Generalized Riesz Potential Spaces and their Characterization via Wavelet-Type Transform

Ilham A. Aliev ${ }^{\text {a }}$, Esra Saǧlık ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Akdeniz University, 07058, Antalya, Turkey
${ }^{b}$ Institute of science,department of mathematics, Akdeniz University, 07058, Antalya, Turkey

Abstract

We introduce a wavelet-type transform generated by the so-called beta-semigroup, which is a natural generalization of the Gauss-Weierstrass and Poisson semigroups associated to the Laplace-Bessel convolution. By making use of this wavelet-type transform we obtain new explicit inversion formulas for the generalized Riesz potentials and a new characterization of the generalized Riesz potential spaces. We show that the usage of the concept beta-semigroup gives rise to minimize the number of conditions on wavelet measure, no matter how big the order of the generalized Riesz potentials is.

1. Introduction

Let $\mathbb{R}_{+}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\}$ and $S\left(\mathbb{R}_{+}^{n}\right)$ be the space of functions, which are restrictions to \mathbb{R}_{+}^{n} of the Schwartz test functions on \mathbb{R}^{n} that are even in the last variable x_{n}. The closure of the space $S\left(\mathbb{R}_{+}^{n}\right)$ in the norm

$$
\begin{equation*}
\|f\|_{p, v}=\left(\int_{\mathbb{R}_{+}^{n}}|f(x)|^{p} x_{n}^{2 v} d x\right)^{\frac{1}{p}} \tag{1}
\end{equation*}
$$

is denoted by $L_{p, v} \equiv L_{p, v}\left(\mathbb{R}_{+}^{n}\right)$. Here $v>0$ is a fixed parameter, $1 \leq p<\infty$ and $d x=d x_{1} \ldots d x_{n-1} d x_{n}$. The notation $C_{0} \equiv C_{0}\left(\mathbb{R}_{+}^{n}\right)$ stands for the closure of the spaces $S\left(\mathbb{R}_{+}^{n}\right)$ in the sup-norm.

The Fourier-Bessel transform and its inverse are defined as

$$
\begin{equation*}
\left(F_{v} \varphi\right)(x)=\int_{\mathbb{R}_{+}^{n}} \varphi(y) e^{-i x^{\prime} \cdot y^{\prime}} j_{v-\frac{1}{2}}\left(x_{n} y_{n}\right) y_{n}^{2 v} d y, \quad\left(F_{v}^{-1} \varphi\right)(x)=c_{v}(n)\left(F_{v} \varphi\right)\left(-x^{\prime}, x_{n}\right) \tag{2}
\end{equation*}
$$

where $x^{\prime} \cdot y^{\prime}=x_{1} y_{1}+\ldots+x_{n-1} y_{n-1}, \varphi \in L_{1, v}\left(\mathbb{R}_{+}^{n}\right)$,

$$
\begin{equation*}
c_{v}(n)=\left[(2 \pi)^{n-1} 2^{2 v-1} \Gamma^{2}\left(v+\frac{1}{2}\right)\right]^{-1} \tag{3}
\end{equation*}
$$

[^0]and $j_{s}(t)\left(t>0, s>-\frac{1}{2}\right)$ is the normalized Bessel function: $j_{s}(t)=\frac{\left.2^{s} \Gamma(p+1)\right)_{s}(t)}{t^{s}}\left(J_{s}(t)\right.$ is the first kind Bessel function).

The Fourier-Bessel transform is an automorphism of the space $S\left(\mathbb{R}_{+}^{n}\right)$ and if the function $\varphi \in L_{1, v}\left(\mathbb{R}_{+}^{n}\right)$ is radial, then $F_{\nu} \varphi$ is also radial (see for details, [16],[30]).

