
Filomat 30:10 (2016), 2809–2823
DOI 10.2298/FIL1610809A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. We introduce a wavelet-type transform generated by the so-called beta-semigroup, which is a
natural generalization of the Gauss-Weierstrass and Poisson semigroups associated to the Laplace-Bessel
convolution. By making use of this wavelet-type transform we obtain new explicit inversion formulas for
the generalized Riesz potentials and a new characterization of the generalized Riesz potential spaces. We
show that the usage of the concept beta-semigroup gives rise to minimize the number of conditions on
wavelet measure, no matter how big the order of the generalized Riesz potentials is.

1. Introduction

Let Rn
+ = {x = (x1, ..., xn−1, xn) ∈ Rn : xn > 0} and S(Rn

+) be the space of functions, which are
restrictions to Rn

+ of the Schwartz test functions on Rn that are even in the last variable xn. The closure of
the space S(Rn

+) in the norm

∥∥∥ f
∥∥∥

p,ν =


∫
Rn

+

∣∣∣ f (x)
∣∣∣p x2ν

n dx


1
p

(1)

is denoted by Lp,ν ≡ Lp,ν(Rn
+). Here ν > 0 is a fixed parameter, 1 ≤ p < ∞ and dx = dx1...dxn−1dxn. The

notation C0 ≡ C0(Rn
+) stands for the closure of the spaces S(Rn

+) in the sup-norm.
The Fourier-Bessel transform and its inverse are defined as(

Fνϕ
)

(x) =

∫
Rn

+

ϕ(y)e−ix′·y′ jν− 1
2
(xnyn)y2ν

n dy,
(
F−1
ν ϕ

)
(x) = cν(n)

(
Fνϕ

)
(−x′, xn) (2)

where x′ · y′ = x1y1 + ... + xn−1yn−1, ϕ ∈ L1,ν(Rn
+),

cν(n) =
[
(2π)n−122ν−1Γ2(ν +

1
2

)
]−1

(3)
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and js(t) (t > 0, s > − 1
2 ) is the normalized Bessel function: js(t) =

2sΓ(p+1)Js(t)
ts (Js(t) is the first kind Bessel

function).
The Fourier-Bessel transform is an automorphism of the space S(Rn

+) and if the function ϕ ∈ L1,ν(Rn
+) is

radial, then Fνϕ is also radial (see for details, [16],[30]).
Denote by Ty the generalized translation (shift) operator, acting as

(
Tyϕ

)
(x) =

Γ(ν + 1
2 )

Γ(ν)Γ( 1
2 )

π∫
0

ϕ

(
x′ − y′;

√
x2

n − 2xnyn cosθ + y2
n

)
sin2ν−1 θdθ. (4)

The convolution (Bessel convolution) generated by the translation Ty is defined as

(
ϕ ~ ψ

)
(x) =

∫
Rn

+

ϕ(ξ)Tξψ(x)ξ2ν
n dξ, (dξ = dξ1...dξn), (5)

for which ϕ ~ ψ = ψ ~ ϕ. The following Young inequality for convolution (5) is well known:∥∥∥ϕ ~ ψ∥∥∥
r,ν ≤

∥∥∥ϕ∥∥∥
p,ν

∥∥∥ψ∥∥∥
q,ν , 1 ≤ p, q, r ≤ ∞ and

1
p

+
1
q

=
1
r
− 1. (6)

The action of the Fourier-Bessel transform to Bessel convolution is as follows:

Fν
(
ϕ ~ ψ

)
= Fνϕ.Fνψ . (7)

The generalized Riesz potentials generated by the generalized translation (4) are defined in terms of Fourier-
Bessel transforms as follows

Iαν f = F−1
ν

(
|ξ|−α Fν f

)
; f ∈ S(Rn

+), 0 < α < n + 2ν . (8)

These potentials admit the following integral representation as the Bessel convolution (see [9],[1],[2]):

(
Iαν f

)
(x) =

1
γn,ν(α)

∫
Rn

+

∣∣∣y∣∣∣α−n−2ν
Ty f (x)y2ν

n dy , (9)

where

γn,ν(α) =
2α−1π

n−1
2 Γ

(
α
2

)
Γ
(
ν + 1

2

)
Γ
(

n+2ν−α
2

) , 0 < α < n + 2ν. (10)

Many known results for the classical Riesz potentials are also valid for the potentials Iαν f . For instance, the
analog of Hardy-Littlewood-Sobolev theorem in this case is formulated as (see [9]):∥∥∥Iαν f

∥∥∥
q,ν ≤ c.

∥∥∥ f
∥∥∥

p,ν , (1 < p <
n + 2ν
α

and
1
p
−

1
q

=
α

n + 2ν
);

If p = 1 then

meas
{
x ∈ Rn

+ :
∣∣∣(Iαν f

)
(x)

∣∣∣ > λ} ≤ cq

∥∥∥ f
∥∥∥

1,ν

λ


q

,

where q = n+2ν
n+2ν−α and for measurable E ⊂ Rn

+, measE =
∫
E

x2ν
n dx.
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The potentials Iαν f have remarkable one-dimensional integral representations in terms of the Poisson
and Gauss-Weierstrass semigroups, generated by the generalized translation Ty. Namely,

(
Iαν f

)
(x) =

1
Γ(α)

∞∫
0

tα−1
(
P(ν)

t f
)

(x)dt; (11)

(
Iαν f

)
(x) =

1
Γ(α2 )

∞∫
0

t
α
2 −1

(
G(ν)

t f
)

(x)dt. (12)

