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Abstract. In this paper, we first define various types of k-regularity of ordered semigroups and various
types of k-Archimedness of ordered semigroups. Also, we define the relations τ(k), τ(k)

l , τ
(k)
r , τ

(k)
t and τ(k)

b (k ∈
Z+) on an ordered semigroup. Using these notions, filter, and radical subsets of an ideal, left ideal and bi-
ideal of ordered semigroups we describe chains of k-Archimedean (left k-Archimedean, t-k-Archimedean)
ordered subsemigroups.

1. Introduction

Semigroups having a decomposition into a semilattice of Archimedean semigroups form an important
class of semigroups and these semigroups have been studied in numerous papers (cf., for example, [1], [2],
[4], [3], [13], [15]). The concept of k-regular semigroups was introduced by K. S. Harinath in [6]. It is shown
by S. Bogdanović, Ž. Popović and M. Ćirić in [2] that a k-regular semigroup is not necessarily regular. This
regularity was renamed in k-regularity to be distinguished it from regularity of semigroups. It is a more
restricted class of semigroups. The other various types of k-regularity of semigroups and various types of
k-Archimedness of semigroups were introduced by S. Bogdanović, Ž. Popović and M. Ćirić in [2]. Using
radicals of some new Green’s relations and their properties, k-regularity of semigroups and k-Archimedness
of semigroups were characterized in [2]. Regularity and Archimedness of semigroups are very important in
the structure theory of semigroups. However these concepts do not coincide with the ordered semigroups.
This motivates us to study some new types of k-regularity of ordered semigroups and also some new
types of k-Archimedness of ordered semigroups. In this paper, we extend the concepts of k-regular and k-
Archimedean semigroups without order to the case of ordered semigroups, introducing some new relations
τ(k), τ(k)

l , τ
(k)
r , τ

(k)
t and τ(k)

b (k ∈ Z+) on an ordered semigroup. Using these notions, filters, and radical subsets of
ideals, left ideals, right ideals and bi-ideals of ordered semigroups we describe the structure of an ordered
semigroup which can be decomposed into a chain of k-Archimedean (left k-Archimedean, t-k-Archimedean)
ordered subsemigroups.
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2. Preliminaries

Throughout this paper, Z+ will denote the set of all positive integers. Let (S, ·,6) be an ordered semigroup
and H ⊆ S, then with (H] we denote the set

(H] := {t ∈ S|t 6 h for some h ∈ H}.

For H = {a}, we write (a] instead of ({a}] (a ∈ S). We denote by I(a),L(a),R(a) and B(a) the ideal, left ideal, right
ideal and bi-ideal of S, respectively, generated by a (a ∈ S). It is clear that I(a) = (a

⋃
Sa
⋃

aS
⋃

SaS],L(a) =
(a
⋃

Sa], R(a) = (a
⋃

aS], which are defined by N. Kehayopulu in [8], and B(a) = (a
⋃

a2⋃ aSa], which is
defined by Q. S. Zhu in [19]. Let A be a nonempty subset of S. The set A is said to be prime (resp. semiprime)
if for any

a, b ∈ S, ab ∈ A implies a ∈ A or b ∈ A

(resp. for any a ∈ S, a2
∈ A implies a ∈ A), which is defined by N. Kehayopulu in [9]. The radical of A is

defined by
√

A := {x ∈ S|(∃n ∈ Z+)xn
∈ (A]}. Let k ∈ Z+ be a fixed integer. We define k√A by

k√

A := {x ∈ S|xk
∈ (A]}.

One can easily seen that A ⊆
√

A, k√A and k√A ⊆
√

A. The set A is called a k-primary subset of S if for every
a, b ∈ S such that ab ∈ A, then ak

∈ A or bk
∈ A. Clearly, the concept of k-primary subset is a generalization of

the concept of prime subsets and each prime subset of S is a k-primary subset of S. An ordered semigroup
S is k-primary if all of its ideals are k-primary subsets of S.

Let F be a subsemigroup of an ordered semigroup S. Such as S. K. Lee and S. S. Lee defined in [14], F is
called a left (resp. right) filter of S if

(i) for any a, b ∈ S, ab ∈ F implies b ∈ F (resp. a ∈ F); and
(ii) for any a ∈ F, b ∈ S, a 6 b implies b ∈ F.

The subsemigroup F is called a filter of S if it is both a left and a right filter of S, defined in [7, 14]. We denote
by N(x) (resp. Nl(x)) the filter (resp. left filter) of S generated by x (x ∈ S). Let N and N l be equivalence
relations on S, respectively, defined by

N := {(x, y) ∈ S × S|N(x) = N(y)} and Nl := {(x, y) ∈ S × S|Nl(x) = Nl(y)}.

It has been proved by N. Kehayopulu in [7] that N is a semilattice congruence on S, in particular, N is
a complete semilattice congruence, proved by N. Kehayopulu and M. Tsingelis in [11], and it is the least
complete semilattice congruence on S, proved by the same authors in [10].

As it is presented in [5] and [12], an ordered semigroup S is said to be weakly commutative (resp. right
weakly commutative, left weakly commutative) if for any a, b ∈ S, (ab)m

∈ (bSa] (resp. (ab)m
∈ (Sa], (ab)m

∈ (aS])
for some m ∈ Z+. It is clear that S is weakly commutative if and only if S is both left and right weakly
commutative. An ordered semigroup S is said to be Archimedean (resp. left Archimedean, right Archimedean,
t-Archimedean) if for any a, b ∈ S, bm

∈ (S1aS1] (resp. bm
∈ (S1a], bm

∈ (aS1], bm
∈ (aS1a]) for some m ∈ Z+. It is

well-known that if an ordered semigroup S is left (resp. right) Archimedean, then S is Archimedean, and
that S is t-Archimedean if and only if S is both left and right Archimedean.

Here we extend concepts of k-regular and k-Archimedean semigroups without order to the case of
ordered semigroups.

