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Abstract. In this paper we investigate perturbations by holomorphically and polynomially Riesz operators
concerning the sets of upper and lower semi-Fredholm operators, the sets of left and right Fredholm
operators, as well as the sets of upper and lower semi-Browder operators and the sets of left and right
Browder operators. We consider in particular perturbations of shifts by polynomially Riesz operators.

1. Introduction and Preliminaries

Let C denote the set of all complex numbers and let X be an infinite dimensional Banach space. We
denote by B(X) the set of all linear bounded operators on X. For A ∈ B(X), let R(A) and N(A) denote the
range and the null-space of A, respectively, and let α(A) = dimN(A) and β(A) = dimX/R(A) = codim R(A).
The sets of upper and lower semi-Fredholm operators, respectively, are defined as Φ+(X) = {A ∈ B(X) : α(A) <
∞ and R(A) is closed}, and Φ−(X) = {A ∈ B(X) : β(A) < ∞}. Set Φ±(X) = Φ+(X) ∪ Φ−(X) for the set of
semi-Fredholm operators and Φ(X) = Φ+(X) ∩ Φ−(X) for the set of Fredholm operators. For A ∈ Φ±(X) the
index is defined by i(A) = α(A) − β(A). The Calkin algebra over X is the quotient algebra C(X) = B(X)/K(X)
and let Π : B(X) → C(X) denote the natural homomorphism. It is well known that A ∈ Φ(X) if and only if
Π(A) is invertible in C(X) [5, Theorem 3.2.8].

An operator A ∈ B(X) is left Fredholm, if α(A) < ∞ and R(A) is a closed and complemented subspace of
X, while A is right Fredholm if β(A) < ∞ and N(A) is a complemented subspace of X. Set Φl(X) for the set
of all left Fredholm operators on X, and Φr(X) for the set of all right Fredholm operators on X.

For A ∈ B(X) denote by asc(A) (dsc(A)) the ascent (the descent) of A ∈ B(X), i.e. the smallest non-
negative integer n such that N(An) = N(An+1) (R(An) = R(An+1)). If such n does not exist, then asc(A) = ∞
(dsc(A) = ∞). An operator A ∈ B(X) is upper semi-Browder if it is upper semi-Fredholm with finite ascent,
while A is lower semi-Browder if it is lower semi-Fredholm with finite descent. Let B+(X) (B−(X)) denote
the set of all upper (lower) semi-Browder operators. We shall say that an operator A ∈ B(X) is left Browder,
if it is left Fredholm with finite ascent, while A is right Browder, if it is right Fredholm with finite descent.
Let Bl(X) (Br(X)) denote the set of all left (right) Browder operators. An operator A ∈ B(X) is Browder if it
is Fredholm with finite ascent and finite descent. The set of all Browder operators on X is denoted by B(X).
Clearly, B(X) = B+(X) ∩ B−(X) = Bl(X) ∩ Br(X).
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For A, B ∈ B(X) recall that ([3, Theorem 1.46], [3, Theorem 1.54 (ii)])

BA ∈ Φ∗(X) =⇒ A ∈ Φ∗(X), for ∗ = +, l,

BA ∈ Φ∗(X) =⇒ B ∈ Φ∗(X), for ∗ = −, r.
(1)

Recall that for A, B ∈ B(X) ([10, Theorem 7.10.2], [19, Lemma 2.5])

AB = BA, AB ∈ B∗(X) =⇒ A, B ∈ B∗(X), (2)

for ∗ = +,−, l, r.
An operator A ∈ B(X) is Riesz, A ∈ R(X), if {λ ∈ C : A − λ ∈ Φ(X)} = C\{0}. It is known for A, B ∈ B(X)

([2, Theorem 3.112]):

A, B ∈ R(X), AB = BA =⇒ A + B ∈ R(X),
B ∈ R(X), AB = BA =⇒ AB ∈ R(X).

(3)

For K ⊂ C, ∂K denotes the topological boundary of K, iso K denotes the set of the isolated points of K
and acc K denotes the set of all accumulation points of K.