Here the Poisson semigroup P(ν)
t f and the Gauss-Weierstrass semigroup G(ν)

t f generated by the generalized
translation are defined as follows (see [9], [10], [1]):(

P(ν)
t f

)
(x) =

∫
Rn

+

pν(y; t)Ty f (x)y2ν
n dy , (t > 0), (13)

pν(y; t) ≡ F−1
ν (e−t|x|)(y) =

2
π

n
2

Γ
(

n+2ν+1
2

)
Γ
(
ν + 1

2

) t(∣∣∣y∣∣∣2 + t2
) n+2ν+1

2

; (14)

(
G(ν)

t f
)

(x) =

∫
Rn

+

1ν(y; t)Ty f (x)y2ν
n dy , (t > 0), (15)

1ν(y; t) ≡ F−1
ν (e−t|x|2 )(y) =

2πν+
1
2

Γ
(
ν + 1

2

) (4πt)−
n+2ν

2 e−
|y|

2

4t . (16)

The one-dimensional integral representations (11), (12) of the generalized Riesz potentials Iαν f have proved
to be extremely useful for explicit inversion of these potentials (see for details [9], [1], [3], [4]).

In [4] and [27], it has been introduced the so-called beta-semigroup(
B(β

t f
)

(x) =

∫
Rn

ω(β)
(∣∣∣y∣∣∣ , t) f (x − y)dy, (t > 0), (17)

generated by the radial kernel

ω(β)
(∣∣∣y∣∣∣ , t) = F−1(e−t|x|β )(y) ≡ (2π)−n

∫
Rn

e−t|x|βeix·ydx,

and using this beta-semigroup it has been obtained integral representation of the classical Riesz and Bessel
potentials and a new characterization for the Riesz potential spaces. Here F−1 is the inverse Fourier
transform, x · y = x1y1 + ...+ xnyn, |x| =

√
x · x and β ∈ (0,∞). The another application of the beta-semigroup

(17) to Bessel potentials spaces and Radon transform is given in [4] and [5].
In this work we define a semigroup, generated by the radial kernel

ω(β)
(∣∣∣y∣∣∣ , t) = F−1

ν (e−t|x|β )(y) ≡ cν(n)
∫
Rn

+

e−t|x|βeix′·y′ jν− 1
2
(xnyn)x2ν

n dx

and by making use of this semigroup, we obtain one-dimensional integral representation for the generalized
Riesz potentials Iαν f . Further, we define a wavelet-type transform generated by this semigroup and by some
”wavelet-measure”, then using this wavelet-type transform we obtain new explicit inversion formulas for
the generalized Riesz potentials (9). Finally, we give a new characterization of generalized Riesz potential
spaces. We show that the usage of the concept beta-semigroup gives rise to minimize the number of
conditions on wavelet measure µ, no matter how big the order α of the generalized Riesz potentials is.
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2. Beta-Semigroup Generated by the F−1
ν

(
exp(−t |x|β)

)
and Application to Generalized Riesz Potentials

Given β > 0, consider F−1
ν

(
exp(−t |x|β)

)
(y), (t > 0; x, y ∈ Rn

+). It is known that, if ϕ ∈ L1,ν is radial, then

Fνϕ also is radial ([16], [30]). Therefore, F−1
ν

(
exp(−t |x|β)

)
(y) is radial. Denote

ω
(β)
ν

(∣∣∣y∣∣∣ , t) = F−1
ν

(
exp(−t |x|β)

)
(y) = cν(n)

∫
Rn

+

e−t|x|βeix′·y′ jν− 1
2
(xnyn)x2ν

n dx (18)

The Beta-semigroup, generated by the kernel (18) is defined (formally now) as convolution-type operator:(
W(β)

t f
)

(x) =
(
ω

(β)
ν (|.| , t) ~ f

)
(x) ≡

∫
Rn

+

ω
(β)
ν

(∣∣∣y∣∣∣ , t) Ty f (x)y2ν
n dy. (19)

In case of β = 1 and β = 2, (19) coincides with the generalized Poisson semigroup (13) and generalized
Gauss-Weierstrass semigroup (15), respectively. Unlike (14) and (16), the kernel function ω(β)

ν

(∣∣∣y∣∣∣ , t) cannot

be computed explicitly, however, some important properties of ω(β)
ν

(∣∣∣y∣∣∣ , t) are well determined by the
following lemma.

Lemma 2.1. (cf. [4], [27]) Let x, y ∈ Rn
+, 0 < t < ∞ and 0 < β < ∞. Then,

(a) ω(β)
ν

(
λ

1
β

∣∣∣y∣∣∣ , λt
)

= λ−
n+2ν
β ω

(β)
ν

(∣∣∣y∣∣∣ , t), (λ > 0).
In particular, for λ = 1

t we have

ω
(β)
ν

(∣∣∣y∣∣∣ , t) = t−
n+2ν
β ω

(β)
ν

(
t−

1
β

∣∣∣y∣∣∣ , 1) ; (20)

(b) If 0 < β ≤ 2, then ω(β)
ν

(∣∣∣y∣∣∣ , t) > 0 for all y ∈ Rn
+ and t > 0;

(c) If β = 2k, (k ∈N), then ω(β)
ν

(∣∣∣y∣∣∣ , t) ∈ S(Rn
+), ∀t > 0;

(d)
∫
Rn

+

ω
(β)
ν

(∣∣∣y∣∣∣ , t) y2ν
n dy = 1, ∀t > 0; provided that 0 < β ≤ 2 or β = 2k, (k ∈N);

(e) Let f ∈ Lp,ν, 1 ≤ p ≤ ∞. If 0 < β ≤ 2 or β = 2k, (k ∈N), then∥∥∥∥W(β)
t f

∥∥∥∥
p,ν
≤ c(β)

∥∥∥ f
∥∥∥

p,ν .