Let k ∈ Z+ be a fixed integer. By S1 we denote an ordered semigroup S with identity 1. Let A be a
nonempty subset of S. An ordered semigroup S is:

(1) k-regular if (∀a ∈ S)ak
∈ (akSak];

(2) left k-regular if (∀a ∈ S)ak
∈ (Sak+1];

(3) right k-regular if (∀a ∈ S)ak
∈ (ak+1S];

(4) completely k-regular if (∀a ∈ S)ak
∈ (ak+1Sak+1];
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(5) intra k-regular if (∀a ∈ S)ak
∈ (Sa2kS];

(6) t-k-regular if (∀a ∈ S)ak
∈ (Sak+1]

⋂
(ak+1S];

(7) k-Archimedean if (∀a, b ∈ S)ak
∈ (S1bS1];

(8) left k-Archimedean if (∀a, b ∈ S)ak
∈ (S1b];

(9) right k-Archimedean if (∀a, b ∈ S)ak
∈ (bS1];

(10) t-k-Archimedean if (∀a, b ∈ S)ak
∈ (bS1]

⋂
(S1b].

We define the following binary relations τ, τl, τr, τb and τt on an ordered semigroup S by:

(a, b) ∈ τ⇔ b ∈ I(a), (a, b) ∈ τl ⇔ b ∈ L(a), (a, b) ∈ τr ⇔ b ∈ R(a),

(a, b) ∈ τb ⇔ b ∈ B(a), τt = τl

⋂
τr,

where τ, τl, τr, τt and τb are reflexive and transitive, and τb ⊆ τl
⋂
τr. Let k ∈ Z+ and X∈ {τ, τl, τr, τt, τb}.

Here we define a relation X(k) by

X
(k) := {(a, b) ∈ S × S|(ak, bk) ∈ X}.

It is easy to verify that τ(k)
t = τ(k)

l

⋂
τ(k)

r and X(k)
∈ {τ(k), τ(k)

l , τ
(k)
r , τ

(k)
t , τ

(k)
b } is reflexive and transitive. For an

element a ∈ S, the sets T(a),Tl(a),Tr(a), Tt(a) and Tb(a) are defined by

T(a) = {x ∈ S|(a, x) ∈ τ(k)
}, Tl(a) = {x ∈ S|(a, x) ∈ τ(k)

l }, Tr(a) = {x ∈ S|(a, x) ∈ τ(k)
r },

Tt(a) = {x ∈ S|(a, x) ∈ τ(k)
t }, Tb(a) = {x ∈ S|(a, x) ∈ τ(k)

b },

and the equivalence relations T (k), Tl
(k), Tr

(k), Tt
(k) and Tb

(k) on S are defined by

(a, b) ∈ T (k)
⇔ T(a) = T(b), (a, b) ∈ T (k)

l ⇔ Tl(a) = Tl(b),

(a, b) ∈ T (k)
r ⇔ Tr(a) = Tr(b), (a, b) ∈ T (k)

t ⇔ Tt(a) = Tt(b),

(a, b) ∈ T (k)
b ⇔ Tb(a) = Tb(b).

Obviously, Tt
(k) = Tl

(k)⋂
Tr

(k) and Tt(a) = Tl(a)
⋂

Tr(a), for all a ∈ S. In our investigations the following
lemmas will be very useful.

Lemma 2.1. [14] Let F be a nonempty subset of an ordered semigroup S and assume that F , S . Then F is a filter
(resp. left filter) if and only if S \ F is a prime ideal (resp. left ideal) of S.

Lemma 2.2. [18] Let S be an ordered semigroup. Then every semiprime ideal of S is the intersection of all prime
ideals of S containing it.

Lemma 2.3. [17] Let I be a semiprime ideal of an ordered semigroup S. Then:

(i) for every x ∈ S, if ab ∈ I, then axb ∈ I;

(ii) for every n ∈ Z+, if abn
∈ I, then ab ∈ I;

(iii) for every permutation π of 1, 2, · · · ,n, if a1a2 · · · an ∈ I, then a1πa2π · · · anπ ∈ I.
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3. Chain of k-Archimedean Ordered Semigroups

Lemma 3.1. [5] Let S be an ordered semigroup. Then the following statements are equivalent:

(i) S is a semilattice of Archimedean ordered subsemigroups;
(ii) for every a, b ∈ S, aτb implies a2τbm for some m ∈ Z+;

(iii) (∀a, b ∈ S)(∃n ∈ Z+)(ab)n
∈ (Sa2S];

(iv) the radical of every ideal of S is an ideal of S.

Theorem 3.2. Let k ∈ Z+ and S be an ordered semigroup. Then S is k-Archimedean ordered semigroup if and only if
S is Archimedean and intra-k-regular.

Proof. Let S be an Archimedean and intra-k-regular ordered semigroup. Assume a, b ∈ S. By hypothesis, it
follows that ak

∈ (Sa2kS], that is, ak 6 ua2kv, for some u, v ∈ S, so ak 6 u2ak(akv)2 6 · · · 6 unak(akv)n, for any
n ∈ Z+. For akv, b ∈ S, since S is Archimedean, we have that (akv)m 6 wbd, for some m ∈ Z+ and w, d ∈ S1,
what implies that ak 6 umak(akv)m 6 umak(wbd) ∈ (SbS1] ⊆ (S1bS1]. Thus S is k-Archimedean. The converse
follows immediately.

Lemma 3.3. Let S be a complete semilattice Y of ordered semigroups Sα(α ∈ Y), and let k ∈ Z+ and X(k)
∈

{τ(k), τ(k)
l , τ

(k)
r , τ

(k)
t , τ

(k)
b }. Then

(i) If there exists a ∈ Sα and b ∈ Sβ such that (a, b) ∈ X(k) then α > β;

(ii) Assume N(a) = {x ∈ S|(x, a) ∈ X(k)
} and N(ab) = N(a)

⋃
N(b) for all a, b ∈ S. If a, b ∈ Sα(α ∈ Y) such that

(a, b) ∈ X(k) in S, then (a, b) ∈ X(k) in Sα.

