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Abstract. Let A = Re A + i Im A be the Cartesian decomposition of square matrix A of order n with
Re A = A+A∗

2 and Im A = A−A∗
2i . Fan-Hoffman’s result asserts that

λ j(ReA) ≤ s j(A), j = 1, . . . ,n,

where λ j(M) and s j(M) stand for the jth largest eigenvalue of M and the jth largest singular value of M,
respectively. We investigate singular value inequalities for real and imaginary parts of matrices and prove
the following inequalities:

s j(Re A) ≤
1
4

s j ([(|A| + |A∗|) − (A + A∗)] ⊕ [(|A| + |A∗|) + (A + A∗)]) ,

and

s j(Im A) ≤
1
4

s j ([(|A| + |A∗|) − i(A∗ − A)] ⊕ [(|A| + |A∗|) + i(A∗ − A)]) , j = 1, . . . ,n.

In particular, we have

s j(Re A) ≤
1
2

s j ((|A| + |A∗|) ⊕ (|A| + |A∗|)) ,

and

s j(Im A) ≤
1
2

s j ((|A| + |A∗|) ⊕ (|A| + |A∗|)) , j = 1, . . . ,n.

Moreover, we also show that these inequalities are sharp.

1. Introduction

Let Mn denote the vector space of all complex n×n matrices and let Hn be the set of all Hermitian matrices
of order n.We always denote the eigenvalues of A ∈ Hn in decreasing order by λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).
For A,B ∈ Hn, we use the notation A ≤ B or B ≥ A to mean that B − A is positive semidefinite. Clearly,
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“ ≤ ” and “ ≥ ” define two partial orders on Hn, each of which is called Löwner partial order. In particular,
B ≥ 0 (res. B > 0) means that B is positive semidefinite (res. B is positive definite). For T ∈ Mn, the
singular values of T, denoted by s1(T), s2(T), . . . , sn(T) are the eigenvalues of the positive semidefinite matrix
|T| = (T∗T)

1
2 , enumerated as s1(T) ≥ s2(T) ≥ · · · ≥ sn(T) and repeated according to multiplicity. It follows

that the singular values of a normal matrix are just the moduli of its eigenvalues. In particular, if T ∈Mn is
positive semidefinite, then singular values and eigenvalues of T are the same. For more information on this
related topic, we refer to [1, 6, 7]. Let A ∈Mn. Then A = Re A + i Im A, where Re A = A+A∗

2 and Im A = A−A∗
2i .

This is called the Cartesian decomposition of A. It is clear that both Re A and Im A are Hermitian. Here we

denote the block matrix
(

A 0
0 B

)
by A ⊕ B.

Fan and Hoffman [2] asserts that for A ∈Mn,

λ j(Re A) ≤ s j(A) (1)

for j = 1, . . . ,n. In the book [4] of page 327, it is said that (1) implies that

|λ j(Re A)| ≤ s j(A) (2)

for j = 1, . . . ,n. Since the singular values of a Hermitian matrix are just the moduli of its eigenvalues., it
seems that (2) is presented singular value inequalities between the real part Re A and A.

But, there exists a gap in (2). We shall point out that through an example. Consider the square matrix

A =

(
i 0
0 −2

)
. Then Re A =

(
0 0
0 −2

)
. It is obvious that

λ1(Re A) = 0, λ2(Re A) = −2 and s1(A) = 2, s2(A) = 1.

However, |λ2(Re A)| = 2 > 1 = s2(A). This contradicts (2). More details on the monograph [4] review, we
refer to the helpful paper by Zhang [8].

In this paper, our main consideration is singular value inequalities involving real and imaginary parts
of matrices and themselves. We prove the following inequalities, i.e.,

s j(Re A) ≤
1
4

s j ([(|A| + |A∗|) − (A + A∗)] ⊕ [(|A| + |A∗|) + (A + A∗)])

and

s j(Im A) ≤
1
4

s j ([(|A| + |A∗|) − i(A∗ − A)] ⊕ [(|A| + |A∗|) + i(A∗ − A)]) ,

for all j = 1, . . . ,n. In particular, the following inequalities hold:

s j(Re A) ≤
1
2

s j ((|A| + |A∗|) ⊕ (|A| + |A∗|))

and

s j(Im A) ≤
1
2

s j ((|A| + |A∗|) ⊕ (|A| + |A∗|)) ,

for all j = 1, . . . ,n. Furthermore, we show that these inequalities are sharp. Some applications of these results
and other related inequalities will be also obtained. Finally, we give new revision form of (2) between the
absolute values of the eigenvalues of Re A and the singular values of A.
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2. Main Results

We start with some lemmas.
Lemma 1 If A1,A2,B1,B2 ∈Mn such that

s j(A1) ≤ s j(B1), s j(A2) ≤ s j(B2), for all j = 1, . . . ,n,

then
s j(A1 ⊕ A2) ≤ s j(B1 ⊕ B2), for all j = 1, . . . , 2n.