Here, c(β) =
∫
Rn

+

∣∣∣∣ω(β)
ν

(∣∣∣y∣∣∣ , 1)∣∣∣∣ y2ν
n dy < ∞ and c(β) = 1 provided 0 < β ≤ 2;

(f) Let f ∈ Lp,ν, 1 ≤ p ≤ ∞. If 0 < β ≤ 2 or β = 2k, (k ∈N), then

sup
t>0

∣∣∣∣(W(β)
t f

)
(x)

∣∣∣∣ ≤ c
(
Mν f

)
(x),

where Mν f is the generalized Hardy-Littlewood maximal function ([1],[13],[14]).

(
Mν f

)
(x) = sup

r>0

1
rn+2νω(n; ν)

∫
B+

r

∣∣∣Tx f (y)
∣∣∣ y2ν

n dy, (21)

B+
r =

{
x : x ∈ Rn

+, |x| ≤ r
}

and ω(n; ν) =
∫

B+
1

x2ν
n dx;

(g) sup
x∈Rn

+

∣∣∣∣(W(β)
t f

)
(x)

∣∣∣∣ ≤ ct−
n+2ν

pβ
∥∥∥ f

∥∥∥
p,ν, 1 ≤ p < ∞, where 0 < β ≤ 2 or β = 2k, (k ∈N);
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(h) Let 0 < β ≤ 2 or β = 2k, (k ∈N). Then for any f ∈ Lp,ν and any t, τ ∈ (0,∞)

W(β)
t

(
W(β)
τ f

)
= W(β)

t+τ f , (the semigroup property);

(i) Let f ∈ Lp,ν, 1 ≤ p ≤ ∞ (L∞,ν ≡ C0, the closure of the space of S(Rn
+) in the sup-norm). Then for 0 < β ≤ 2 or

β = 2k, (k ∈N), we have

lim
t→0+

(
W(β)

t f
)

(x) = f (x),

where the limit is understood in the Lp,ν-norm as well as pointwise for almost all x ∈ Rn
+. In case of f ∈ L∞,ν ≡ C0,

the convergence is uniform.

Remark 2.2. In accordance with (i) it will be assumed that W(β)
0 f = f .

Remark 2.3. In our opinion, the statements of this Lemma except of (b) and (c), are valid also for any β > 2. In order
to proof this, it is sufficient to show the following asymptotic formula for any positive β , 2k, (k ∈N).

ω
(β)
ν

(∣∣∣y∣∣∣ , 1) = cβ
∣∣∣y∣∣∣−n−2ν−β

(1 + o(1)) as
∣∣∣y∣∣∣→∞. (22)

We believe that, the formula (22) is valid true but we don’t know its proof and we suggest it, as an open problem.

Proof. (a) We have

ω
(β)
ν

(∣∣∣y∣∣∣ , t) = cν(n)
∫
Rn

+

e−t|x|βeix′·y′ jν− 1
2
(xnyn)x2ν

n dx
(
set x = λ

1
β z, dx = λ

n
β dz

)
= cν(n)λ

2ν
β λ

n
β

∫
Rn

+

e−λt|z|βeiz′·λ
1
β y′ jν− 1

2
(znλ

1
β yn)z2ν

n dz

= λ
n+2ν
β ω

(β)
ν

(
λ

1
β

∣∣∣y∣∣∣ , λt
)
.

(b) For the classical Fourier transform F, the positivity of F−1(e−t|x|β ), (0 < β ≤ 2) can be found in [17], p.44-45
(the case of n = 1) and in [19] (the case of n > 1); see also, [4], p.11-13. For the cases β = 1 and β = 2,
the positivity of ω(β)

ν

(∣∣∣y∣∣∣ , t) ≡ F−1
ν (e−t|x|β )(y) follows immediately from (14) and (16). Let now 0 < β < 2. By

Bernstein’s theorem ([8], chapter 18, sec.4; see also [11], p.223) there is a non-negative finite measure µβ on

[0,∞) , so that, µβ ([0,∞)) = 1 and e−zβ/2 =
∞∫
0

e−τzdµβ(τ), z ∈ [0,∞) . Replace z by |x|2 to get

e−|x|
β

=

∞∫
0

e−τ|x|
2
dµβ(τ). (23)

From (23) we have

ω
(β)
ν

(∣∣∣y∣∣∣ , 1) ≡ F−1
ν (e−|x|

β

)(y) =

∞∫
0

F−1
ν (e−τ|x|

2
)(y)dµβ(τ)

(16)
=

2πν+
1
2

Γ(ν + 1
2 )

∞∫
0

(4πτ)−
n+2ν

2 e−
|y|

2

4τ dµβ(τ) > 0. (24)
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(c) Since the transform Fν is an automorphizm of the space S(Rn
+) and e−|x|

2k
∈ S(Rn

+), it follows that
ω(2k)
ν

(∣∣∣y∣∣∣ , t) ∈ S(Rn
+) and therefore, it is infinitely smooth and rapidly decreasing on Rn

+.

(d) For k ∈N, ω(2k)
ν

(∣∣∣y∣∣∣ , t) ∈ S(Rn
+), (∀t > 0) and therefore, ω(2k)

ν

(∣∣∣y∣∣∣ , t) ∈ L1,ν, (∀t > 0). Then

Fν
(
ω(2k)
ν

(∣∣∣y∣∣∣ , t)) = e−t|x|2 .