Proof. The prediction is proved only for X(k) = τ(k) because all other cases can be proved in a similar way.
(i) Let a ∈ Sα, b ∈ Sβ such that (a, b) ∈ τ(k). Then there exist u ∈ S1

γ, v ∈ S1
δ for some γ, δ ∈ Y, such that

bk 6 uakv. From this it follows that β = βk 6 γαkδ = γαδ, so β = βγδα, whence βα = βγδαα = βγδα = β. Thus
α > β.

(ii) Suppose that a, b ∈ Sα such that (a, b) ∈ τ(k) for some α ∈ Y. Then there exist x ∈ S1
γ, y ∈ S1

δ such that
bk 6 xaky, so b3k 6 (bkx)ak(ybk), what implies α = α3k 6 αkγαkδαk = αγδ, so α = αγδ, this leads to αγ = α and
hence δα = α. This shows that bkx, ybk

∈ Sα. By hypothesis, we have (bkx)ak(ybk) > b3k
∈ N(b3k) = N(b), so

(bkx)ak(ybk) ∈ N(b). Thus, ((bkx)ak(ybk), b) ∈ τ(k), so there exist u ∈ S1
β, v ∈ S1

θ such that bk 6 u(bkxakybk)kv =

(u(bkxakybk)k−1bkx)ak(ybkv). This inequality implies α 6 βααkαθ = βαθ and therefore α = βαθ that means
βα = α and αθ = α. Hence u(bkxakybk)k−1bkx, ybkv ∈ Sα, so (a, b) ∈ τ(k) in Sα.

Theorem 3.4. Let k ∈ Z+, let S an ordered semigroup and C(S) be the set of all prime ideals of S. Then the following
conditions on an ordered semigroup S are equivalent:

(i) S is a chain of k-Archimedean ordered subsemigroups;
(ii) (∀a, b ∈ S)(a, ab) ∈ τ(k) and (b, ab) ∈ τ(k), and (ab, a) ∈ τ(k) or (ab, b) ∈ τ(k);

(iii) T(a) =
k
√

I(ak) is a prime ideal of S containing a for all a ∈ S;
(iv) (∀a, b ∈ S) T(ab) = T(a)

⋂
T(b), and T(a) ⊆ T(b) or T(b) ⊆ T(a);

(v) (∀a, b ∈ S) N(a) = {x ∈ S|(x, a) ∈ τ(k)
}, and N(ab) = N(a)

⋃
N(b);

(vi) T (k) = τ(k)⋂(τ(k))−1 = N is the unique chain congruence on S such that each of its congruence classes is
k-Archimedean;

(vii)
√

A is an k-Archimedean prime ideal, for every ideal A of S;

(viii) k√A is a prime ideal, for every ideal A of S;

(ix) k√A is a prime subset, for every ideal A of S;
(x) S is a semilattice of k-Archimedean ordered subsemigroups and S is k-primary;
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(xi) S is a semilattice of k-Archimedean ordered subsemigroups and (C(S),⊆) is a chain.

Proof. (i)⇒(ii) Let S be a chain Y of k-Archimedean ordered subsemigroups Sα, α ∈ Y. Now let a, b ∈ S.
Then there exist α, β ∈ Y such that a ∈ Sα, b ∈ Sβ. Since Y is a chain, then α 6 β or β 6 α, whence
a, ak, ab, abk, (ab)k

∈ Sα or b, b(ab)k
∈ Sβ. Since Sα and Sβ are k-Archimedean ordered subsemigroups of S, then

(ab)k
∈ (S1

αakS1
α] ⊆ (S1akS1] and (ab)k

∈ (S1
αabkS1

α] ⊆ (S1bkS1]. Hence, (a, ab) ∈ τ(k) and (b, ab) ∈ τ(k). Moreover,
we have ak

∈ (S1
α(ab)kS1

α] ⊆ (S1(ab)kS1] or bk
∈ (S1

βb(ab)kS1
β] ⊆ (S1(ab)kS1], that is ((ab)k, ak) ∈ τ or ((ab)k, bk) ∈ τ,

i.e., (ab, a) ∈ τ(k) or (ab, b) ∈ τ(k).
(ii)⇒(iii) Let (ii) hold. It can be easily shown that a ∈ T(a) ⊆ k

√
I(ak). The opposite inclusion obviously

holds. Therefore, T(a) =
k
√

I(ak). Let x ∈ T(a) and s ∈ S, then (a, x) ∈ τ(k), and by (ii) we have (x, sx) ∈ τ(k) and
(x, xs) ∈ τ(k). Since τ(k) is transitive, we have (a, sx) ∈ τ(k) and (a, xs) ∈ τ(k), and this implies that xs, sx ∈ T(a).
If S 3 s 6 x ∈ T(a), then sk 6 xk, which implies (a, s) ∈ τ(k), so s ∈ T(a). Thus, T(a) is an ideal of S.

Assume that b, c ∈ S such that bc ∈ T(a). Obviously, (a, bc) ∈ τ(k) and it follows that b ∈ T(a) or c ∈ T(a).
Therefore, T(a) is a prime ideal of S.

(iii)⇒(iv) For every a, b ∈ S, by (iii) we have ab ∈ T(a)S ⊆ T(a) and ab ∈ ST(b) ⊆ T(b), this leads to
T(ab) ⊆ T(a) and T(ab) ⊆ T(b). Since T(ab) is a prime ideal of S containing ab by (iii), we have a ∈ T(ab) or
b ∈ T(ab), whence T(a) ⊆ T(ab) or T(b) ⊆ T(ab). Thus T(a) = T(ab) ⊆ T(b) or T(b) = T(ab) ⊆ T(a). Therefore,
T(ab) = T(a)

⋂
T(b).

(iv)⇒(v) For every a ∈ S, let F = {x ∈ S|(x, a) ∈ τ(k)
}, then F is a filter of S and F = N(a). First of all, since

a ∈ F, then F is a nonempty subset of S. Assume x, y ∈ F. Then (x, a) ∈ τ(k) and (y, a) ∈ τ(k), so by (iv) we
have a ∈ T(x)

⋂
T(y) = T(xy). This shows that (xy, a) ∈ τ(k), so xy ∈ F. Thus, A is a subsemigroup of S.