Denote by T^{y} the generalized translation (shift) operator, acting as

$$
\begin{equation*}
\left(T^{y} \varphi\right)(x)=\frac{\Gamma\left(v+\frac{1}{2}\right)}{\Gamma(v) \Gamma\left(\frac{1}{2}\right)} \int_{0}^{\pi} \varphi\left(x^{\prime}-y^{\prime} ; \sqrt{x_{n}^{2}-2 x_{n} y_{n} \cos \theta+y_{n}^{2}}\right) \sin ^{2 v-1} \theta d \theta \tag{4}
\end{equation*}
$$

The convolution (Bessel convolution) generated by the translation T^{y} is defined as

$$
\begin{equation*}
(\varphi \circledast \psi)(x)=\int_{\mathbb{R}_{+}^{n}} \varphi(\xi) T^{\xi} \psi(x) \xi_{n}^{2 v} d \xi,\left(d \xi=d \xi_{1} \ldots d \xi_{n}\right) \tag{5}
\end{equation*}
$$

for which $\varphi \circledast \psi=\psi \circledast \varphi$. The following Young inequality for convolution (5) is well known:

$$
\begin{equation*}
\|\varphi \circledast \psi\|_{r, v} \leq\|\varphi\|_{p, v}\|\psi\|_{q, v}, \quad 1 \leq p, q, r \leq \infty \text { and } \frac{1}{p}+\frac{1}{q}=\frac{1}{r}-1 . \tag{6}
\end{equation*}
$$

The action of the Fourier-Bessel transform to Bessel convolution is as follows:

$$
\begin{equation*}
F_{v}(\varphi \circledast \psi)=F_{v} \varphi \cdot F_{v} \psi \tag{7}
\end{equation*}
$$

The generalized Riesz potentials generated by the generalized translation (4) are defined in terms of FourierBessel transforms as follows

$$
\begin{equation*}
I_{v}^{\alpha} f=F_{v}^{-1}\left(|\xi|^{-\alpha} F_{v} f\right) ; f \in S\left(\mathbb{R}_{+}^{n}\right), 0<\alpha<n+2 v . \tag{8}
\end{equation*}
$$

These potentials admit the following integral representation as the Bessel convolution (see [9],[1],[2]):

$$
\begin{equation*}
\left(I_{v}^{\alpha} f\right)(x)=\frac{1}{\gamma_{n, v}(\alpha)} \int_{\mathbb{R}_{+}^{n}}|y|^{\alpha-n-2 v} T^{y} f(x) y_{n}^{2 v} d y \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{n, v}(\alpha)=\frac{2^{\alpha-1} \pi^{\frac{n-1}{2}} \Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(v+\frac{1}{2}\right)}{\Gamma\left(\frac{n+2 v-\alpha}{2}\right)}, 0<\alpha<n+2 v \tag{10}
\end{equation*}
$$

Many known results for the classical Riesz potentials are also valid for the potentials $I_{v}^{\alpha} f$. For instance, the analog of Hardy-Littlewood-Sobolev theorem in this case is formulated as (see [9]):

$$
\left\|I_{v}^{\alpha} f\right\|_{q, v} \leq c .\|f\|_{p, v},\left(1<p<\frac{n+2 v}{\alpha} \text { and } \frac{1}{p}-\frac{1}{q}=\frac{\alpha}{n+2 v}\right)
$$

If $p=1$ then

$$
\text { meas }\left\{x \in \mathbb{R}_{+}^{n}:\left|\left(I_{v}^{\alpha} f\right)(x)\right|>\lambda\right\} \leq\left(\frac{c_{q}\|f\|_{1, v}}{\lambda}\right)^{q}
$$

where $q=\frac{n+2 v}{n+2 v-\alpha}$ and for measurable $E \subset \mathbb{R}_{+}^{n}$, meas $E=\int_{E} x_{n}^{2 v} d x$.

The potentials $I_{v}^{\alpha} f$ have remarkable one-dimensional integral representations in terms of the Poisson and Gauss-Weierstrass semigroups, generated by the generalized translation T^{y}. Namely,

$$
\begin{align*}
& \left(I_{v}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha-1}\left(P_{t}^{(v)} f\right)(x) d t \tag{11}\\
& \left(I_{v}^{\alpha} f\right)(x)=\frac{1}{\Gamma\left(\frac{\alpha}{2}\right)} \int_{0}^{\infty} t^{\frac{\alpha}{2}-1}\left(G_{t}^{(v)} f\right)(x) d t \tag{12}
\end{align*}
$$