The spectrum of A ∈ B(X) is
σ(A) = σl(A) ∪ σr(A),

where

σl(A) = {λ ∈ C : A − λ is not left invertible},
σr(A) = {λ ∈ C : A − λ is not right invertible},

are the left and the right spectrum of A, respectively. It is well-known that

∂σ(A) ⊂ σl(A) ∩ σr(A). (4)

For H = Φ+,Φ−,Φl,Φr,Φ, B+,B−,Bl,Br,B, the corresponding spectrum of A ∈ B(X) is defined by

σH(A) = {λ : A − λ < H(X)}.

From the punctured neighborhood theorem ([14, Theorem 18.7], [10, Theorem 7.8.5]) it follows for ∗ = l, r

∂σ∗(A) ∩ (C\σΦ∗ (A)) ⊂ iso σ∗(A),

and therefore,

∂σ∗(A) ⊂ σΦ∗ (A) ∪ iso σ∗(A), (5)

and analogously for the two-sided spectrum:

∂σ(A) ⊂ σΦ(A) ∪ iso σ(A). (6)

Recall that ([14, Corollary 20.20]),

σB(A) = σΦ(A) ∪ acc σ(A), (7)

and for ∗ = +,−, l, r (see [14, Corollary 20.20], [18, Theorems 5, 6 and the comment after Theorem 6])

σB∗ (A) = σΦ∗ (A) ∪ acc σ∗(A). (8)
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It is known that ([13, Theorem 7])

∂ σΦ(A) ⊂ σΦ+
(A) ∩ σΦ− (A). (9)

Let S be a subset of a Banach space A. The perturbation class of S, denoted by Ptrb (S), is the set

Ptrb (S) = {a ∈ A : a + s ∈ S for every s ∈ S}.

Recall that ([11, Theorem 2.7], [6, Chapter 5.2, Corollary 3]),

Ptrb (Φl(X)) = Ptrb (Φ(X)) = Ptrb (Φr(X)), (10)

and Ptrb (Φ+(X)) ∪ Ptrb (Φ−(X)) ⊂ Ptrb (Φ(X)) ([5, Theorem 5.6.9]). Also, it is known that Ptrb (Φ(X)),
Ptrb (Φ+(X)) and Ptrb (Φ−(X)) are closed two-sided ideals [11, Theorem 2.4].

We recall the following result:

Theorem 1.1. [17, Corollary 2] Let A ∈ B(X) and let D ∈ R(X). Then
(i) If A ∈ Φ+(X) and AD −DA ∈ Ptrb (Φ+(X)), then A −D ∈ Φ+(X) and i(A) = i(A −D).
(ii) If A ∈ Φ−(X) and AD −DA ∈ Ptrb (Φ−(X)), then A −D ∈ Φ−(X) and i(A) = i(A −D).

From [18, Theorem 8] and the local constancy of the index it follows:

Theorem 1.2. Let A ∈ B(X) and let D ∈ R(X).
(i) If A ∈ Φl(X) and AD −DA ∈ Ptrb (Φ(X)), then A −D ∈ Φl(X) and i(A) = i(A −D).
(ii) If A ∈ Φr(X) and AD −DA ∈ Ptrb (Φ(X)), then A −D ∈ Φr(X) and i(A) = i(A −D).

V. Rakočević proved the stability of the upper and lower semi-Browder operators under commuting Riesz
perturbations ([16, Corollary 2]):

Theorem 1.3. Let A ∈ B(X) and let D ∈ R(X).
(i) If A ∈ B+(X) and AD = DA, then A −D ∈ B+(X).
(ii) If A ∈ B−(X) and AD = DA, then A −D ∈ B−(X).

We need the following result which follows immediately from [18, Theorem 7]:

Theorem 1.4. Let A ∈ B(X) and let D ∈ R(X).
(i) If A ∈ Bl(X) and AD = DA, then A −D ∈ Bl(X).
(ii) If A ∈ Br(X) and AD = DA, then A −D ∈ Br(X).