Setting x = (0, ..., 0), we have∫
Rn

+

ω(2k)
ν

(∣∣∣y∣∣∣ , t) y2ν
n dy = 1.

Let now 0 < β < 2. By making use of (24) and the formula∫
Rn

+

e−
|y|

2

4τ y2ν
n dy =

1
2
π

n−1
2 Γ(ν +

1
2

) (4τ)
n+2ν

2 (see [6]),

we have∫
Rn

+

ω(2k)
ν

(∣∣∣y∣∣∣ , 1) y2ν
n dy =

2πν+
1
2

Γ(ν + 1
2 )

∞∫
0

(4πτ)−
n+2ν

2


∫
Rn

+

e−
|y|

2

4τ y2ν
n dy

 dµβ(τ)

= π
n+2ν

2 π−
n+2ν

2

∞∫
0

dµβ(τ) = 1.

Now, from homogeneity property (20), it follows immediately that∫
Rn

+

ω
(β)
ν

(∣∣∣y∣∣∣ , t) y2ν
n dy =

∫
Rn

+

ω
(β)
ν

(∣∣∣y∣∣∣ , 1) y2ν
n dy = 1.

(e) follows by the Minkowski inequality.
(f) Theorem 2.1 from [1] states that if the function ϕ ∈ L1,ν has a decreasing and positive radial majorant

ψ(|x|) with
∫
Rn

+

ψ(|x|)x2ν
n dx < ∞, then for any f ∈ Lp,ν (1 ≤ p ≤ ∞)

sup
ε>0

∣∣∣(ϕε ~ f
)

(x)
∣∣∣ ≤ ∥∥∥ψ∥∥∥

1,ν

(
Mν f

)
(x); (ϕε(x) = ε−n−2νϕ(

1
ε

x)). (25)

By setting ψ(|x|) = ω
(β)
ν (|x| , 1) , ε = t

1
β and taking into account (20) and (25) we have for 0 < β ≤ 2 and β = 2k

sup
t>0

∣∣∣∣(W(β)
t f

)
(x)

∣∣∣∣ ≤ c
(
Mν f

)
(x); c =

∫
Rn

+

|ω
(β)
ν

(∣∣∣y∣∣∣ , 1) |y2ν
n dy < ∞.

It is clear from (24) that, the function ω(β)
ν

(∣∣∣y∣∣∣ , 1) decreases monotonically. In case of β = 2k, ω(β)
ν

(∣∣∣y∣∣∣ , 1) ∈
S(Rn

+) and therefore, it has a decreasing, radial and integrable majorant.
(g) The application of the Hölder inequality (i.e. the case of r = ∞ in (6)) yields

∣∣∣∣(W(β)
t f

)
(x)

∣∣∣∣ ≤ ∥∥∥ f
∥∥∥

p,ν


∫
Rn

+

∣∣∣∣ω(β)
ν

(∣∣∣y∣∣∣ , t)∣∣∣∣p′ y2ν
n dy


1

p′
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(20)
=

∥∥∥ f
∥∥∥

p,ν t−
n+2ν
β


∫
Rn

+

∣∣∣∣ω(β)
ν

(
t−

1
β

∣∣∣y∣∣∣ ; 1
)∣∣∣∣p′ y2ν

n dy


1

p′ (
we set y = t

1
β x, dy = t

n
β dx

)

=
∥∥∥ f

∥∥∥
p,ν t−

n+2ν
β t

n+2ν
β

1
p′


∫
Rn

+

∣∣∣∣ω(β)
ν (|x| ; 1)

∣∣∣∣p′ y2ν
n dy


1

p′

= ct−
n+2ν

pβ
∥∥∥ f

∥∥∥
p,ν ,

where c does not depend of f .
(h) If f ∈ S(Rn

+), then the statement is obvious in terms of Fourier-Bessel transform. For arbitrary f ∈ Lp,ν
the result follows by density of S(Rn

+) in Lp,ν (L∞,ν ≡ C0), by taking into account the statement (e).
(i) Using the equality

∫
Rn

+

ω
(β)
ν

(∣∣∣y∣∣∣ , t) y2ν
n dy = 1, (∀t > 0) and Minkowski inequality, we have for f ∈ Lp,ν

(L∞,ν ≡ C0) that∥∥∥∥W(β)
t f − f

∥∥∥∥
p,ν
≤

∫
Rn

+

∣∣∣∣ω(β)
ν

(∣∣∣y∣∣∣ ; t
)∣∣∣∣ ∥∥∥Ty f (.) − f (.)

∥∥∥
p,ν y2ν

n dy

(20)
= t−

n+2ν
β

∫
Rn

+

∣∣∣∣ω(β)
ν

(
t−

1
β

∣∣∣y∣∣∣ ; 1
)∣∣∣∣ ∥∥∥Ty f (.) − f (.)

∥∥∥
p,ν y2ν

n dy
(
set y = t

1
β z, dy = t

n
β dz

)
=

∫
Rn

+

∣∣∣∣ω(β)
ν (|z| ; 1)

∣∣∣∣ ∥∥∥∥∥Tt
1
β z f (.) − f (.)

∥∥∥∥∥
p,ν

z2ν
n dz.

Since
∥∥∥∥∥Tt

1
β z f (.) − f (.)

∥∥∥∥∥
p,ν
≤ 2

∥∥∥ f
∥∥∥

p,ν and

lim
t→0+

∥∥∥∥∥Tt
1
β z f (.) − f (.)

