for all k, s with $\max \{k, s\} \geq N$. Let $\left(x_{k s}\right) \in \mathcal{L}_{p}$. Then there is $N^{\prime}>N$ such that $\sum_{\max \left\{k, s \mid \geq N^{\prime}\right.}\left|x_{k s}\right|^{p}<\varepsilon<\beta^{p}$. Hence for all $k, s \in \mathbb{N}$ such that $\max \{k, s\} \geq N^{\prime}$, it's obvious that $\left|x_{k s}\right|<\beta$. Therefore,

$$
\left|g\left(k, s, x_{k s}\right)\right|^{q} \leq c_{k s}+\alpha\left|x_{k s}\right|^{p}
$$

for all $k, s \in \mathbb{N}$ such that $\max \{k, s\} \geq N^{\prime}$. So, we have

$$
\sum_{\max \left\{|k, s| \geq N^{\prime}\right.}\left|g\left(k, s, x_{k s}\right)\right|^{q} \leq \sum_{\max \left\{|k, s| \geq N^{\prime}\right.} c_{k s}+\alpha \sum_{\max \left\{k, s \mid \geq N^{\prime}\right.}\left|x_{k s}\right|^{p} .
$$

Then we obtain that $\sum_{k, s=1}^{\infty}\left|g\left(k, s, x_{k s}\right)\right|^{q}<\infty$. This completes the proof.
Example 3.3. Let $g: \mathbb{N}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
g(k, s, t)=\left(\frac{1}{2^{\frac{k+s}{q}}}+|t|^{\frac{p}{q}}\right)|t|
$$

for all $k, s \in \mathbb{N}$ and for all $t \in \mathbb{R}$. Let $N=1, \beta=2$ and $|t| \leq 2$. Then for all $k, s \in \mathbb{N}$,

$$
\begin{aligned}
|g(k, s, t)|^{q} & =\left(\frac{1}{2^{\frac{k+s}{q}}}+|t|^{\frac{p}{q}}\right)^{q}|t|^{q} \\
& \leq 2^{q} \max \left\{\left.\frac{1}{2^{\frac{k+s}{q} \cdot q}}| | t\right|^{\frac{p}{q} \cdot q}\right\} \cdot|t|^{q} \\
& \leq 2^{2 q}\left(\frac{1}{2^{k+s}}+|t|^{p}\right) \\
& \leq \frac{4^{q}}{2^{k+s}}+4^{q}|t|^{p} .
\end{aligned}
$$

Since $\sum_{k, s=1}^{\infty} \frac{4^{q}}{2^{q+s}}<\infty$, we put $c_{k s}=\frac{4^{9}}{2^{k+s}}$ for all $k, s \in \mathbb{N}$. If we take $\alpha=4^{q}$, then we have $|g(k, s, t)| \leq c_{k s}+\alpha|t|^{p}$ whenever $|t| \leq \beta$. By Theorem 3.2, we find that P_{g} acts from \mathcal{L}_{p} to \mathcal{L}_{q}.

Proposition 3.4. Let X be a normed double sequence space containing all finite double sequences and Y be a normed double sequence space such that $Y \subseteq M_{u}$. Suppose that
(i) $P_{g}: X \rightarrow Y$,
(ii) there exists $\alpha>0$ such that $\left\|e^{m n}\right\|_{X} \leq \alpha$ for all $m, n \in \mathbb{N}$,
(iii) $\|.\|_{M_{u}} \leq \beta\|.\|_{Y}$ on Υ for some $\beta>0$.

If P_{g} is continuous at x, then for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
\left|t-x_{k s}\right|<\delta \text { implies }\left|g(k, s, t)-g\left(k, s, x_{k s}\right)\right|<\varepsilon
$$

for all $k, s \in \mathbb{N}$ and $t \in \mathbb{R}$.
Proof. Let any $\varepsilon>0$. Since P_{g} is continuous, there exists $\delta>0$ such that

$$
\begin{equation*}
\|z-x\|_{X}<\delta \text { implies }\left\|P_{g}(z)-P_{g}(x)\right\|_{Y}<\varepsilon \tag{20}
\end{equation*}
$$

for all $z \in X$. Let $k, s \in \mathbb{N}$ and $t \in \mathbb{R}$ with $\left|t-x_{k s}\right|<\frac{\delta}{\alpha}$. Let $u=\left(t-x_{k s}\right) e^{m n}+x$, hence $u \in X, u_{k s}=t$ and from (ii)

$$
\|u-x\|_{X}=\left|t-x_{k s}\right|\left\|e^{m n}\right\|_{X}<\delta .
$$

Thus, we find $\left\|P_{g}(u)-P_{g}(x)\right\|_{Y}<\frac{\varepsilon}{\beta}$ by (20). Therefore, we obtain

$$
\left|g(k, s, t)-g\left(k, s, x_{k s}\right)\right| \leq\left\|P_{g}(u)-P_{g}(x)\right\|_{M_{u}} \leq \beta\left\|P_{g}(u)-P_{g}(x)\right\|_{Y}<\varepsilon
$$

by (iii).