Let A be a complex Banach algebra. We say that S ⊆ A is a commutative ideal if

S +comm S ⊆ S , A ·comm S ⊆ S .

where we write

H +comm K = {c + d : (c, d) ∈ H × K , cd = dc}

for the commuting sum and

H ·comm K = {c · d : (c, d) ∈ H × K , cd = dc}

for the commuting product of subsets H,K ⊆ A .
From (3) it follows that the set R(X) is a commutative ideal in B(X).
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If S ⊆ A is an arbitrary set we shall write that a ∈ Poly−1(S) if there exists a nonzero complex polynomial
p(z) such that p(a) ∈ S. If S ⊆ A is a commutative ideal, the set

P
S
a = {p ∈ Poly : p(a) ∈ S}

of polynomials p for which p(a) ∈ S is an ideal of the algebra Poly. There exists a unique polynomial p of
minimal degree with leading coefficient 1 contained in PS

a which we call the minimal polynomial of a; we
shall write p = πa ≡ πS

a . Then PS
a is generated by p = πa, i.e. PS

a = πa · Poly.
An operator A ∈ B(X) is called polynomially Riesz if A ∈ Poly−1(R(X)).
We recall the following result [20, Theorem 11.1], [22, Theorem 2.3].

Theorem 1.5. If A ∈ B(X) is polynomially Riesz, then

σΦ(A) = σB(A) = π−1
A (0).

If K ⊂ C is compact, then we write f ∈ Holo(K) if f is a complex function which is holomorphic in a
neighbourhood of K. We write Holo1(K) ⊆ Holo(K) for those holomorphic functions 1 : U → C which are
non constant on each connected component of open U ⊇ K.

Recall that for A ∈ B(X), f ∈ Holo(σ(A)) and H = Φ+,Φl,Φ−,Φr,Φ,
B+,Bl,B−,Br,B ([8], [15, Theorem 3.4], [14, Corollary 22.8 (i) and the comment after Lemma 22.9], [19,
Theorem 2.6])

f (σH(A)) = σH( f (A)). (11)

We shall say that an operator A ∈ B(X) is holomorphically Riesz if there exists an f ∈ Holo(σ(A)) such that
f (A) is Riesz. From [20, Theorem 12.1, the incusions (12.3)] it follows that A is polynomially Riesz if and
only if f (a) ∈ R(X) for some f ∈ Holo1(σ(A)) (see also [12, Lemma 2.2]). So, the concept of hollomorphically
Riesz operator is a little more general than the concept of polynomially Riesz operator.

Our discussion about perturbation by polynomially Riesz elements of a Banach algebra concerning
the set of (left, right) Fredholm elements was started in [20] (Theorems 11.2 and 12.3). This discussion
is continued in [21] where we focused on the Banach algebra B(X) and investigated perturbations of
left(right) Fredholm, Weyl and Browder operators by polynomially Riesz operators using the concept of
communicating operators, and, specially, perturbations of some shifts were considered. In this paper we
investigate perturbations by holomorphically Riesz operators, and also by polynomially Riesz operators,
concerning the sets of upper and lower semi-Fredholm and semi-Browder operators as well as the sets
of left and right Fredholm and Browder operators. Our main result is Theorem 2.1 where we prove
that if A, D ∈ B(X) such that AD − DA ∈ Ptrb (Φ+(X)) (AD − DA ∈ Ptrb (Φ−(X))), and if there exists
f ∈ Holo(σ(A) ∪ σ(D)) such that f (D) is Riesz and f (A) is upper (lower) semi-Fredholm, then A − D is
upper (lower) semi-Fredholm. The similar result for left and right Fredholm operators is obtained. Under
the hypothesis that A,D ∈ B(X), AD = DA, f (D) is Riesz and f (A) is upper (lower) semi-Browder we get
that A − D is upper (lower) semi-Browder, and similarly the assertion holds if the set of upper (lower)
semi-Browder operators is replaced by the set of left (right) Browder operators. We apply these results
to investigate perturbations some shifts by polynomially Riesz operators. In that way we continue our
discussion started in [21], where we considered perturbation of shifts by a polynomially Riesz operator
such that zeros of its minimal polynomial are contained in the open unit ball {λ ∈ C : |λ| < 1}. In the present
paper we investigate perturbation of shifts by a polynomially Riesz operator such that zeros of its minimal
polynomial are contained in the complement of the unit sphere S = {λ ∈ C : |λ| = 1}.

This paper is divided into three sections. Section 2 contains our main results about perturbations by
holomorphically Riesz operators. As consequences the results concerning perturbations by polynomially
Riesz operators are obtained. Section 3 is devoted to applying of the results obtained in Section 2 in order
to get results about perturbations of some shifts by polynomially Riesz operators.
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2. Perturbations

The following theorem refers to perturbations by holomorphically Riesz operators.