Here the Poisson semigroup $P_{t}^{(v)} f$ and the Gauss-Weierstrass semigroup $G_{t}^{(v)} f$ generated by the generalized translation are defined as follows (see [9], [10], [1]):

$$
\begin{align*}
& \left(P_{t}^{(v)} f\right)(x)=\int_{\mathbb{R}_{+}^{n}} p_{v}(y ; t) T^{y} f(x) y_{n}^{2 v} d y,(t>0) \tag{13}\\
& p_{v}(y ; t) \equiv F_{v}^{-1}\left(e^{-t|x|}\right)(y)=\frac{2}{\pi^{\frac{n}{2}}} \frac{\Gamma\left(\frac{n+2 v+1}{2}\right)}{\Gamma\left(v+\frac{1}{2}\right)} \frac{t}{\left(|y|^{2}+t^{2}\right)^{\frac{n+2 v+1}{2}}} \tag{14}\\
& \left(G_{t}^{(v)} f\right)(x)=\int_{\mathbb{R}_{+}^{n}} g_{v}(y ; t) T^{y} f(x) y_{n}^{2 v} d y,(t>0) \tag{15}\\
& g_{v}(y ; t) \equiv F_{v}^{-1}\left(e^{-t|x|^{2}}\right)(y)=\frac{2 \pi^{v+\frac{1}{2}}}{\Gamma\left(v+\frac{1}{2}\right)}(4 \pi t)^{-\frac{n+2 v}{2}} e^{-\frac{|y|^{2}}{4 t}} \tag{16}
\end{align*}
$$

The one-dimensional integral representations (11), (12) of the generalized Riesz potentials $I_{v}^{\alpha} f$ have proved to be extremely useful for explicit inversion of these potentials (see for details [9], [1], [3], [4]).

In [4] and [27], it has been introduced the so-called beta-semigroup

$$
\begin{equation*}
\left(B_{t}^{(\beta} f\right)(x)=\int_{\mathbb{R}^{n}} \omega^{(\beta)}(|y|, t) f(x-y) d y,(t>0) \tag{17}
\end{equation*}
$$

generated by the radial kernel

$$
\omega^{(\beta)}(|y|, t)=F^{-1}\left(e^{-t|x|^{\beta}}\right)(y) \equiv(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{-t|x|} e^{i x \cdot y} d x,
$$

and using this beta-semigroup it has been obtained integral representation of the classical Riesz and Bessel potentials and a new characterization for the Riesz potential spaces. Here F^{-1} is the inverse Fourier transform, $x \cdot y=x_{1} y_{1}+\ldots+x_{n} y_{n},|x|=\sqrt{x \cdot x}$ and $\beta \in(0, \infty)$. The another application of the beta-semigroup (17) to Bessel potentials spaces and Radon transform is given in [4] and [5].

In this work we define a semigroup, generated by the radial kernel

$$
\omega^{(\beta)}(|y|, t)=F_{v}^{-1}\left(e^{-t|x|^{\beta}}\right)(y) \equiv c_{v}(n) \int_{\mathbb{R}_{+}^{n}} e^{-t|x|^{\beta}} e^{i x^{\prime} \cdot y^{\prime}} j_{v-\frac{1}{2}}\left(x_{n} y_{n}\right) x_{n}^{2 v} d x
$$

and by making use of this semigroup, we obtain one-dimensional integral representation for the generalized Riesz potentials $I_{v}^{\alpha} f$. Further, we define a wavelet-type transform generated by this semigroup and by some "wavelet-measure", then using this wavelet-type transform we obtain new explicit inversion formulas for the generalized Riesz potentials (9). Finally, we give a new characterization of generalized Riesz potential spaces. We show that the usage of the concept beta-semigroup gives rise to minimize the number of conditions on wavelet measure μ, no matter how big the order α of the generalized Riesz potentials is.
2. Beta-Semigroup Generated by the $F_{v}^{-1}\left(\exp \left(-t|x|^{\beta}\right)\right)$ and Application to Generalized Riesz Potentials