Moreover,
s j(S) ≤ s j(T), for all j = 1, . . . ,n,

if and only if
s j(S ⊕ S) ≤ s j(T ⊕ T), for all j = 1, . . . , 2n.

Proof. Note that singular values are unitarily invariant: For any A ∈ Mn and unitary U,V ∈ Mn, s(UAV) =
s(A). In particular, for positive semidefinite matrices, singular values and eigenvalues are the same. Let

A = diag(s1(A1), s2(A1), · · · , sn(A1), s1(A2), s2(A2), · · · , sn(A2))

and
B = diag(s1(B1), s2(B1), · · · , sn(B1), s1(B2), s2(B2), · · · , sn(B2)).

Hence
s(A1 ⊕ A2) = s(A) = λ(A), s(B1 ⊕ B2) = s(B) = λ(B).

Since s j(A1) ≤ s j(B1) and s j(A2) ≤ s j(B2), 1 ≤ j ≤ n, , it follows that 0 ≤ A ≤ B. By Weyl’s Monotonicity
Theorem,

λ j(A) ≤ λ j(B), 1 ≤ j ≤ 2n,

i.e.,
s j(A1 ⊕ A2) = λ j(A) ≤ λ j(B) = s j(B1 ⊕ B2), 1 ≤ j ≤ 2n.

The left part of the lemma is trivial. This completes the proof.

The following useful result can be founded in [1, 6, 7].

Lemma 2 The partitioned block matrix
(

A B
B∗ C

)
is positive semidefinite if and only if both A and C are positive

semidefinite and there exists a contraction W such that B = A
1
2 WC

1
2 .

The following useful singular inequality was given by Zhan [5].
Lemma 3 Let A,B ∈ Hn. If A ≥ 0 and B ≥ 0, then

s j (A − B) ≤ s j(A ⊕ B), (3)

for j = 1, 2, . . . , n.
The following inequalities are due to Hirzallah and Kittaneh[3].
Lemma 4 Let X,Y ∈Mn. Then

s j

(X + Y
2

)
≤ s j(X ⊕ Y), j = 1, 2, . . . , n. (4)

As a consequence,

s j(Re X) ≤ s j (X ⊕ X) , j = 1, 2, . . . , n. (5)
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Next, we shall prove our main results about singular value inequalities involving real and imaginary
parts of matrices and themselves.

Theorem 5 Let A ∈Mn. Then

s j(Re A) ≤
1
4

s j ([(|A| + |A∗|) − (A + A∗)] ⊕ [(|A| + |A∗|) + (A + A∗)]) (6)

and

s j(Im A) ≤
1
4

s j ([(|A| + |A∗|) − i(A∗ − A)] ⊕ [(|A| + |A∗|) + i(A∗ − A)]) , (7)

for all j = 1, . . . ,n.

Proof. Note that A = |A∗|
1
2 U|A|

1
2 with unitary U. By Lemma 2, we have(

|A| A∗

A |A∗|

)
≥ 0,

(
|A∗| A
A∗ |A|

)
≥ 0.

Then (
|A| + |A∗| A + A∗

A + A∗ |A| + |A∗|

)
≥ 0.

Using Lemma 2 again, there exists a contraction W ∈Mn such that

A + A∗ = (|A| + |A∗|)
1
2 W (|A| + |A∗|)

1
2 .

Next, we shall show that we can choose W such that W is Hermitian. We divide into two cases.
First, consider the case that A is invertible. Then both |A| and |A∗| are invertible, i.e., |A| > 0, |A∗| > 0.

Thus W = (|A| + |A∗|)−
1
2 (A + A∗) (|A| + |A∗|)−

1
2 is Hermitian.