Theorem 2.1. Let A, D ∈ B(X) and f ∈ Holo(σ(A) ∪ σ(D)).
(i) If H = Φ+,Φl,Φ−,Φr,Φ, then

AD −DA ∈ Ptrb (H(X)) and f (D) ∈ R(X)

implies
f (A) ∈ H(X) =⇒ A −D ∈ H(X).

(ii) If H = B+,Bl,B−,Br,B, then

AD = DA and f (D) ∈ R(X)

implies
f (A) ∈ H(X) =⇒ A −D ∈ H(X).

Proof. Let f be a nonzero holomorphic function in a neighbourhood U of σ(A) ∪ σ(d). If Ω is an open
set such that σ(A) ∪ σ(D) ⊂ Ω ⊂ Ω ⊂ U and whose boundary ∂Ω consists of a finite numbers of simple
closed rectifiable curves which do not intersect, then f (A) = 1

2πi

∫
∂Ω

(λ − A)−1 f (λ)dλ and f (D) = 1
2πi

∫
∂Ω

(λ −
D)−1 f (λ)dλ.

To prove (i) suppose that f (D) ∈ R(X), AD−DA ∈ Ptrb (H(X)) and f (A) ∈ H(X) where H = Φ+,Φl,Φ−,Φr,Φ.
Since Ptrb (H(X)) is a two-sided ideal it follows that

(λ − A)−1(µ −D)−1
− (µ −D)−1(λ − A)−1

∈ Ptrb (H(X)), λ, µ ∈ ∂Ω. (12)

As Ptrb (H(X)) is closed, from (12) we conclude that

f (A) f (D) − f (D) f (A) ∈ Ptrb (H(X)),

and by Theorem 1.1 and Theorem 1.2 it follows that f (A)− f (D) ∈ H(X). Using again the fact that Ptrb (H(X))
is a two-sided ideal we get that for every λ ∈ ∂Ω,

(λ − A)−1
− (λ −D)−1 = (λ − A)−1(A −D)(λ −D)−1

= (λ − A)−1(λ −D)−1(A −D) + P1(λ)
= (A −D)(λ − A)−1(λ −D)−1 + P2(λ),

where P1(λ), P1(λ) ∈ Ptrb (H(X)), and therefore, from the fact that Ptrb (H(X)) is closed we get

f (A) − f (D) =
1

2πi

∫
∂Ω

((λ − A)−1
− (λ −D)−1) f (λ)dλ

= A1(A −D) + B1 = (A −D)A1 + B2,

where A1 = 1
2πi

∫
∂Ω

((λ − A)−1(λ −D)−1) f (λ)dλ ∈ A and

B1 =
1

2πi

∫
∂Ω

P1(λ) f (λ)dλ ∈ Ptrb (H(X)),

B2 =
1

2πi

∫
∂Ω

P2(λ) f (λ)dλ ∈ Ptrb (H(X)).

Consequently, A1(A −D), (A −D)A1 ∈ H(X) and from (1) it follows that A −D ∈ H(X).
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To prove (ii) suppose that f (D) ∈ R(X), AD = DA and f (A) ∈ H(X) for H = B+,Bl,B−,Br,B. Then
(λ − A)−1 and (µ − D)−1 commute for every λ, µ ∈ ∂Ω, and hence, f (A) f (D) = f (D) f (A). By Theorem 1.3
and Theorem 1.4, it follows that f (A) − f (D) ∈ H(X). For every λ ∈ ∂Ω, we have

(λ − A)−1
− (λ −D)−1 = (λ − A)−1(A −D)(λ −D)−1

= (λ − A)−1(λ −D)−1(A −D)
= (A −D)(λ − A)−1(λ −D)−1,

and therefore, we get

f (A) − f (D) =
1

2πi

∫
∂Ω

((λ − A)−1
− (λ −D)−1) f (λ)dλ

= A1(A −D) = (A −D)A1,

where A1 = 1
2πi

∫
∂Ω

((λ − A)−1(λ − D)−1) f (λ)dλ ∈ A. From A1(A − D) = (A − D)A1 ∈ H(X) according to (2) it
follows that A −D ∈ H(X).

Theorem 2.2. Let A, D ∈ B(X) and f ∈ Holo(σ(A) ∪ σ(D)).
(i) If H = Φ+,Φl,Φ−,Φr,Φ, then

AD −DA ∈ Ptrb (H(X)) and f (D) ∈ R(X)

implies
f−1(0) ∩ σH(A) = ∅ =⇒ A −D ∈ H(X).