∥∥∥∥∥
p,ν

= 0 ([18]),

it follows from Lebesgue dominated convergence theorem that

lim
t→0+

∥∥∥∥W(β)
t f − f

∥∥∥∥
p,ν

= 0, 1 ≤ p ≤ ∞; (L0,∞ ≡ C0 and in this case convergence is uniform.)

Since W(β)
t f → f pointwise (in fact, uniformly) as t → 0 for any f ∈ Lp,ν ∩ C0 and this class is dense in

Lp,ν, (1 ≤ p < ∞), then owing to ( f ) (of the Lemma 2.1) and famous theorem on pointwise (a.e.) convergence
[28], p.60, it follows that lim

t→0+
W(β)

t f (x) = f (x) for almost all x ∈ Rn
+. The proof of Lemma 2.1 is complete.

By making use of the generalized beta-semigroup W(β)
t f , it is possible to obtain the following one-

dimensional integral representation of the generalized Riesz potentials Iαν f .

Lemma 2.4. Let 0 < α < n + 2ν and f ∈ Lp,ν(Rn
+), 1 ≤ p < n+2ν

α . Then the generalized Riesz potentials Iαν f admit
the following one-dimensional representation:

(
Iαν f

)
(x) =

1
Γ(αβ )

∞∫
0

t
α
β−1

(
W(β)

t f
)

(x)dt, (26)

where 0 < β ≤ 2 or β = 2k, k ∈N.

The formula (26) has exactly the same form as formula (17) in our paper [27] and resembles the classical
Balakrishnan formulas for fractional powers of operators (see [23], p.121). It is clear that the formulas (11)
and (12) are special cases of (26) (put β = 1 and β = 2). Note that this formula is given in [15] and proved
in complete analogy with Theorem 2 from [27].
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3. A Wavelet-Type Transform Generated by the β-Semigroup W (β)
t

f and Inversion of Generalized Riesz
Potentials

In this section it will be assumed that the parameter β is even natural number. By making use of the
β-semigroup (19) we define the following integral transform (cf. [3], p. 339):

(
A1

)
(x, t) ≡

(
Aβ,ν,µ1

)
(x, t) =

∞∫
0

(
W(β)

tη 1
)

(x)dµ(η). (27)

Here x ∈ Rn
+, t > 0, 1 ∈ Lp,ν and µ is a finite Borel measure on [0,∞) with µ ([0,∞)) = 0. From now on such a

signed Borel measure µ will be called a wavelet measure and the relevant integral transform
(
A1

)
(x, t) will

be called a wavelet-type transform.
The integral operator (27) is bounded in Lp,ν−spaces. Indeed, by the Lemma 2.1-(e) and the Minkowski

inequality, we have for 1 ≤ p ≤ ∞

∥∥∥(A1) (., t)
∥∥∥

p,ν ≤

∞∫
0

∥∥∥∥W(β)
tη 1

∥∥∥∥
p,ν

d
∣∣∣µ∣∣∣ (η) ≤ c(β)

∥∥∥µ∥∥∥ ∥∥∥1∥∥∥p,ν ,

where
∥∥∥µ∥∥∥ =

∫
[0,∞)

d
∣∣∣µ∣∣∣ (η) < ∞.

The transform (27) enables one to get a new explicit inversion formula for the generalized Riesz potentials
Iαν f , ( f ∈ Lp,ν, 1 ≤ p < n+2ν

α ). For this, we need some lemmas.

Lemma 3.1. (see [12], formula 3.238(3).)

s∫
1

t−
α
β−1(s − t)

α
β−1dt =

Γ
(
α
β

)
Γ
(
1 + α

β

) 1
s

(s − 1)
α
β , (s > 1, α > 0, β > 0).

Lemma 3.2. (cf. Lemma 1.3 from [20]) Let

Kθ(τ) =
1
τ

(
Iθ+1
+ µ

)
(τ), (θ > 0, τ > 0),

where

(
Iθ+1
+ µ

)
(τ) =

1
Γ (1 + θ)

τ∫
0

(
τ − η

)θ dµ(η), (θ > 0)

is the Riemann-Liouville fractional integral of order (θ + 1) of the measure µ. Suppose that µ satisfies the following
conditions:

∞∫
1

ηγd
∣∣∣µ∣∣∣ (η) < ∞ for some γ > θ; (28)

∞∫
0

η jdµ(η) = 0, ∀ j = 0, 1, ..., [θ] (the integer part of θ). (29)
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Then Kθ(τ) has a decreasing integrable majorant and

∞∫
0

Kθ(τ)dτ ≡ cθ,µ =


Γ(−θ)

∞∫
0

ηθdµ(η), if θ , 1, 2, ...

(−1)θ+1

θ!

∞∫
0

ηθ ln ηdµ(η), if θ = 1, 2, ...


(30)

In particular case, when 0 < θ < 1, the conditions (28)-(29) and relation (30) have the simpler form:
∞∫

1

ηd
∣∣∣µ∣∣∣ (η) < ∞; (31)

∞∫
0

dµ(η) = 0; (32)

∞∫
0

Kθ(τ)dτ ≡ cθ,µ = Γ(−θ)

∞∫
0

ηθdµ(η). (33)

Lemma 3.3. Let f ∈ Lp,ν, 1 ≤ p < n+2ν
α , and the integral transform A1 be defined as in (27). Then for ϕ = Iαν f ,

(
Aϕ

)
(x, t) =

1

Γ
(
α
β

) ∞∫
0


∞∫

0

(
τ − ηt

) αβ−1
+

(
W(β)
τ f

)
(x)dτ

 dµ(η), (34)

where aλ+ =

{
aλ, if a > 0
0, if a ≤ 0

}
with λ = α

β − 1 and a = τ − ηt.