In general, we have (
|A| + |A∗| + m−1I A + A∗

A + A∗ |A| + |A∗| + m−1I

)
> 0,

for any positive integer m. By proved case above, for each m there is a Hermitian contraction Wm ∈Mn such
that

A + A∗ =
(
|A| + |A∗| + m−1I

) 1
2 Wm

(
|A| + |A∗| + m−1I

) 1
2 . (8)

Since Mn is a finite-dimensional space, the unit ball {X ∈ Mn : ‖X‖∞ ≤ 1} of the spectral norm is compact.
By Bolzano-Weierstrass theorem, {Wm}

∞

m=1 has a convergent subsequence {Wmk }
∞

k=1, i.e., lim
k→∞

Wmk = W. Since

Wmk are Hermitian, it follows that

W = lim
k→∞

Wmk = lim
k→∞

(
W∗

mk

)∗
=

(
lim
k→∞

W∗

mk

)∗
= W∗.

In (8), letting k→∞ yields
A + A∗ = (|A| + |A∗|)

1
2 W (|A| + |A∗|)

1
2 ,

where W is a Hermitian contraction.
Since W is Hermitian contraction, it follows that ±W ≤ I. Then we have

±(A + A∗) = (|A| + |A∗|)
1
2 (±W) (|A| + |A∗|)

1
2 ≤ |A| + |A∗|.

Note that
(|A| + |A∗|) + (A + A∗) ≥ 0, (|A| + |A∗|) − (A + A∗) ≥ 0
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and
Re A =

1
4
{[(|A| + |A∗|) + (A + A∗)] − [(|A| + |A∗|) − (A + A∗)]}.

By Lemma 3, for each j = 1, . . . ,n, we have

s j(Re A) ≤
1
4

s j ([(|A| + |A∗|) − (A + A∗)] ⊕ [(|A| + |A∗|) + (A + A∗)]) .

Note that Im A = Re (−iA). Replacing A by −iA, we obtain (7). This completes the proof.

Remark 1 In the proof of Theorem 5, we know that

±(A + A∗) ≤ |A| + |A∗|, ±i(A∗ − A) ≤ |A| + |A∗|.

Using Theorem 5 and the above remark, we can obtain the following inequality.
Theorem 6 Let A ∈Mn. Then

s j(Re A) ≤
1
2

s j ((|A| + |A∗|) ⊕ (|A| + |A∗|)) (9)

and

s j(Im A) ≤
1
2

s j ((|A| + |A∗|) ⊕ (|A| + |A∗|)) , (10)

for all j = 1, . . . ,n..

Proof. Note that
|A| + |A∗| + (A + A∗) ≥ 0, |A| + |A∗| − (A + A∗) ≥ 0

and
(|A| + |A∗|) − i(A∗ − A) ≥ 0, (|A| + |A∗|) + i(A∗ − A) ≥ 0.

We have
0 ≤ |A| + |A∗| ± (A + A∗) ≤ 2(|A| + |A∗|)

and
0 ≤ |A| + |A∗| ± i(A∗ − A) ≤ 2(|A| + |A∗|).

Using the fact that for positive semidefinite matrices, singular values and eigenvalues are the same and
Weyl’s Monotonicity Principle, we have

s j (|A| + |A∗| ± (A + A∗)) ≤ 2s j(|A| + |A∗|)

and
s j (|A| + |A∗| ± i(A∗ − A)) ≤ 2s j(|A| + |A∗|)

for all j = 1, . . . ,n. By Lemma 1 and Theorem 5, (9) and (10) hold. This completes the proof.

Remark 2 It should be mentioned here that the inequality

s j(Re A) ≤
1
2

s j (|A| + |A∗|)) ,

is false for j = 1, . . . ,n. To see this, consider the matrix A =

(
i i
0 0

)
. Then

s2(ReA) =
1
2
>

√
2 − 1
2

=
1
2

s2(|A| + |A∗|).
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Next, we shall show that (6), (7), (9) and (10) are sharp.

Example Consider the square matrix A =

(
0 1
0 0

)
. Let

H1 = |A| + |A∗| − (A + A∗), H2 = |A| + |A∗| + (A + A∗) and H3 = |A| + |A∗|.

Then

Re A =

(
0 1

2
1
2 0

)
, Im A =

(
0 1

2i
−

1
2i 0

)
and

H1 =

(
1 −1
−1 1

)
, H2 =

(
1 1
1 1

)
, H3 =

(
1 0
0 1

)
.

Note that
s1(ReA) =

1
4

s1(H1 ⊕H2) =
1
2

s1(H3 ⊕H3) =
1
2

and
s2(ReA) =

1
4

s2(H1 ⊕H2) =
1
2

s2(H3 ⊕H3) =
1
2
.