(ii) If H = B+,Bl,B−,Br,B, then

AD = DA and f (D) ∈ R(X)

implies
f−1(0) ∩ σH(A) = ∅ =⇒ A −D ∈ H(X).

Proof. (i) Let H = Φ+,Φl,Φ−,Φr,Φ. Suppose that AD−DA ∈ Ptrb (H(X)), f (D) ∈ R(X) and let σH(A)∩ f−1(0) =
∅. Then 0 < f (σH(A)) and from (11) it follows 0 < σH( f (A)), that is f (A) ∈ H(X). From Theorem 2.1 it follows
that A −D ∈ H(X).

(ii) Follows from Theorem 2.1 (ii) and (11), analogously to the proof of (i).

The following theorem refers to perturbations by polynomially Riesz operators.

Theorem 2.3. Let A, D ∈ B(X).
(i) If H = Φ+,Φl,Φ−,Φr,Φ, then

AD −DA ∈ Ptrb (H(X)) and D ∈ Poly−1R(X)

implies
σH(A) ∩ π−1

D (0) = ∅ =⇒ A −D ∈ H(X).

(ii) If H = B+,Bl,B−,Br,B, then

AD = DA and D ∈ Poly−1R(X)

implies
σH(A) ∩ π−1

D (0) = ∅ =⇒ A −D ∈ H(X).

Proof. Follows from Theorem 2.2.
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Theorem 2.4. Let A, D ∈ B(X).
(i) Then

AD −DA ∈ Ptrb (Φ(X)) and A, D ∈ Poly−1R(X)

implies
π−1

A (0) ∩ π−1
D (0) = ∅ =⇒ A −D ∈ Φ(X).

(ii) Then
AD = DA and A, D ∈ Poly−1R(X)

implies
π−1

A (0) ∩ π−1
D (0) = ∅ =⇒ A −D ∈ B(X).

Proof. Follows from Theorem 2.3, since from A ∈ Poly−1R(X) we have σΦ(A) = σB(A) = π−1
A (0) by Theorem

1.5.

3. Application to Shifts

Let N0 = N ∪ {0} and let CN0 be the linear space of all complex sequences x = (xk)∞k=0. Let `∞,
c and c0 denote the set of bounded, convergent and convergent sequences with null limit. We write
`p = {x ∈ CN0 :

∑
∞

k=0 |xk|
p < ∞} for 1 ≤ p < ∞. For n = 0, 1, 2, . . . , let e(n) denote the sequences such that

e(n)
n = 1 and e(n)

k = 0 for k , n. The forward and the backward unilateral shifts U and V are linear operators
on CN0 defined by

Ue(n) = e(n+1) and Ve(n+1) = e(n), n = 0, 1, 2, . . . .

Invariant subspaces for U and V include c0, c, `∞ and `p, p ≥ 1. Recall that for each X ∈ {c0, c, `∞, `p},
1 ≤ p < ∞, U, V ∈ B(X) and

‖U‖ = ‖V‖ = 1. (13)

On the Hilbert space `2 we also have that V = U∗.

We shall writeD = {λ ∈ C : |λ| ≤ 1} and S = {λ ∈ C : |λ| = 1}.

Lemma 3.1. If X ∈ {c0, c, `∞, `p}, p ≥ 1, then for the forward unilateral shift U ∈ B(X) there are the equalities

σl(U) = S, (14)

σr(U) = D (15)

and

σ(U) = D (16)

Proof. From (13) it follows that

σr(U) ⊂ σ(U) ⊂ D. (17)

Since U is not surjective, it follows that 0 ∈ σr(U). Suppose that λ ∈ C and 0 < |λ| < 1. We show that
e0 < R(λ −U). If there exists x = (xk)∞k=0 such that (λ −U)x = e0, then

(λx0, λx1 − x0, λx2 − x1, . . . ) = (1, 0, 0, . . . )

and hence
x = (

1
λ
,

1
λ2 ,

1
λ3 , . . . ),
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which is not a bounded sequence and so, it is not in X. Therefore, λ ∈ σr(U) and hence, {λ ∈ C : |λ| < 1} ⊂
σr(U). Since σr(U) is closed, it follows that