Theorem 3.5. Let the superposition operator $P_{g}: \mathcal{L}_{p} \rightarrow \mathcal{L}_{q}$. If P_{g} is continuous at $x \in \mathcal{L}_{p}$ if and only if $g(k, s,$.$) is$ continuous at $x_{k s}$ for all $k, s \in \mathbb{N}$.

Proof. Since the conditions in Proposition 3.4 provided, we see that the necessary condition can be showed easily.

Conversely, suppose that $g(k, s,$.$) is continuous at x_{k s}$ for all $k, s \in \mathbb{N}$. We need to show that P_{g} is continuous at $x \in \mathcal{L}_{p}$. Since $P_{g}: \mathcal{L}_{p} \rightarrow \mathcal{L}_{q}$, there exist $\alpha>0, \beta>0, N_{1} \in \mathbb{N}$ and $\left(c_{k s}\right)_{k, s=1}^{\infty} \in \mathcal{L}_{1}$ such that

$$
\begin{equation*}
|g(k, s, t)|^{q} \leq c_{k s}+\alpha|t|^{p} \tag{21}
\end{equation*}
$$

whenever $|t| \leq \beta$ for all k, s with $\max \{k, s\} \geq N_{1}$. Let any $\varepsilon>0$. Since $\mathcal{L}_{p} \subseteq M_{u}$,

$$
p-\lim _{n, m \rightarrow \infty}\left[\sum_{k=0}^{n-1} \sum_{s=m}^{\infty}\left|x_{k s}\right|^{p}+\sum_{k=n}^{\infty} \sum_{s=1}^{m-1}\left|x_{k s}\right|^{p}+\sum_{k=n}^{\infty} \sum_{s=m}^{\infty}\left|x_{k s}\right|^{p}\right]=0
$$

and

$$
p-\lim _{n, m \rightarrow \infty}\left[\sum_{k=0}^{n-1} \sum_{s=m}^{\infty} c_{k s}+\sum_{k=n}^{\infty} \sum_{s=1}^{m-1} c_{k s}+\sum_{k=n}^{\infty} \sum_{s=m}^{\infty} c_{k s}\right]=0
$$

respectively, there exists $N \in \mathbb{N}$ with $N \geq N_{1}$ such that

$$
\begin{equation*}
\left|x_{k s}\right| \leq \beta \text { for all } k, s \text { with } \max \{k, s\} \geq N \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\max \{k, s \mid \geq N}\left|x_{k s}\right|^{p} \leq \min \left\{\left(\frac{\beta}{2}\right)^{p}, \frac{\varepsilon^{q}}{\alpha 2^{q+3}}, \frac{1}{2^{p}}\left(\frac{\varepsilon^{q}}{\alpha 2^{q+3}}\right)\right\} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\max \{k, s \mid \geq N} c_{k s} \leq \frac{\varepsilon^{q}}{2^{q+3}} \tag{24}
\end{equation*}
$$

We write $\mid g\left(k, s,\left.x_{k s}\right|^{q} \leq c_{k s}+\alpha\left|x_{k s}\right|^{p}\right.$ for all k, s with $\max \{k, s\} \geq N$ by using (21) and (22). Since $g(k, s,$.$) is$ continuous at $x_{k s}$ for all $k, s \in\{1,2, \ldots, N-1\}$, there is $\delta \in \mathbb{R}$ satisfying $0<\delta \leq \min \left\{\frac{\beta}{2}, \frac{1}{2}\left(\frac{\varepsilon^{q}}{\alpha 2^{q+3}}\right)^{\frac{1}{p}}\right\}$ such that

$$
\begin{equation*}
\left|t-x_{k s}\right|<\delta \text { implies }\left|g(k, s, t)-g\left(k, s, x_{k s}\right)\right|<\left(\frac{\varepsilon^{q}}{2(N-1)^{2}}\right)^{\frac{1}{q}} \tag{25}
\end{equation*}
$$

for all $t \in \mathbb{R}$ and $k, s \in\{1,2, \ldots, N-1\}$.
Let $z \in \mathcal{L}_{p}$ with $\|z-x\|_{p}<\delta$. Then, we see that

$$
\left\|\left(z_{k s}\right)_{\max \{k, s\} \geq N}-\left(x_{k s}\right)_{\max \{k, s \mid \geq N}\right\|_{p}<\delta .
$$

Hence we find

$$
\begin{align*}
\left|z_{k s}\right| & \leq\left\|\left(z_{k s}\right)_{\max \{k, s\} \geq N}\right\|_{p} \\
& \leq\left\|\left(z_{k s}\right)_{\max \{k, s\} \geq N}-\left(x_{k s}\right)_{\max \{k, s\} \geq N}\right\|_{p}+\left\|\left(x_{k s}\right)_{\max \{k, s\} \geq N}\right\|_{p} \\
& <\delta+\frac{\beta}{2} \leq \beta \tag{26}
\end{align*}
$$

by using (23), for all k, s with $\max \{k, s\} \geq N$. Also, we find

$$
\begin{align*}
\left(\sum_{\max \{k, s \mid \geq N}\left|z_{k s}\right|^{p}\right)^{\frac{1}{p}} & =\left\|\left(z_{k s}\right)_{\max \{k, s \mid \geq N}\right\|_{p} \\
& \leq\left\|\left(z_{k s}\right)_{\max \{k, s\} \geq N}-\left(x_{k s}\right)_{\max \{k, s\} \geq N}\right\|_{p}+\left\|\left(x_{k s}\right)_{\max \{k, s\} \geq N}\right\|_{p} \\
& \leq\left(\frac{\varepsilon^{q}}{\alpha 2^{q+3}}\right)^{\frac{1}{p}} \tag{27}
\end{align*}
$$