Proof. Since the operators Iαν f and W(β)
t have a convolution structure, they are commutative and therefore,

(
Aϕ

)
(x, t) =

∞∫
0

(
W(β)

tη Iαν f
)

(x)dµ(η) =

∞∫
0

(
IανW(β)

tη f
)

(x)dµ(η) (we use (26))

=
1

Γ
(
α
β

) ∞∫
0


∞∫

0

τ
α
β−1

(
W(β)
τ W(β)

tη f
)

(x)dτ

 dµ(η)

=
1

Γ
(
α
β

) ∞∫
0


∞∫

0

τ
α
β−1

(
W(β)
τ+tη f

)
(x)dτ

 dµ(η)

=
1

Γ
(
α
β

) ∞∫
0


∞∫

0

(
τ − ηt

) αβ−1
+

(
W(β)
τ f

)
(x)dτ

 dµ(η).

Lemma 3.4. Denote

(
Dα
εϕ

)
(x) ≡

(
Dα
ε,βϕ

)
(x) =

∞∫
ε

t−
α
β−1 (

Aϕ
)

(x, t)dt, (ε > 0). (35)
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Then for ϕ = Iαν f , ( f ∈ Lp,ν, 1 ≤ p < n+2ν
α ) we have

(
Dα
εϕ

)
(x) =

∞∫
0

(
W(β)
ετ f

)
(x)K α

β
(τ)dτ, (36)

where Kθ(τ) is defined as in Lemma 3.2.

Proof. Using (34) and Fubini’s theorem, we have

(
Dα
εϕ

)
(x) =

1

Γ
(
α
β

) ∞∫
ε

t−
α
β−1


∞∫

0

dµ(η)

∞∫
0

(
τ − ηt

) αβ−1
+

(
W(β)
τ f

)
(x)dτ

 dt

=
1

Γ
(
α
β

) ∞∫
0

(
W(β)
τ f

)
(x)


τ
ε∫

0

η
α
β−1dµ(η)

τ
η∫

ε

t−
α
β−1

(
τ
η
− t

) α
β−1

dt

 dτ

=
1

Γ
(
α
β

) ∞∫
0

(
W(β)
ετ f

)
(x)


τ∫

0

η
α
β−1dµ(η)

τ
η∫

1

t−
α
β−1

(
τ
η
− t

) α
β−1

dt

 dτ

(we use Lemma 3.1)

=

∞∫
0

(
W(β)
ετ f

)
(x)

1
τ

1

Γ
(
1 + α

β

) τ∫
0

(
τ − η

) α
β dµ(η)

 dτ

=

∞∫
0

(
W(β)
ετ f

)
(x) K α

β
(τ)dτ.

Lemma 3.5. Let the family of operators Dα
ε ≡ Dα

ε,β , (ε > 0) be defined as in (35) and let β > α. Suppose that the

wavelet measure µ satisfies the conditions
∫
∞

0 dµ(η) = 0 and
∫
∞

0 η d|µ|(η) < ∞. Then the maximal operator

f (x) 7−→ sup
ε>0

∣∣∣(Dα
ε Iαν f

)
(x)

∣∣∣ (37)

is weak (p, p) type for 1 ≤ p < n+2ν
α .

Proof. The condition β > α yields 0 < α/β < 1. From Lemma 3.2 it follows that the function K α
β
(τ) has a

decreasing integrable majorant and therefore,

∞∫
0

∣∣∣∣K α
β
(τ)

∣∣∣∣ dτ < ∞. Then by making use of (36) and Lemma

2.1-(f), we have

∣∣∣(Dα
ε Iαν f

)
(x)

∣∣∣ ≤ sup
t>0

∣∣∣∣(W(β)
t f

)
(x)

∣∣∣∣ ∞∫
0

∣∣∣∣K α
β
(τ)

∣∣∣∣ dτ ≤ C
(
Mν f

)
(x).

Since the Hardy-Littlewood type maximal operator Mν f is weak (p, p) type (see e.g. [13, 14]), then the
maximal operator (37) also is weak (p, p) type for 1 ≤ p < n+2ν

α .
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Now, we can formulate the main theorem of this section.

Theorem 3.6. Let α > 0, 1 ≤ p < n+2ν
α , f ∈ Lp,ν and the parameter β > α is of the form β = 2k, k ∈N. Suppose that

µ is a finite Borel measure on [0,∞) satisfying the following conditions:

(a)

∞∫
0

dµ(η) = 0 and (b)

∞∫
1

ηd
∣∣∣µ∣∣∣ (η) < ∞. (38)

Then
∞∫

0

(
AIαν f

)
(x, t)t−

α
β −1dt ≡ lim

ε→0

∞∫
ε

(
AIαν f

)
(x, t)t−

α
β−1dt = c α

β ,µ
f (x), (39)

where the operator A and the coefficient cθ,µ (with θ = α
β ) are defined as in (27) and (33) respectively. The limit in

(39) exists in the Lp,ν-norm and pointwise for almost all x ∈ Rn
+. If f ∈ C0 ∩ Lp,ν, the convergence in (39) is uniform.