D ⊂ σr(U). (18)

From (17) and (18) we get σr(U) = σ(U) = D.
For λ , 0, |λ| < 1, since |λ|−1 > 1 = ‖V‖ it follows that V − λ−1I ∈ B(X)−1. From

V(λ −U) = λV − I = λ(V − λ−1I)

we conclude that λ − U ∈ B(X)−1
l , and so λ < σl(U). Therefore, {λ ∈ C : |λ| < 1} ∩ σl(U) = ∅, and from

σl(U) ⊂ σ(U) = D it follows that σl(U) ⊂ S. From (4) we get the opposite inclusion S = ∂σ(U) ⊂ σl(U), and
therefore σl(U) = S.

Lemma 3.2. If X ∈ {c0, c, `∞, `p}, p ≥ 1, then for the backward unilateral shift V ∈ B(X) there are the equalities

σl(V) = D, (19)

σr(V) = S (20)

and

σ(V) = D (21)

Proof. From (13) it follows that

σl(V) ⊂ σ(V) ⊂ D. (22)

Since V(I −UV) = 0 , I −UV, then

N(V) = (I −UV)X , {0}. (23)

From (13) it is clear that

|λ| < 1 =⇒ I − λU ∈ B(X)−1. (24)

Since V − λ = V − λVU = V(I − λU), from (23) and (24) it follows

N(V − λ) = (V − λ)−1(0) = (I − λU)−1V−1(0) , {0}, (25)

and hence, {λ ∈ C : |λ| < 1} ⊂ σl(V). Now, since σl(V) is closed we obtain

D ⊂ σl(V). (26)

From (22) and (26) it follows (19) and (21).
From VU = I it follows that 0 < σr(V). For λ , 0, |λ| < 1, since |λ|−1 > 1 = ‖U‖ it follows that

λ−1
−U ∈ B(X)−1. From

V − λ = V − λVU = λV(λ−1
−U)

we conclude that V − λ ∈ B(X)−1
r , and so {λ ∈ C : |λ| < 1} ∩ σr(V) = ∅which together with σr(V) ⊂ σ(V) = D

implies σr(V) ⊂ S. From (4) we get S = ∂σ(V) ⊂ σr(V), and hence, σr(V) = S.

For X = `2 it is known that σΦ(U) = S [4, Example 1.2], [7, Proposition 27.7(b)]. In [1, Remark 2.9] it was
shown that σΦ(V) = S for X = `p, p ≥ 1. This equality holds also if X ∈ {c0, c, `∞, `p}, p ≥ 1:

Lemma 3.3. ([21, Theorem 3.2]) For each X ∈ {c0, c, `∞, `p}, p ≥ 1, and the forward and backward unilateral shifts
U, V ∈ B(X) there are equalities

σΦ(U) = σΦ(V) = S. (27)
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Now we find the left and right Fredholm spectrum, the left, right and two-sided Browder spectrum of
the forward unilateral shift, and also of the backward unilateral shift.

Theorem 3.4. If X ∈ {c0, c, `∞, `p}, p ≥ 1, then for the forward unilateral shift U ∈ B(X) there are the equalities

σΦl (U) = σBl (U) = S, (28)

and

S = σΦr (U) ⊂ σBr (U) = D. (29)

Proof. From (14) and (5) it follows that S = ∂σl(U) ⊂ σΦl (U) ⊂ σBl (U) ⊂ σl(U) = S and we get (28).
From (8) and (15) it follows thatD = acc σr(U) ⊂ σBr (U) ⊂ σr(U) = D, and hence, σBr (U) = D. According

to (5) and (27) we have S = ∂σr(U) ⊂ σΦr (U) ⊂ σΦ(U) = S, and so σΦr (U) = S.

Theorem 3.5. If X ∈ {c0, c, `∞, `p}, p ≥ 1, then for the backward unilateral shift V ∈ B(X) there are the equalities

S = σΦl (V) ⊂ σBl (V) = D, (30)

and

σΦr (V) = σBr (V) = S. (31)

Proof. SinceD = acc σl(V) ⊂ σBl (V) ⊂ σl(V) = D by (8) and (19), we obtain σBl (V) = D. From (5) and (27) it
follows S = ∂σl(V) ⊂ σΦl (V) ⊂ σΦ(V) = S, and hence σΦl (V) = S.