Given $\beta>0$, consider $F_{v}^{-1}\left(\exp \left(-t|x|^{\beta}\right)\right)(y),\left(t>0 ; x, y \in \mathbb{R}_{+}^{n}\right)$. It is known that, if $\varphi \in L_{1, v}$ is radial, then $F_{\nu} \varphi$ also is radial ([16], [30]). Therefore, $F_{v}^{-1}\left(\exp \left(-t|x|^{\beta}\right)\right)(y)$ is radial. Denote

$$
\begin{equation*}
\omega_{v}^{(\beta)}(|y|, t)=F_{v}^{-1}\left(\exp \left(-t|x|^{\beta}\right)\right)(y)=c_{v}(n) \int_{\mathbb{R}_{+}^{n}} e^{-t|x|^{\beta}} e^{i x^{\prime} \cdot y^{\prime}} j_{v-\frac{1}{2}}\left(x_{n} y_{n}\right) x_{n}^{2 v} d x \tag{18}
\end{equation*}
$$

The Beta-semigroup, generated by the kernel (18) is defined (formally now) as convolution-type operator:

$$
\begin{equation*}
\left(W_{t}^{(\beta)} f\right)(x)=\left(\omega_{v}^{(\beta)}(| | \mid, t) \circledast f\right)(x) \equiv \int_{\mathbb{R}_{+}^{n}} \omega_{v}^{(\beta)}(|y|, t) T^{y} f(x) y_{n}^{2 v} d y . \tag{19}
\end{equation*}
$$

In case of $\beta=1$ and $\beta=2$, (19) coincides with the generalized Poisson semigroup (13) and generalized Gauss-Weierstrass semigroup (15), respectively. Unlike (14) and (16), the kernel function $\omega_{v}^{(\beta)}(|y|, t)$ cannot be computed explicitly, however, some important properties of $\omega_{v}^{(\beta)}(|y|, t)$ are well determined by the following lemma.

Lemma 2.1. (cf. [4], [27]) Let $x, y \in \mathbb{R}_{+}^{n}, 0<t<\infty$ and $0<\beta<\infty$. Then,
(a) $\omega_{v}^{(\beta)}\left(\lambda^{\frac{1}{\beta}}|y|, \lambda t\right)=\lambda^{-\frac{n+2 v}{\beta}} \omega_{v}^{(\beta)}(|y|, t),(\lambda>0)$.

In particular, for $\lambda=\frac{1}{t}$ we have

$$
\begin{equation*}
\omega_{v}^{(\beta)}(|y|, t)=t^{-\frac{n+2 v}{\beta}} \omega_{v}^{(\beta)}\left(t^{-\frac{1}{\beta}}|y|, 1\right) ; \tag{20}
\end{equation*}
$$

(b) If $0<\beta \leq 2$, then $\omega_{v}^{(\beta)}(|y|, t)>0$ for all $y \in \mathbb{R}_{+}^{n}$ and $t>0$;
(c) If $\beta=2 k,(k \in \mathbb{N})$, then $\omega_{v}^{(\beta)}(|y|, t) \in S\left(\mathbb{R}_{+}^{n}\right), \forall t>0$;
(d) $\int_{\mathbb{R}_{+}^{n}} \omega_{v}^{(\beta)}(|y|, t) y_{n}^{2 v} d y=1, \forall t>0$; provided that $0<\beta \leq 2$ or $\beta=2 k,(k \in \mathbb{N})$;
(e) Let $f \in L_{p, v}, 1 \leq p \leq \infty$. If $0<\beta \leq 2$ or $\beta=2 k,(k \in \mathbb{N})$, then

$$
\left\|W_{t}^{(\beta)} f\right\|_{p, v} \leq c(\beta)\|f\|_{p, v}
$$

Here, $c(\beta)=\int_{\mathbb{R}_{+}^{n}}\left|\omega_{v}^{(\beta)}(|y|, 1)\right| y_{n}^{2 v} d y<\infty$ and $c(\beta)=1$ provided $0<\beta \leq 2$;
(f) Let $f \in L_{p, v}, 1 \leq p \leq \infty$. If $0<\beta \leq 2$ or $\beta=2 k,(k \in \mathbb{N})$, then

$$
\sup _{t>0}\left|\left(W_{t}^{(\beta)} f\right)(x)\right| \leq c\left(M_{v} f\right)(x)
$$

where $M_{v} f$ is the generalized Hardy-Littlewood maximal function ([1],[13],[14]).