Proof. By making use of (35) and (36) we have

∞∫
ε

(
AIαν f

)
(x, t)t−

α
β −1dt ≡

(
Dα
ε Iαν f

)
(x) =

∞∫
0

(
W(β)
ετ f

)
(x)K α

β
(τ)dτ. (40)

Since β > α, then θ = α
β < 1 and therefore [θ] = 0. Thus, the conditions (28)-(29) of the Lemma 3.2 become in

the form (31)-(32), that are coincides with the conditions (38). These conditions guarantee that the function
K α

β
(τ) in Lemma 3.2 has a decreasing integrable majorant and satisfied the equality (33). Hence, we have

for β = 2k > α and f ∈ Lp,ν, 1 ≤ p < n+2ν
α ,

∞∫
ε

(
AIαν f

)
(x, t)t−

α
β −1dt − c α

β ,µ
f (x)

(33)
=

(
Dα
ε Iαν f

)
(x) − f (x)

∞∫
0

K α
β
(τ)dτ

(40)
=

∞∫
0

[(
W(β)
ετ f

)
(x) − f (x)

]
K α

β
(τ)dτ,

and therefore,

∥∥∥∥Dα
ε Iαν f − c α

β ,µ
f
∥∥∥∥

p,ν
≤

∞∫
0

∥∥∥∥W(β)
ετ f − f

∥∥∥∥
p,ν

∣∣∣∣K α
β
(τ)

∣∣∣∣ dτ. (41)

The application of Lemma 2.1-(i) and Lebesgue convergence theorem gives

lim
ε→0

∥∥∥∥Dα
ε Iαν f − c α

β ,µ
f
∥∥∥∥

p,ν
= 0. (42)

For f ∈ C0 ∩ Lp,ν we have

lim
ε→0

sup
x

∣∣∣∣Dα
ε Iαν f (x) − c α

β ,µ
f (x)

∣∣∣∣ = 0.

The proof of pointwise convergence, as expected, is based on the maximal function technique. Since the
maximal operator f (x) 7→ sup

ε>0

∣∣∣Dα
ε Iαν f (x)

∣∣∣ is weak (p, p) type for 1 ≤ p < n+2ν
α (see Lemma 3.5) and the family
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Dα
ε Iαν f

)
(x) converges to c α

β ,µ
f (x) pointwise (in fact, uniformly) as ε → 0 for any f ∈ C0 ∩ Lp,ν (this class is

dense in Lp,ν), then owing to Theorem 3.12 from [29], p.60, it follows that(
Dα
ε Iαν f

)
(x)→ c α

β ,µ
f (x) a.e., as ε→ 0+.

The proof is complete.

Example 3.7. As easily to see that the measures

(a) dµ(η) = (1 − η)e−ηdη and (b) dµ(η) = h(η)dη, where h(η) =


1, 0 ≤ η < 1
−1, 1 ≤ η < 2
0, 2 ≤ η < ∞

 are satisfy the conditions

(31)-(32), and with accordance to (33), c α
β ,µ
, 0 for these measures. It is easy to construct many another examples of

wavelet measure µ on [0,∞) which are satisfy the conditions (31)-(32) with c α
β ,µ
, 0.

4. A Characterization of the Generalized Riesz Potential Spaces

Generalized Riesz potential space is defined as follows:

Iαν
(
Lp,ν

)
=

{
ϕ : ϕ = Iαν f , f ∈ Lp,ν(Rn

+)
}
, 1 ≤ p <

n + 2ν
α

. (43)

The norm in the space Iαν
(
Lp,ν

)
is defined by the relation (cf. [23], p.553)

∥∥∥ϕ∥∥∥
Lp,ν

=
∥∥∥ f

∥∥∥
p,ν, which makes Iαν

(
Lp,ν

)
a Banach space. We are going to give a new (wavelet) characterization of the space Iαν

(
Lp,ν

)
.Note that most

of the known characterizations of the classical Riesz potential spaces Iα(Lp) and its generalizations Lαp,ν(Rn)
(Samko’s spaces) are given in terms of finite differences, the order of which increases with parameter α
(see [23], [24], [21], [22]). A wavelet approach to characterization of classical Riesz’s potentials is given by
B. Rubin [21], p.235-237. As seen from Rubin’s theorem in [21], p.235, the number of vanishing moments
of the wavelet measure µ increases with α. In [5, 27] it has been shown that the usage of the concept
”beta-semigroup” (which is a natural generalization of the well-known Gauss-Weierstrass and Poisson
semigroups) enables one to minimize the number of conditions on wavelet measure, no matter how big the
order α of potentials is. As seen from the following theorem, the using of the additional parameter β (order
of the semigroup W(β)

t f , t > 0) in the characterization of the generalized Riesz potential spaces gives rise to
minimize the number of vanishing moments, more precisely, only one vanishing moment of measure µ is
sufficient.

Theorem 4.1. Let 0 < α < n + 2ν, 1 < p < n+2ν
α and β = 2k > α, (k ∈ N). Suppose that µ is a finite Borel measure

on [0,∞) satisfying the following conditions:

(a)

∞∫
0

dµ(η) = 0; (b)

∞∫
1

ηd
∣∣∣µ∣∣∣ (η) < ∞; (c) c α

β ,µ
, 0, (44)

where c α
β ,µ

is defined by (33): c α
β ,µ

= Γ(−αβ )

∞∫
0

η
α
β dµ(η).