Similarly, let H4 = |A| + |A∗| − i(A∗ − A),H5 = |A| + |A∗| + i(A∗ − A), we also have

s1(ImA) =
1
4

s1(H4 ⊕H5) =
1
2

s1(H3 ⊕H3) =
1
2

and
s2(ImA) =

1
4

s2(H4 ⊕H5) =
1
2

s2(H3 ⊕H3) =
1
2
.

This example shows that the inequalities (6), (7), (9) and (10) are sharp.
On the other hand, using this example we could see that (6) and (9) seem sharper than (5) in Lemma 4,

since
s1 (A ⊕ A) = s2 (A ⊕ A) = 1.

In [3, Corollary 2.4], Hirzallah and Kittaneh show that let X,Y ∈Mn. Then

s j(XY∗ + YX∗) ≤ s j

(
(|X|2 + |Y|2) ⊕ (|X|2 + |Y|2)

)
, j = 1, . . . ,n.

Replacing A in (9) of Corollary 6 by XY∗, we have following related inequality.
Corollary 7 Let X,Y ∈Mn. Then

s j(XY∗ + YX∗) ≤ s j ((|XY∗| + |YX∗|) ⊕ (|XY∗| + |YX∗|)) , j = 1, . . . ,n. (11)

An immediate consequence of Theorem 6 gives the following inequality related to normal matrices.
Corollary 8 Let T ∈Mn be normal matrix. Then

s j(Re T) ≤ s j (T ⊕ T) , s j(Im T) ≤ s j (T ⊕ T) , j = 1, . . . ,n.

In the end, we shall give a new revision of (2).
Theorem 9 Let A ∈Mn and let j be positive integer with 1 ≤ j ≤ n. If j ≥ n+1

2 , then

|λ j(Re A)| ≤ s j(A), (12)

|λ j(Im A)| ≤ s j(A). (13)

Otherwise, we have

|λ j(Re A)| ≤ sn− j+1(A), (14)

|λ j(Im A)| ≤ sn− j+1(A). (15)
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Proof. Replacing A by −A in (1) and using the fact s j(−A) = s j(A), j = 1, . . . ,n, we have

λn− j+1(Re (−A)) ≤ sn− j+1(A), j = 1, . . . ,n.

Note that λ j(Re A) = −λn− j+1(Re (−A)), j = 1, . . . ,n. Then

λ j(Re A) = −λn− j+1(Re (−A)) ≥ −sn− j+1(A), j = 1, . . . ,n.

By (1) due to Fan and Hoffman, we have

s j(A) ≥ λ j(Re A) ≥ −sn− j+1(A), j = 1, . . . ,n.

Therefore

|λ j(Re A)| ≤ max {s j(A), sn− j+1(A)}.

Note that Im A = Re (−iA). Replacing A by −iA and using the fact s j(−iA) = s j(A), the inequality (12) holds.
Comparing the value between j and n − j + 1, this completes the proof.

Acknowledgement

The authors are grateful to Professor Xingzhi Zhan for his helpful suggestions and the authors also
thank Professor Fuzhen Zhang to provide them with the interesting paper [8].

References

[1] R. Bhatia, Matrix Analysis, (Springer-Verlag, 1997).
[2] K. Fan and A.J. Hoffman, “Some metric inequalities in the space of matrices,” Proc. Amer. Math. Soc., 6 (1955) 111-116.
[3] O. Hirzallah, F. Kittaneh, “Inequalities for sums and direct sums of Hilbert space operators,” Linear Algebra Appl., 424 (2007),

71C82.
[4] A.W. Marshall, I. Olkin and B.C. Arnold, Inequalities: theory of majorization and its applications. Second edition. (Springer

Series in Statistics. Springer, New York, 2011.)
[5] X. Zhan, “Singular values of differences of positive semidefinite matrices,” SIAM J. Matrix Anal. Appl., 22(2000), no.3, 819-823.
[6] X. Zhan, Matrix Inequalities, Lecture Notes in Mathematics 1790, (Springer-Verlag, Berlin, 2002.)
[7] X. Zhan, Matrix Theory, Graduate Studies in Mathematics 147, (American Mathematical Society, Providence, R.I., 2013.)
[8] F. Zhang, “Inequalities: Theory of Majorization and Its Applications (Springer Series in Statistics) by Albert W. Marshall, Ingram

Olkin and Barry C. Arnold, 2nd edition, Springer (2011) xxvii+909 pp, Hardback, ISBN 978-0-387-40087-7; e-ISBN 978-0-387-
68276-1,” Linear Algebra Appl., 436 (2012) 1535-1540.