$$
\begin{equation*}
\left(M_{v} f\right)(x)=\sup _{r>0} \frac{1}{r^{n+2 v} \omega(n ; v)} \int_{B_{r}^{+}}\left|T^{x} f(y)\right| y_{n}^{2 v} d y \tag{21}
\end{equation*}
$$

$B_{r}^{+}=\left\{x: x \in \mathbb{R}_{+}^{n}|x| \leq r\right\}$ and $\omega(n ; v)=\int_{B_{1}^{+}} x_{n}^{2 v} d x$;
$(g) \sup _{x \in \mathbb{R}_{+}^{n}}\left|\left(W_{t}^{(\beta)} f\right)(x)\right| \leq c t^{-\frac{n+2 v}{p \beta}}\|f\|_{p, v^{\prime}} 1 \leq p<\infty$, where $0<\beta \leq 2$ or $\beta=2 k,(k \in \mathbb{N})$;
(h) Let $0<\beta \leq 2$ or $\beta=2 k,(k \in \mathbb{N})$. Then for any $f \in L_{p, v}$ and any $t, \tau \in(0, \infty)$

$$
W_{t}^{(\beta)}\left(W_{\tau}^{(\beta)} f\right)=W_{t+\tau}^{(\beta)} f,(\text { the semigroup property })
$$

(i) Let $f \in L_{p, v}, 1 \leq p \leq \infty\left(L_{\infty, v} \equiv C_{0}\right.$, the closure of the space of $S\left(\mathbb{R}_{+}^{n}\right)$ in the sup-norm). Then for $0<\beta \leq 2$ or $\beta=2 k,(k \in \mathbb{N})$, we have

$$
\lim _{t \rightarrow 0^{+}}\left(W_{t}^{(\beta)} f\right)(x)=f(x)
$$

where the limit is understood in the $L_{p, v}$-norm as well as pointwise for almost all $x \in \mathbb{R}_{+}^{n}$. In case of $f \in L_{\infty, v} \equiv C_{0}$, the convergence is uniform.

Remark 2.2. In accordance with (i) it will be assumed that $W_{0}^{(\beta)} f=f$.
Remark 2.3. In our opinion, the statements of this Lemma except of (b) and (c), are valid also for any $\beta>2$. In order to proof this, it is sufficient to show the following asymptotic formula for any positive $\beta \neq 2 k,(k \in \mathbb{N})$.

$$
\begin{equation*}
\omega_{v}^{(\beta)}(|y|, 1)=c_{\beta}|y|^{-n-2 v-\beta}(1+o(1)) \text { as }|y| \rightarrow \infty \tag{22}
\end{equation*}
$$

We believe that, the formula (22) is valid true but we don't know its proof and we suggest it, as an open problem.
Proof. (a) We have

$$
\begin{aligned}
\omega_{v}^{(\beta)}(|y|, t) & =c_{v}(n) \int_{\mathbb{R}^{n}} e^{-t|x| \beta \mid \beta} e^{i x^{\prime} \cdot y^{\prime}} j_{v-\frac{1}{2}}\left(x_{n} y_{n}\right) x_{n}^{2 v} d x\left(\text { set } x=\lambda^{\frac{1}{\beta}} z, d x=\lambda^{\frac{n}{\beta}} d z\right) \\
& =c_{v}(n) \lambda^{\frac{2 v}{\beta}} \lambda^{\frac{n}{\beta}} \int_{\mathbb{R}_{+}^{n}} e^{-\lambda t|z\rangle^{\beta}} e^{i z^{\prime} \cdot \lambda^{\frac{1}{\beta}} y^{\prime}} j_{v-\frac{1}{2}}\left(z_{n} \lambda^{\frac{1}{\beta}} y_{n}\right) z_{n}^{2 v} d z \\
& =\lambda^{\frac{n+2 v}{\beta}} \omega_{v}^{(\beta)}\left(\lambda^{\frac{1}{\beta}}|y|, \lambda t\right) .
\end{aligned}
$$