Denote

(
Dα
εϕ

)
(x) ≡

(
Dα
ε,βϕ

)
(x) =

∞∫
ε

t−
α
β−1 (

Aϕ
)

(x, t)dt, (ε > 0), (45)

where the wavelet-type transform Aϕ is defined as in (27). Then,

ϕ ∈ Iαν
(
Lp,ν

)
⇔ ϕ ∈ Lq,ν, q =

p(n + 2ν)
n + 2ν − αp

and sup
ε>0

∥∥∥Dα
εϕ

∥∥∥
p,ν < ∞.
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Proof. Let ϕ ∈ Iαν
(
Lp,ν

)
. Then ϕ = Iαν f , for some f ∈ Lp,ν. The suitable analog of the Hardy-Littlewood-

Sobolev’s theorem [3] claimed that ϕ ∈ Lq,ν, where 1
p −

1
q = α

n+2ν , i.e. q =
p(n+2ν)

n+2ν−αp .Moreover, since the lim
ε→0

Dα
εϕ

exists in the Lp,ν-sense (see, Theorem 3.6, formula (39)), then

sup
ε>0

∥∥∥Dα
εϕ

∥∥∥
p,ν < ∞.

Let us prove the ”sufficient part”. We will use some ideas from [21], p.222 and [26] (see also [27]). Denote
by φ+ ≡ φ+(Rn

+) the Semyanisty-Lizorkin type space of rapidly decreasing C∞−functions which are even
with respect to xn and such that

ω ∈ φ+ ⇔

∫
Rn

+

ω(x)xk1
1 xk2

2 ...x
2kn
n x2ν

n dx = 0, ∀k1, k2, ..., kn ∈ Z
+.

The class φ+ is dense in Lp,ν(Rn
+) and the operator Iαν is an automorphism of φ+([7]). (The density of classical

Lizorkin spaces φ in Lp(Rn), and much more information about its generalizations can be found in the
paper by S.G. Samko [25]; see also [23], p. 487). The action of a distribution f as a functional on the test
function ω ∈ φ+ will be denoted by

(
f , ω

)
. For a locally integrable on Rn

+ function f we set

( f , ω) =

∫
Rn

+

f (x)ω(x)x2ν
n dx,

provided that the integral is finite for all ω ∈ φ+. It is not difficult to show that, being a convolution-type
operator, Iαν has the following property:

(Iαν f , ω) = ( f , Iανω), ∀ω ∈ φ+, α > 0, f ∈ Lp,ν. (46)

It is known that if ( f , ω) = (1, ω), ∀ω ∈ φ+, then f = 1 + P, where P = P(x), x ∈ Rn
+ is a polynomial which

is even with respect to the last variable xn (see [7]). Now, denote Dα
εϕ = 1

c α
β ,µ

Dα
εϕ, where Dα

εϕ is defined

by (45). Since sup
ε>0

∥∥∥Dα
εϕ

∥∥∥
p,ν < ∞, by Banach-Alaoglu theorem, there exists a sequence (εk) and a function

f ∈ Lp,ν such that

lim
εk→0

(
Dα
εk
ϕ,ω

)
=

(
f , ω

)
,∀ω ∈ φ+. (47)

From (45), (27) and (19) it follows that the integral operator Dα
εk
ϕ can be represented as generalized

convolution with some radial kernel. Therefore, we have(
Dα
εk
ϕ, υ

)
=

(
ϕ,Dα

εk
υ
)

, ∀υ ∈ φ+. (48)

Firstly, we are going to show that

(Iαν f , ω) =
(
ϕ,ω

)
,∀ω ∈ φ+.

For this, we have for all ω ∈ φ+:

(Iαν f , ω)
(46)
= ( f , Iανω)

(47)
= lim

εk→0

(
Dα
εk
ϕ, Iανω

) (48)
= lim

εk→0

(
ϕ,Dα

εk
Iανω

)
(40)
= lim

εk→0

ϕ, 1
c α
β ,µ

∞∫
0

(
W(β)
εkτω

)
(x)K α

β
(τ)dτ

 . (49)
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We must show that the last limit is equal to
(
ϕ,ω

)
. Using the Hölder’s inequality and then Minkowski one,

we have∣∣∣∣∣∣∣∣
ϕ, 1

c α
β ,µ

∞∫
0

(
W(β)
εkτω

)
(x)K α

β
(τ)dτ

 − (
ϕ,ω

)∣∣∣∣∣∣∣∣ ≤ 1∣∣∣∣c α
β ,µ

∣∣∣∣
∥∥∥ϕ∥∥∥

p,ν

∥∥∥∥∥∥∥∥
∞∫

0

(
W(β)
εkτω

)
(x)K α

β
(τ)dτ − c α

β ,µ
ω(x)

∥∥∥∥∥∥∥∥
p′,ν

(we use the relation c α
β ,µ

=

∞∫
0

K α
β
(τ)dτ)

≤
1∣∣∣∣c α
β ,µ

∣∣∣∣
∥∥∥ϕ∥∥∥

p,ν

∞∫
0

∣∣∣∣K α
β
(τ)

∣∣∣∣ ∥∥∥∥W(β)
εkτω − ω

∥∥∥∥
p′,ν

dτ, (
1
p

+
1
p′

= 1). (50)

It follows from the Lebesgue convergence theorem, the last expression tends to zero as εk → 0. Hence,
(Iαν f , ω) =

(
ϕ,ω

)
,∀ω ∈ φ+. This implies that, Iαν f = ϕ + P, where P = P(x) is a polynomial (which is even

with respect to the variable xn). But, ϕ ∈ Lq,ν and Iαν f ∈ Lq,ν (with q =
p(n+2ν)

n+2ν−αp ), then P = 0 and therefore,

Iαν f = ϕ. Finally, ϕ ∈ Iαν
(
Lp,ν

)
and the proof is complete.
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