For arbitrary x, y ∈ S such that xy ∈ F it is easy to shown that x ∈ F and y ∈ F. Then (xy, a) ∈ τ(k), so
by (iv) we have a ∈ T(xy) = T(x)

⋂
T(y), then a ∈ T(x) and a ∈ T(y), implies (x, a) ∈ τ(k) and (y, a) ∈ τ(k), i.e.,

x, y ∈ F. If y ∈ F and S 3 z > y, then (y, a) ∈ τ(k), so ak 6 uykv 6 uzkv, for some u, v ∈ S1, whence (z, a) ∈ τ(k).
This implies that z ∈ F, and hence F is a filter of S.

Let A be also a filter of S and let a ∈ A. Then for all y ∈ F, from (y, a) ∈ τ(k), we obtain ak 6 dykw, for
some d,w ∈ S1. Since a ∈ A and A is a filter of S, we have ak

∈ A and dykw ∈ A. Hence, y ∈ A and F ⊆ A.
Therefore, F = N(a) is the smallest filter of S containing a.

For every a, b ∈ S, it is obvious that N(a)
⋃

N(b) ⊆ N(ab). Let x ∈ N(ab). Then (x, ab) ∈ τ(k), whence
ab ∈ T(x) and T(ab) ⊆ T(x). By (iv), we have T(ab) = T(a) or T(ab) = T(b), whence a ∈ T(x) or b ∈ T(x), so
(x, a) ∈ τ(k) or (x, b) ∈ τ(k), i.e., x ∈ N(a) or x ∈ N(b). Thus N(ab) ⊆ N(a)

⋃
N(b), i.e. N(ab) = N(a)

⋃
N(b).

(v)⇒(vi) If (v) hold we show that T (k) = τ(k)⋂(τ(k))−1
⊆ N . On the other hand, let (a, b) ∈ N . Then

N(a) = N(b). If x ∈ T(a), then (a, x) ∈ τ(k), from this by (v) we have a ∈ N(x), whence b ∈ N(b) = N(a) ⊆ N(x),
i.e., (b, x) ∈ τ(k), so x ∈ T(b). Thus T(a) ⊆ T(b). Symmetrically, we have T(b) ⊆ T(a), whence T(a) = T(b),
so that (a, b) ∈ T (k). Consequently, N ⊆ T (k) and hence T (k) = N . Then S is a complete semilattice Y of
subsemigroups Sα, α ∈ Y. Assume that A is any T (k)-class of S, and let a, b ∈ A. Then (a, b) ∈ T (k) in S. By
Lemma 3.3 (ii), since a, b ∈ A, then (a, b) ∈ T (k) in A, so bk

∈ (A1akA1] ⊆ (AaA], whence A is k-Archimedean.
Let a ∈ Sα, b ∈ Sβ. By the hypothesis, we have ab ∈ N(ab) = N(a)

⋃
N(b), so ab ∈ N(a) or ab ∈ N(b), whence

(ab, a) ∈ τ(k) or (ab, b) ∈ τ(k). Based on Lemma 3.3 (i), it follows that αβ > α or αβ > β, whence α 6 β or β 6 α.
Thus Y is a chain. In view of T (k) = N we can see that T (k) is the least chain congruence on S such that each
of its congruence classes is k-Archimedean.

Let ω be a chain congruence on S such that each of its congruence classes is k-Archimedean. Then
T

(k)
⊆ ω. Let (a, b) ∈ ω. Then a, b ∈ A for some ω-class A of S. Since A is k-Archimedean, for a, bk

∈ A
and b, ak

∈ A, it follows that ak
∈ (A1bkA1] and bk

∈ (A1akA1], whence (a, b) ∈ τ(k) and (b, a) ∈ τ(k) in A, so
(a, b) ∈ τ(k) and (b, a) ∈ τ(k) in S. From this it follows that (a, b) ∈ τ(k)⋂(τ(k))−1 = T (k). It suffices to show that
ω ⊆ T (k) and hence ω = T (k).

(vi)⇒(i) This follows immediately.
(i)⇒(vii) Let S be a chain Y of k-Archimedean ordered subsemigroups Sα, α ∈ Y. Assume a ∈ Sα, b ∈ Sβ

for some α, β ∈ Y. Since Y is a chain, then α 6 β or β 6 α, and a, a2, ab ∈ Sα or b, ba2, ba ∈ Sβ. Since
Sα and Sβ are k-Archimedean ordered subsemigroups of S, then we have (ab)k

∈ (S1
αa2S1

α] ⊆ (Sa2S] or
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(ba)k
∈ (S1

βba2S1
β] ⊆ (Sa2S], whence (ab)k+1

∈ (Sa2S]. Now, from Lemma 3.1 it follows that
√

A is an ideal, for
every ideal A of S.

Assume that A is an arbitrary ideal of S and assume a, b ∈ S such that ab ∈
√

A. Then (ab)m
∈ A for some

m ∈ Z+. Let a ∈ Sα, b ∈ Sβ. Since Y is a chain, then we have a, (ab)m
∈ Sα or b, b(ab)m

∈ Sβ. Again, since Sα
and Sβ are k-Archimedean ordered subsemigroups of S, we can deduce that ak

∈ (S1
α(ab)mS1

α] ⊆ (SAS] ⊆ A
or bk

∈ (S1
αb(ab)mS1

α] ⊆ (SAS] ⊆ A, so it follows that a ∈
√

A or b ∈
√

A. Therefore,
√

A is a prime ideal.
Let a, b ∈

√
A for an arbitrary ideal A of S. Assume a ∈ Sα, b ∈ Sβ. Since Y is a chain, then a, (ab)2

∈ Sα
or b, (ba)2

∈ Sβ. Also as Sα and Sβ are k-Archimedean, then we have ak
∈ (S1

αababS1
α] ⊆ (

√
Ab
√

A] or
bk
∈ (S1

βbabaS1
β] ⊆ (

√
Aa
√

A]. Hence,
√

A is a k-Archimedean ordered subsemigroup.