(b) For the classical Fourier transform F, the positivity of $F^{-1}\left(e^{-t|x| \beta}\right),(0<\beta \leq 2)$ can be found in [17], p.44-45 (the case of $n=1$) and in [19] (the case of $n>1$); see also, [4], p.11-13. For the cases $\beta=1$ and $\beta=2$, the positivity of $\omega_{v}^{(\beta)}(|y|, t) \equiv F_{v}^{-1}\left(e^{-t|x|^{\beta}}\right)(y)$ follows immediately from (14) and (16). Let now $0<\beta<2$. By Bernstein's theorem ([8], chapter 18, sec.4; see also [11], p.223) there is a non-negative finite measure μ_{β} on $[0, \infty)$, so that, $\mu_{\beta}([0, \infty))=1$ and $e^{-z^{\beta / 2}}=\int_{0}^{\infty} e^{-\tau z} d \mu_{\beta}(\tau), z \in[0, \infty)$. Replace z by $|x|^{2}$ to get

$$
\begin{equation*}
e^{-|x|^{\beta}}=\int_{0}^{\infty} e^{-\tau|x|^{2}} d \mu_{\beta}(\tau) \tag{23}
\end{equation*}
$$

From (23) we have

$$
\begin{align*}
& \omega_{v}^{(\beta)}(|y|, 1) \equiv F_{v}^{-1}\left(e^{-|x| \beta \mid}\right)(y)=\int_{0}^{\infty} F_{v}^{-1}\left(e^{-\tau|x|^{2}}\right)(y) d \mu_{\beta}(\tau) \\
& \stackrel{(16)}{=} \frac{2 \pi^{v+\frac{1}{2}}}{\Gamma\left(v+\frac{1}{2}\right)} \int_{0}^{\infty}(4 \pi \tau)^{-\frac{v+2 v}{2}} e^{-\frac{\mid y^{2}}{4 \tau}} d \mu_{\beta}(\tau)>0 . \tag{24}
\end{align*}
$$

(c) Since the transform F_{v} is an automorphizm of the space $S\left(\mathbb{R}_{+}^{n}\right)$ and $e^{-|x|^{2 k}} \in S\left(\mathbb{R}_{+}^{n}\right)$, it follows that $\omega_{v}^{(2 k)}(|y|, t) \in S\left(\mathbb{R}_{+}^{n}\right)$ and therefore, it is infinitely smooth and rapidly decreasing on \mathbb{R}_{+}^{n}.
(d) For $k \in \mathbb{N}, \omega_{v}^{(2 k)}(|y|, t) \in S\left(\mathbb{R}_{+}^{n}\right),(\forall t>0)$ and therefore, $\omega_{v}^{(2 k)}(|y|, t) \in L_{1, v},(\forall t>0)$. Then

$$
F_{v}\left(\omega_{v}^{(2 k)}(|y|, t)\right)=e^{-t|x|^{2}}
$$

Setting $x=(0, \ldots, 0)$, we have

$$
\int_{\mathbb{R}_{+}^{n}} \omega_{v}^{(2 k)}(|y|, t) y_{n}^{2 v} d y=1
$$

Let now $0<\beta<2$. By making use of (24) and the formula

$$
\int_{\mathbb{R}_{+}^{n}} e^{-\frac{|y|^{2}}{4 \tau}} y_{n}^{2 v} d y=\frac{1}{2} \pi^{\frac{n-1}{2}} \Gamma\left(v+\frac{1}{2}\right)(4 \tau)^{\frac{n+2 v}{2}} \text { (see [6]), }
$$

we have

$$
\begin{aligned}
\int_{\mathbb{R}_{+}^{n}} \omega_{v}^{(2 k)}(|y|, 1) y_{n}^{2 v} d y & =\frac{2 \pi^{v+\frac{1}{2}}}{\Gamma\left(v+\frac{1}{2}\right)} \int_{0}^{\infty}(4 \pi \tau)^{-\frac{n+2 v}{2}}\left(\int_{\mathbb{R}_{+}^{n}} e^{-\frac{|y|^{2}}{4 \tau}} y_{n}^{2 v} d y\right) d \mu_{\beta}(\tau) \\
& =\pi^{\frac{n+2 v}{2}} \pi^{-\frac{n+2 v}{2}} \int_{0}^{\infty} d \mu_{\beta}(\tau)=1 .
\end{aligned}
$$