We write $\left|g\left(k, s, z_{k s}\right)\right|^{q} \leq c_{k s}+\alpha\left|z_{k s}\right|^{p}$ for all k, s with $\max \{k, s\} \geq N$ by using (21) and (26). Therefore, we have

$$
\begin{aligned}
\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|^{q} & \leq 2^{q} \max \left\{\left|g\left(k, s, z_{k s}\right)\right|^{q},\left|g\left(k, s, x_{k s}\right)\right|^{q}\right\} \\
& \leq 2^{q}\left(\left|g\left(k, s, z_{k s}\right)\right|^{q}+\left|g\left(k, s, x_{k s}\right)\right|^{q}\right) \\
& \leq 2^{q}\left(2 c_{k s}+\alpha\left|z_{k s}\right|^{p}+\alpha\left|x_{k s}\right|^{p}\right) .
\end{aligned}
$$

Then we find

$$
\begin{aligned}
\sum_{\max \{k, s\} \geq N}\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|^{q} & \leq 2^{q+1} \sum_{\max \{k, s \mid \geq N} c_{k s}+2^{q} \alpha \sum_{\max \{k, s \mid \geq N}\left|z_{k s}\right|^{p}+2^{q} \alpha \sum_{\max \{k, s\} \geq N}\left|x_{k s}\right|^{p} \\
& <\frac{\varepsilon^{q}}{2}
\end{aligned}
$$

by using (23), (24) and (27). We know that $\left|z_{k s}-x_{k s}\right| \leq\|z-x\|_{p}<\delta$ for all $k, s \in\{1,2, \ldots, N-1\}$ and so $\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|^{q} \leq \frac{\varepsilon^{q}}{2(N-1)^{2}}$ from (25). Therefore, we obtain

$$
\begin{aligned}
\sum_{k, s=1}^{\infty}\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|^{q} & =\sum_{k, s=1}^{N-1}\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|^{q}+\sum_{\max \{k, s \mid \geq N}\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|^{q} \\
& <(N-1)^{2} \frac{\varepsilon^{q}}{2(N-1)^{2}}+\frac{\varepsilon^{q}}{2}<\varepsilon^{q}
\end{aligned}
$$

This completes the proof.

4. Concluding Remarks

The necessary and sufficient conditions for the continuity of the superposition operator P_{g} have been formulated, as stated in Theorem 2.3 and Theorem 3.5. For the future, we will formulate the necessary and sufficient conditions for the boundedness of the superposition operator P_{g}.

References

[1] Apostol T.M., Mathematical Analysis, Pearson Education Asia Limited and China Machine Press, 1974.
[2] Başar F., Sever Y., The Space Of Double Sequences, Math. J. Okayama Univ., 51 (2009), 149-157.
[3] Başar F., Summability Theory And Its Applications, Bentham Science Publishers, e-books, Monographs, İstanbul, 2012.
[4] Chew T.S., Lee P.Y., Orthogonally Additive Functionals On Sequence Spaces, Southeast Asian Bull. Math. 9 (1985), 81-85.
[5] Dedagich F., Zabreiko P.P., Operator Superpositions In The Spaces l_{p}, Sib. Math. J., 28 (1987), 86-98.
[6] Kolk E., Raidjoe A., The Continuity Of Superposition Operators On Some Sequence Spaces Defined By Moduli, Czech. Math. J., 57 (2007), 777-792.
[7] Petranuarat S., Kemprasit Y., Superposition Operators On l_{p} And c_{0} Into $l_{q}(1 \leq p, q<\infty)$, Southeast Asian Bull. Math., 21 (1997), 139-147.
[8] Pluciennik R. ,Continuity Of Superposition Operators On w_{0} And W_{0}, Commentat. Math. Univ. Carol., 31(1990), 529-542.
[9] Sama-ae A., Boundedness And Continuity Of Superposition Operator On $E_{r}(p)$ And F_{r} (p), Songklanakarin J. Sci. Technol., 24 (2002), 452-466.
[10] Streit R. F., The Summation Of Convergent Double Series, Texas Tech University, 1972.

[^0]: 2010 Mathematics Subject Classification. Primary 47H30; Secondary 46A45
 Keywords. Superposition Operators, Continuity, Double Sequence Spaces, Pringsheim's convergent
 Received: 12 February 2014; Accepted: 08 August 2014
 Communicated by Dragan S. Djordjević
 Email addresses: bduyar@omu.edu.tr (Birsen Sağır), nihangungor@gumushane.edu.tr (Nihan Güngör)