(vii)⇒(viii) Let
√

A be an k-Archimedean prime ideal, for every ideal A of S. Assume a ∈ k√A, b ∈ S.
Then ak

∈ A ⊆
√

A. Since k√A ⊆
√

A and
√

A is an k-Archimedean prime ideal of S, then ab, ba ∈
√

A, so
we have (ab)k

∈ (
√

A1ak
√

A1] ⊆ (SAS] ⊆ A and (ba)k
∈ (
√

A1ak
√

A1] ⊆ (SAS] ⊆ A, that is ab, ba ∈ k√A. If
S 3 b 6 a ∈ k√A, then bk 6 ak which implies bk

∈ A, and b ∈ k√A. Therefore, k√A is an ideal of S.
For arbitrary a, b ∈ S such that ab ∈ k√A directly follows that a ∈ k√A or b ∈ k√A. Hence, k√A is a prime

ideal.
(viii)⇒(ix) This implication follows immediately.
(ix)⇒(x) Assume a, b ∈ S. Since (ba)(ab) ∈ I((ba)(ab)) ⊆ k

√
I((ba)(ab)), then by hypothesis, we have

ba ∈ k
√

(S1(ba)(ab)S1] or ab ∈ k
√

(S1(ba)(ab)S1], whence (ab)k+1
∈ (Sa2S]. Now, from Lemma 3.1 it follows that

S is a semilattice Y of Archimedean ordered subsemigroups Sα, α ∈ Y. Let a ∈ Sα. Then a4k
∈ (Sαa2kSα] ⊆

k
√

(Sαa2kSα]. Based on (ix), k
√

(Sαa2kSα] is a prime subset, moreover k
√

(Sαa2kSα] is a semiprime subset, so by
Lemma 2.3 it follows that a ∈ k

√
(Sαa2kSα]. Therefore, ak

∈ (Sαa2kSα], that is, Sα is intra-k-regular. By Theorem
3.2, Sα is k-Archimedean.

Let A be an arbitrary ideal of S. Assume a, b ∈ S such that ab ∈ A. Then, by (ix), k
√

I(ab) is a prime
subset of S. Since ab ∈ I(ab) ⊆ k

√
I(ab), we have that a ∈ k

√
I(ab) or b ∈ k

√
I(ab), i.e. ak

∈ I(ab) ⊆ (S1AS1] ⊆ A or
bk
∈ I(ab) ⊆ (S1AS1] ⊆ A. Therefore, A is a k-primary ideal, and hence S is k-primary.
(x)⇒(i) Let S be a semilattice Y of k-Archimedean ordered subsemigroups Sα, α ∈ Y and S be k-primary.

Let a ∈ Sα, b ∈ Sβ. Since a2b2
∈ (SabS] and (SabS] is a k-primary ideal by the hypothesis, we have that

a2k
∈ (SabS] or b2k

∈ (SabS], this shows that α 6 β or β 6 α. Thus, Y is a chain.
(viii)⇒(xi) Let P1 and P2 be prime ideals of S. Suppose that P1 * P2 and P2 * P1. Then there exist

a ∈ P1\P2 and b ∈ P2\P1, such that ab ∈ P1
⋂

P2 = k
√

P1
⋂

P2 by Lemma 2.3, and by (viii), a ∈ k
√

P1
⋂

P2 or
b ∈ k
√

P1
⋂

P2, which is not possible. Therefore, prime ideals of S are totally ordered. While we have proved
(viii)⇔(x), we obtain that S is a semilattice of k-Archimedean ordered subsemigroups.

(xi)⇒(viii) Let S be a semilattice Y of k-Archimedean ordered subsemigroups Sα, α ∈ Y. Then k√A is a
semiprime ideal, for every ideal A of S. Assume that A is an arbitrary ideal of S and a ∈ k√A, b ∈ S, so ak

∈ A.
Let a ∈ Sα, b ∈ Sβ. Since Y is a semilattice, then ab, ba, akb ∈ Sαβ. Also as Sαβ is a k-Archimedean ordered
subsemigroups, then we have (ab)k

∈ (S1
αβa

kbS1
αβ] ⊆ (S1AS1] ⊆ A and (ba)k

∈ (S1
αβa

kbS1
αβ] ⊆ (S1AS1] ⊆ A, that

is ab, ba ∈ k√A. If S 3 b 6 a ∈ k√A, then bk 6 ak which implies bk
∈ A. Thus b ∈ k√A. Hence, k√A is an ideal

of S. Let a ∈ S such that a2
∈

k√A. Then a2k
∈ A. Assume a ∈ Sα, since Sα is a k-Archimedean ordered

subsemigroups, then we have ak
∈ (S1

αa2kS1
α] ⊆ (S1AS1] ⊆ A, that is a ∈ k√A. By Lemma 2.3, we have that

k√A =
⋂
α∈Γ Pα,

k√A ⊆ Pα, where Pα are prime ideals of S. Assume that a, b <
⋂
α∈Γ Pα. Then there exist

Pα,Pβ such that a < Pα, b < Pβ. Since prime ideals of S are totally ordered, we have that Pα ⊆ Pβ or Pβ ⊆ Pα.
Assume that Pα ⊆ Pβ (the case Pβ ⊆ Pα can be similarly treated). Then a, b < Pα and ab < Pα, since Pα is
prime. Thus ab <

⋂
α∈Γ Pα and by contradiction we have the assertion.

Lemma 3.5. [5] Let S be an ordered semigroup. Then the following statements are equivalent:

(i) S is a semilattice of left (resp. right) Archimedean ordered subsemigroups;
(ii) for every a, b ∈ S, aτb implies aτlbm (aτrbm) for some m ∈ Z+;
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(iii) S is right (resp. left) weakly commutative;
(iv) N is the greatest semilattice congruence on S such that each its congruence class is an left (resp. right)

Archimedean subsemigroup.