Since S = ∂σr(V) ⊂ σΦr (V) ⊂ σBr (V) ⊂ σr(V) = S by (5) and (20), we get (31).

From (28) and (29) it follows

σB(U) = σBl (U) ∪ σBr (U) = D, (32)

and from (30) and (31) we obtain

σB(V) = σBl (V) ∪ σBr (V) = D. (33)

According to (9), from (27) we have S = ∂ σΦ(U) ⊂ σΦ+
(U) ⊂ σΦ(U) = S, and so σΦ+

(U) = S. Similarly,
σΦ− (U) = S, as well as σΦ+

(V) = σΦ− (V) = S.
From S = σΦ+

(U) ⊂ σB+
(U) ⊂ σBl (U) = S it follows σB+

(U) = S. Hence fromD = σB(U) = σB+
(U)∪σB− (U)

and S = σΦ− (U) ⊂ σB− (U) we get σB− (U) = D. Similarly, σB+
(V) = D and σB− (V) = S.

In [21, Theorem 3.3 and Theorem 3.4] it is proved that if X ∈ {c0, c, `∞, `p}, p ≥ 1, T ∈ Poly−1R(X), π−1
T (0) ⊂

{λ ∈ C : |λ| < 1}, then from UT − TU ∈ Ptrb (Φ(X)) it follows that U − T ∈ Φ(X) and i(U − T) = −1, while
from VT − TV ∈ Ptrb (Φ(X)) it follows that V − T ∈ Φ(X) and i(V − T) = 1. Now we prove:

Theorem 3.6. Let X ∈ {c0, c, `∞, `p}, p ≥ 1. Then for the forward and backward unilateral shifts U, V ∈ B(X) and
T ∈ B(X),

T ∈ Poly−1R(X) and π−1
T (0) ∩ S = ∅

implies
UT − TU ∈ Ptrb (Φ(X)) =⇒ U − T is Fredholm,

and
VT − TV ∈ Ptrb (Φ(X)) =⇒ V − T is Fredholm.

Proof. Follows from Theorem 2.3 (i) and (27).
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In [21, Theorem 3.3 and Theorem 3.4] it is proved that if X ∈ {c0, c, `∞, `p}, p ≥ 1, T ∈ Poly−1R(X), π−1
T (0) ⊂

{λ ∈ C : |λ| < 1}, then from UT = TU it follows that U−T is Fredholm and left Browder, i.e. U−T is Fredholm
with finite ascent, and i(U−T) = −1,while from VT = TV it follows that V−T is Fredholm and right Browder,
i.e. V − T is Fredholm with finite descent, and i(V − T) = 1. Now we prove:

Theorem 3.7. Let X ∈ {c0, c, `∞, `p}, p ≥ 1. Then for the forward and backward unilateral shifts U, V ∈ B(X) and
T ∈ B(X),

T ∈ Poly−1R(X) and π−1
T (0) ∩ S = ∅

implies

UT = TU =⇒ U − T is left Browder and Fredholm,

and
VT = TV =⇒ V − T is right Browder and Fredholm.

Proof. Follows from Theorem 2.3, since S = σΦ(U) = σBl (U) = σΦ(V) = σBr (V) ( (27), (28), (31)).

Theorem 3.8. Let X ∈ {c0, c, `∞, `p}, p ≥ 1. Then for the forward and backward unilateral shifts U, V ∈ B(X) and
T ∈ B(X),

T ∈ Poly−1R(X) and π−1
T (0) ∩D = ∅

implies

UT = TU =⇒ U − T is Browder,

and
VT = TV =⇒ V − T is Browder.

Proof. Follows from Theorem 2.3 (ii), (32) and (33).

Let CZ be the linear space of all complex sequences x = (xk)∞k=−∞
. Let c0(Z) be the set of all sequences

x = (xk)∞k=−∞
such that limk→∞ xk = limk→∞ x−k = 0, i.e. xk → 0 when |k| → ∞. For x = (xk)∞k=−∞

∈ c0(Z) set
‖x‖ = supk |xk|. We write `p(Z) = {x ∈ CZ :

∑
∞

k=−∞ |xk|
p < ∞} for 1 ≤ p < ∞, and for x = (xk)∞k=−∞

∈ `p(Z),
‖x‖ =

(∑∞
k=−∞ |xk|

p)1/p. Remark that c0(Z) and `p(Z) are Banach spaces.
For k = . . . ,−2,−1, 0, 1, 2, . . . , let δ(k) denote the sequences such that δ(k)

k = 1 and δ(k)
i = 0 for i , k. The

forward and the backward bilateral shifts W1 and W2 are linear operators on CZ defined by

W1δ
(k) = δ(k+1) and W2δ

(k+1) = δ(k), k = . . . ,−2,−1, 0, 1, 2, . . . .