Theorem 3.6. Let k ∈ Z+. Then the following conditions on an ordered semigroup S are equivalent:

(i) S is a chain of left k-Archimedean ordered subsemigroups;

(ii) (∀a, b ∈ S) (a, ab) ∈ τ(k)
l and (b, ab) ∈ τ(k)

l , and (ab, a) ∈ τ(k)
l or (ab, b) ∈ τ(k)

l ;

(iii) Tl(a) =
k
√

L(ak) is a prime ideal of S containing a for all a ∈ S;
(iv) (∀a, b ∈ S) Tl(ab) = Tl(a)

⋂
Tl(b), and Tl(a) ⊆ Tl(b) or Tl(b) ⊆ Tl(a);

(v) (∀a, b ∈ S) N(a) = {x ∈ S|(x, a) ∈ τ(k)
l }, and N(ab) = N(a)

⋃
N(b);

(vi) T (k)
l = τ(k)

l

⋂
(τ(k)

l )−1 = N is the unique chain congruence on S such that each of its congruence classes is left
k-Archimedean;

(vii) S is right weakly commutative and k
√

L(ak) is a prime ideal of S containing a for all a ∈ S;

(viii) k√A is a prime ideal, for every left ideal A of S;
(ix) S is a semilattice of left k-Archimedean ordered subsemigroups and every left ideal of S is k-primary;
(x) S is a semilattice of left k-Archimedean ordered subsemigroups and (ab, ak) ∈ τl or (ab, bk) ∈ τl for all a, b ∈ S;

(xi) S is left k-regular, and
√

L(a) is a prime ideal of S for all a ∈ S.

Proof. (i)⇒(ii)⇒(iii)⇒(iv)⇒(v)⇒(vi)⇒(i). The proofs are similar to those of proving Theorem 3.4, by Lemma
2.2, Lemma 2.3, Lemma 3.3 and Lemma 3.5.

(iii)⇒(vii) We need only to show that S is right weakly commutative. For every a, b ∈ S, since Tl(a) =
k
√

L(ak) is an ideal of S by (iii), from a ∈ Tl(a) we obtain ab ∈ Tl(a), whence (ab)k
∈ (S1ak] ⊆ (Sa], so that S is

right weakly commutative.
(vii)⇒(viii) Let a ∈ k√A, b ∈ S. Then ak

∈ A. Since k
√

L(ak) is an ideal of S by (vii), from a ∈ k
√

L(ak) we have
ab, ba ∈ k

√
L(ak), whence (ab)k, (ba)k

∈ L(ak) = (S1ak] ⊆ (S1A] ⊆ A, i.e., ab, ba ∈ k√A. If S 3 b 6 a ∈ k√A, then
bk 6 ak

∈ A, i.e. b ∈ k√A. Hence, k√A is an ideal of S.
Assume that A is an arbitrary left ideal of S and let a, b ∈ S such that ab ∈ k√A. Then (ab)k

∈ A.
Since ab ∈ k

√
L((ab)k) and k

√
L((ab)k) is a prime ideal of S, we have a ∈ k

√
L((ab)k) or b ∈ k

√
L((ab)k), whence

ak
∈ L((ab)k) = (S1(ab)k] ⊆ (S1A] ⊆ A or bk

∈ L((ab)k) = (S1(ab)k] ⊆ (S1A] ⊆ A, so, it follows that a ∈ k√A or
b ∈ k√A. Therefore, k√A is a prime ideal.

(viii)⇒(ix) For every a, b ∈ S, since ba ∈ L(ba) ⊆ k
√

L(ba) and k
√

L(ba) is a prime ideal of S by (viii),
we have a ∈ k

√
L(ba) or b ∈ k

√
L(ba), whence ab ∈ k

√
L(ba), and (ab)k

∈ (S1ba] ⊆ (Sa]. This shows that S is
right weakly commutative, by Lemma 3.5, S is a semilattice Y of left Archimedean ordered subsemigroups
Sα, α ∈ Y. Assume a, b ∈ Sα for some α ∈ Y. Since Sα is left Archimedean, then there exists m ∈ Z+

such that am
∈ (S1

αb] ⊆ k
√

(S1
αb]. By (viii), k

√
(S1
αb] is a prime ideal, so k

√
(S1
αb] is a semiprime ideal. From

aam−1 = am
∈

k
√

(S1
αb], based on Lemma 2.3 we have a2

∈
k
√

(S1
αb], whence a ∈ k

√
(S1
αb], this implies that

ak
∈ (S1

αb]. Thus, Sα is left k-Archimedean.
Now, we suppose that A is a left ideals of S, a, b ∈ S such that ab ∈ A. By (viii), k

√
L(ab) is a prime ideal of

S and it can be easily shown that ak
∈ A or bk

∈ A. As a consequence, we have that A is a k-primary ideal.
(ix)⇒(x) Suppose that (ix) hold and let a, b ∈ S. Since L(ab) is k-primary and ab ∈ L(ab), then ak

∈ L(ab) =
(S1ab] or bk

∈ L(ab) = (S1ab]. Thus, (ab, ak) ∈ τl or (ab, bk) ∈ τl, for all a, b ∈ S.
(x)⇒(i) Let S be a semilattice Y of left k-Archimedean ordered subsemigroups Sα, α ∈ Y and (ab, ak) ∈ τl

or (ab, bk) ∈ τl for all a, b ∈ S. Suppose that a ∈ Sα, b ∈ Sβ. Since ak
∈ (S1ab] or bk

∈ (S1ab], we can deduce that
α 6 β or β 6 α. This shows that Y is a chain.

(ii)⇒(xi) Let a ∈ S. Then a2
∈

k
√

L(a2k), based on (ii)⇔(viii) we have
a ∈ k
√

L(a2k), so ak
∈ (a2k⋃Sa2k] ⊆ (Sak+1], it follows that S is left k-regular.
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Let x ∈
√

L(a), y ∈ S. Then xn
∈ L(a) for some n ∈ Z+. Based on (ii) we have that (x, xy) ∈ τ(k)

l , so
(xy)k 6 uxk for some u ∈ S1. Further, for u, xk, by (ii) we have that (xk,uxk) ∈ τ(k)

l , so (uxk)k 6 vxk2
for some

v ∈ S1. Therefore, (xy)k2
6 vxk2

, continuous use of this procedure, for any m ∈ Z+, we have (xy)km
6 dxkm

for some d ∈ S1. Assume p ∈ Z+ such that kp > n, then we have that (xy)kp
6 dxkp

−nxn
∈ SL(a) ⊆ L(a), so

xy ∈
√

L(a). In a similar way, we can deduce that yx ∈
√

L(a). If S 3 x 6 y ∈
√

L(a), then xr 6 yr
∈ L(a) for

some r ∈ Z+, so xr
∈ L(a), whence x ∈

√
L(a). Therefore,

√
L(a) is an ideal of S.

Assume x, y ∈ S such that xy ∈
√

L(a). Then there exists m ∈ Z+ such that (xy)m
∈ L(a). For x, y ∈ S, by

(ii), we have that (xy, x) ∈ τ(k)
l or (xy, y) ∈ τ(k)

l . If (xy, x) ∈ τ(k)
l , then xk 6 w(xy)k for some w ∈ S1. Further,

for w, (xy)k, by (ii) we have that ((xy)k,w(xy)k) ∈ τ(k)
l , so (w(xy)k)k 6 h(xy)k2

for some h ∈ S1. Therefore,
xk2
6 h(xy)k2

, continuous use of this procedure, for any n ∈ Z+, we have xkn
6 q(xy)kn

for some q ∈ S1.
Assume j ∈ Z+ such that k j > m, then we have that xk j

6 q(xy)k j
−m(xy)m

∈ SL(a) ⊆ L(a), so x ∈
√

L(a). In a
similar way, from (xy, y) ∈ τ(k)

l we obtain that y ∈
√

L(a). Thus,
√

L(a) is a prime subset of S.
(xi)⇒(vii) Let a, b ∈ S. Then a ∈ L(a) ⊆

√
L(a). Since

√
L(a) is an ideal of S, we have that ab ∈

√
L(a),

so there exists m ∈ Z+ such that (ab)m
∈ L(a) = (a

⋃
Sa]. Hence, (ab)m+1

∈ (Sa], i.e. S is right weakly
commutative.

Let x ∈ k
√

L(ak), y ∈ S. By k
√

L(ak) ⊆
√

L(ak), from this it is follows that (xy)n, (yx)m
∈ L(ak) for some

n,m ∈ Z+. Since S is left k-regular, then we have that

(xy)k
∈ (S(xy)k+1] ⊆ (S(S(xy)k+1]xy] ⊆ ((S(xy)k(xy)2] ⊆ · · · ⊆ ((S(xy)k(xy)r]

for all r ∈ Z+, so (xy)k
∈ ((S(xy)k(xy)n] ⊆ ((S(xy)kL(ak)] ⊆ L(ak). This shows that xy ∈ k

√
L(ak). Similarly, we

can prove that yx ∈ k
√

L(ak). If S 3 x 6 y ∈ k
√

L(ak), then xk 6 yk
∈ L(ak), so xk

∈ L(ak), it follws at once that
x ∈ k
√

L(ak). Therefore, k
√

L(ak) is an ideal of S.
Assume x, y ∈ S such that xy ∈ k

√
L(ak). Since k

√
L(ak) ⊆

√
L(ak) and

√
L(ak) is a prime ideal of S, we can

deduce that x ∈
√

L(ak) or y ∈
√

L(ak). If x ∈
√

L(ak), then xn
∈ L(ak). Since S is left k-regular, then we have

that xk
∈ (Sxk+1] ⊆ (Sxkxn] ⊆ L(ak), i.e. x ∈ k

√
L(ak). Similarly, we can prove that y ∈ k

√
L(ak). Therefore, k

√
L(ak)

is a prime ideal.

Theorem 3.7. Let k ∈ Z+ and let S be a chain of left k-Archimedean ordered semigroups. Then for every nonempty
family {Lλ|λ ∈ Λ} of prime left ideals of S,

⋂
λ∈Λ Lλ is a prime ideal of S.

Proof. Assume that L :=
⋂
λ∈Λ Lλ , φ. Then L is also a left ideal of S. Let a ∈ L and x ∈ S. Then a ∈ Lλ for all

λ ∈ Λ. Suppose that ax < L. Then ax < Lµ for someµ ∈ Λ, whence ax ∈ S\Lµ. Since Lµ is a prime left ideal of S,
by Lemma 2.1 it follows that S\Lµ is a left filter of S, whence a ∈ N(a) ⊆ N(a)

⋃
N(x) = N(ax) ⊆ Nl(ax) ⊆ S\Lµ

by Theorem 3.4 (v), so that a < Lµ, and we get a contradiction. This leads to ax ∈ L and L is an ideal of S. Let
x, y ∈ S such that xy ∈ L. Suppose that x < L and y < L. Then x, y ∈ S \ L =

⋃
λ∈Λ(S \ Lλ)}, whence x ∈ S \ Lµ

and y ∈ S\Lθ for some µ, θ ∈ Λ. By Lemma 2.1, S\Lµ and S\Lθ are left filters of S, from these we can obtain
Nl(x) ⊆ S \ Lµ and Nl(y) ⊆ S \ Lθ. Fuether, xy ∈ N(xy) = N(x)

⋃
N(y) ⊆ Nl(x)

⋃
Nl(y) ⊆ (S \ Lµ)

⋃
(S \ Lθ) =

S \ (Lµ
⋂

Lθ) by Theorem 3.4 (v), and so xy < Lµ
⋂

Lθ, we get a contradiction. Thus, we have that x ∈ L or
y ∈ L, i.e. L is a prime ideal of S.

Suppose that
⋂
λ∈Λ Lλ = φ. Then there exist nonempty subsets Λ1,Λ2 of Λ such that L1 :=

⋂
λ∈Λ1

Lλ , φ,
L2 :=

⋂
λ∈Λ2

Lλ , φ and L1
⋂

L2 = φ. By the results we have proved above, we can see that L1 and L2 are
prime ideals of S, this leads to φ = L1L2 ⊆ L1

⋂
L2 = φ, which is a contradiction.