Obviously, c0(Z) and `p(Z), p ≥ 1 are invariant subspaces for W1 and W2, and W−1
1 = W2. For each

X ∈ {c0(Z), `p(Z)}, W1 and W2 are isometries. On the Hilbert space `2(Z) we have that W2 = W∗

1, that is W1
and W2 are unitary.

For X = `2(Z) it is known that ([9, Solution 68], [7, Proposition 27.7 (c)])

σ(W1) = σ(W2) = S. (34)

The last equalities hold also if X is one of c0(Z) and `p(Z), p ≥ 1 [21, Theorem 3.5].
Thus, for the forward and backward bilateral shifts W1, W2 ∈ B(X), X ∈ {c0(Z), `p}, p ≥ 1, according to

(34) and (6) it follows that

σΦ(W1) = σΦ(W2) = S. (35)

The inclusions σΦ(Wi) ⊂ σB(Wi) ⊂ σ(Wi), i = 1, 2, (34) and (35) imply equalities

σB(W1) = σB(W2) = S. (36)
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According to (9) and (35) it follows S = ∂σΦ(Wi) ⊂ σΦ+
(Wi) ⊂ σΦ(Wi) = S, i = 1, 2, and so,

σΦ+
(W1) = σΦ+

(W2) = S, (37)

and analogously,

σΦ− (W1) = σΦ− (W2) = S. (38)

From S = σΦ+
(Wi) ⊂ σΦl (Wi) ⊂ σBl (Wi) ⊂ σ(Wi) = S and S = σΦ+

(Wi) ⊂ σB+
(Wi) ⊂ σ(Wi) = S, i = 1, 2, it

follows that σΦl (Wi) = σBl (Wi) = S and σB+
(Wi) = S. Analogously, σΦr (Wi) = σBr (Wi) = σB− (Wi) = S, i = 1, 2.

In [21, Theorem 3.3 and Theorem 3.4] it is proved that if X ∈ {c0(Z), `p}, p ≥ 1, T ∈ Poly−1R(X), π−1
T (0) ⊂

{λ ∈ C : |λ| < 1}, then from W1T − TW1 ∈ Ptrb (Φ(X)) it follows that W1 − T is Fredholm and i(W1 − T) = 0,
while from W2T − TW2 ∈ Ptrb (Φ(X)) it follows that W2 − T is Fredholm and i(W2 − T) = 0. Now we prove:

Theorem 3.9. Let X be one of c0(Z) and `p(Z), p ≥ 1, then for the forward and backward bilateral shifts W1, W2 ∈

B(X) and T ∈ B(X),
T ∈ Poly−1R(X) and π−1

T (0) ∩ S = ∅

implies
W1T − TW1 ∈ Ptrb (Φ(X)) =⇒W1 − T is Fredholm,

and
W2T − TW2 ∈ Ptrb (Φ(X)) =⇒W2 − T is Fredholm.

Proof. Follows from Theorem 2.3 (i) and (35).

In [21, Theorem 3.7 and Theorem 3.8] it is proved that if X is one of c0(Z) and `p(Z), p ≥ 1, T ∈
Poly−1R(X), π−1

T (0) ⊂ {λ ∈ C : |λ| < 1}, then from W1T = TW1 it follows that W1−T is Browder, while from
W2T = TW2 it follows that W2 − T is Browder. We can improve on this:

Theorem 3.10. Let X be one of c0(Z) and `p(Z), p ≥ 1, then for the forward and backward bilateral shifts W1, W2 ∈

B(X) and T ∈ B(X),
T ∈ Poly−1R(X) and π−1

T (0) ∩ S = ∅

implies
W1T = TW1 =⇒W1 − T is Browder,

and
W2T = TW2 =⇒W2 − T is Browder.

Proof. Follows from (36) and Theorem 2.3 (ii).
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