The next results give some properties of the weakly commutative ordered semigroups.

Lemma 3.8. [5, 16] Let S be an ordered semigroup. Then the following statements are equivalent:

(i) S is a semilattice of t-Archimedean ordered subsemigroups;
(ii) For every a, b ∈ S, aτb implies aτtbm for some m ∈ Z+;
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(iii) S is weakly commutative;
(iv) N is the greatest semilattice congruence on S such that each its congruence class is an t-Archimedean subsemi-

group;
(iv) (∀a, b ∈ S)(∃n ∈ Z+)(ab)n

∈ (bSa];
(v) The radical subset of every bi-ideal of S is an ideal of S.

By Lemma 3.8, Theorem 3.6 and their dual, the following theorem can be proved similarly as the
Theorem 3.4 and Theorem 3.6.

Theorem 3.9. Let k ∈ Z+. Then the following conditions on an ordered semigroup S are equivalent:

(i) S is a chain of t-k-Archimedean ordered semigroups;

(ii) (∀a, b ∈ S)(a, ab) ∈ τ(k)
t and (b, ab) ∈ τ(k)

t , and (ab, a) ∈ τ(k)
t or (ab, b) ∈ τ(k)

t ;

(iii) For every a ∈ S, Tt(a) =
k
√

L(ak)
⋂

R(ak) is a prime ideal of S containing a;
(iv) (∀a, b ∈ S)Tt(ab) = Tt(a)

⋂
Tt(b), and Tt(a) ⊆ Tt(b) or Tt(b) ⊆ Tt(a);

(v) (∀a, b ∈ S)N(a) = {x ∈ S|(x, a) ∈ τ(k)
t }, and N(ab) = N(a)

⋃
N(b);

(vi) T (k)
t = τ(k)

t
⋂

(τ(k)
t )−1 = N is the unique chain congruence on S such that each of its congruence classes is

t-k-Archimedean;
(vii) S is weakly commutative and k

√
L(ak)

⋂
R(ak) is a prime ideal of S containing a for all a ∈ S;

(viii) k
√

L
⋂

R is a prime ideal, for every left ideal L and right ideal R of S;
(ix) S is a semilattice of t-k-Archimedean ordered semigroups and L

⋂
R is a k-primary set, for every left ideal L and

right ideal R of S;
(x) S is a semilattice of t-k-Archimedean ordered semigroups and (ab, ak) ∈ τt or (ab, bk) ∈ τt for all a, b ∈ S;

(xi) S is t-k-regular, and
√

L(a)
⋂

R(a) is a prime ideal of S for all a ∈ S.

Based on Theorem 3.9, since k ∈ Z+ is a fix integer, we can’t describe the structure of an ordered
semigroup which can be decomposed into a chain of t-k-Archimedean ordered semigroups by means of the
bi-ideal of an ordered semigroup. In order to overcome this deficiency, we have the following theorem.

Theorem 3.10. Let k ∈ Z+. Then the following conditions on an ordered semigroup S are equivalent:

(i) S is a chain of t-k-Archimedean and k-regular ordered semigroups;

(ii) (∀a, b ∈ S)(a, ab) ∈ τ(k)
b and (b, ab) ∈ τ(k)

b , and (ab, a) ∈ τ(k)
b or (ab, b) ∈ τ(k)

b ;

(iii) For every a ∈ S, Tb(a) =
k
√

B(ak) is a prime ideal of S containing a;
(iv) (∀a, b ∈ S)Tb(ab) = Tb(a)

⋂
Tb(b), and Tb(a) ⊆ Tb(b) or Tb(b) ⊆ Tb(a);

(v) (∀a, b ∈ S)N(a) = {x ∈ S|(x, a) ∈ τ(k)
b }, and N(ab) = N(a)

⋃
N(b);

(vi) T (k)
b = τ(k)

b

⋂
(τ(k)

b )−1 = N is the unique chain congruence on S such that each of its congruence classes is
t-k-Archimedean and k-regular;

(vii) S is weakly commutative and k
√

B(ak) is a prime ideal of S containing a for all a ∈ S;

(viii) k√B is a prime ideal, for every bi-ideal B of S;
(ix) S is a semilattice of t-k-Archimedean ordered semigroups and k-regular, and B is a k-primary set, for every

bi-ideal B of S;
(x) S is a semilattice of t-k-Archimedean ordered semigroups and (ab, ak) ∈ τb or (ab, bk) ∈ τb for all a, b ∈ S.

(xi) S is completely k-regular, and
√

B(a) is a prime ideal of S for all a ∈ S.

The proof of this theorem is direct consequence of Theorems 3.4, 3.6 and 3.9, Lemmas 3.3 and 3.8, and
the definition of a chain of an ordered semigroup.
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4. Concluding Remarks

The notion of regularity and Archimedness of semigroups have a very important role in the description
of the structure of these semigroups. This approach to the description of the structure of semigroups
becomes all the more important if semigroups are richer for order. But, these concepts do not coincide in
the case of ordered semigroups and in the case of semigroups without order. In this paper we extended the
concepts of regularity and Archimedness of semigroups without order to the case of ordered semigroups.

For a fixed integer k ∈ Z+, in this paper, we introduced various types of k-regularity and various types
of k-Archimedness of ordered semigroups for the first time. Also, we defined some new equivalence
relations τ(k), τ(k)

l , τ
(k)
r , τ

(k)
t and τ(k)

b on ordered semigroups. Using these notions, filters, and radical subsets of
ideals, left ideals, right ideals and bi-ideals of ordered semigroups we described the structure of an ordered
semigroup which can be decomposed into a chain of k-Archimedean (left k-Archimedean, t-k-Archimedean)
ordered subsemigroups.

The obtained results for ordered semigroups represent generalizations of corresponding results that are
valid for semigroups without order.
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