Now, from homogeneity property (20), it follows immediately that

$$
\int_{\mathbb{R}_{+}^{n}} \omega_{v}^{(\beta)}(|y|, t) y_{n}^{2 v} d y=\int_{\mathbb{R}_{+}^{n}} \omega_{v}^{(\beta)}(|y|, 1) y_{n}^{2 v} d y=1
$$

(e) follows by the Minkowski inequality.
(f) Theorem 2.1 from [1] states that if the function $\varphi \in L_{1, v}$ has a decreasing and positive radial majorant $\psi(|x|)$ with $\int_{\mathbb{R}_{+}^{n}} \psi(|x|) x_{n}^{2 v} d x<\infty$, then for any $f \in L_{p, v}(1 \leq p \leq \infty)$

$$
\begin{equation*}
\sup _{\varepsilon>0}\left|\left(\varphi_{\varepsilon} \circledast f\right)(x)\right| \leq\|\psi\|_{1, v}\left(M_{v} f\right)(x) ; \quad\left(\varphi_{\varepsilon}(x)=\varepsilon^{-n-2 v} \varphi\left(\frac{1}{\varepsilon} x\right)\right) . \tag{25}
\end{equation*}
$$

By setting $\psi(|x|)=\omega_{v}^{(\beta)}(|x|, 1), \varepsilon=t^{\frac{1}{\beta}}$ and taking into account (20) and (25) we have for $0<\beta \leq 2$ and $\beta=2 k$

$$
\sup _{t>0}\left|\left(W_{t}^{(\beta)} f\right)(x)\right| \leq c\left(M_{v} f\right)(x) ; c=\int_{\mathbb{R}_{+}^{n}}\left|\omega_{v}^{(\beta)}(|y|, 1)\right| y_{n}^{2 v} d y<\infty .
$$

It is clear from (24) that, the function $\omega_{v}^{(\beta)}(|y|, 1)$ decreases monotonically. In case of $\beta=2 k, \omega_{v}^{(\beta)}(|y|, 1) \in$ $S\left(\mathbb{R}_{+}^{n}\right)$ and therefore, it has a decreasing, radial and integrable majorant.
(g) The application of the Hölder inequality (i.e. the case of $r=\infty$ in (6)) yields

$$
\left|\left(W_{t}^{(\beta)} f\right)(x)\right| \leq\|f\|_{p, v}\left(\int_{\mathbb{R}_{+}^{n}}\left|\omega_{v}^{(\beta)}(|y|, t)\right|^{p^{\prime}} y_{n}^{2 v} d y\right)^{\frac{1}{p^{\prime}}}
$$

$$
\begin{aligned}
& \stackrel{(20)}{=}\|f\|_{p, v} t^{-\frac{n+2 v}{\beta}}\left(\int_{\mathbb{R}_{+}^{n}}\left|\omega_{v}^{(\beta)}\left(t^{-\frac{1}{\beta}}|y| ; 1\right)\right|^{p^{\prime}} y_{n}^{2 v} d y\right)^{\frac{1}{p^{\prime}}}\left(\text { we set } y=t^{\frac{1}{\beta}} x, d y=t^{\frac{n}{\beta}} d x\right) \\
& =\|f\|_{p, v} t^{-\frac{n+2 v}{\beta}} t^{\frac{n+2 v}{\beta} \frac{1}{p^{\prime}}}\left(\int_{\mathbb{R}_{+}^{n}}\left|\omega_{v}^{(\beta)}(|x| ; 1)\right|^{p^{\prime}} y_{n}^{2 v} d y\right)^{\frac{1}{p^{\prime}}}=c t^{-\frac{n+2 v}{p \beta}}\|f\|_{p, v},
\end{aligned}
$$

where c does not depend of f.
(h) If $f \in S\left(\mathbb{R}_{+}^{n}\right)$, then the statement is obvious in terms of Fourier-Bessel transform. For arbitrary $f \in L_{p, v}$ the result follows by density of $S\left(\mathbb{R}_{+}^{n}\right)$ in $L_{p, v}\left(L_{\infty, v} \equiv C_{0}\right)$, by taking into account the statement (e).
(i) Using the equality $\int_{\mathbb{R}_{+}^{n}} \omega_{v}^{(\beta)}(|y|, t) y_{n}^{2 v} d y=1,(\forall t>0)$ and Minkowski inequality, we have for $f \in L_{p, v}$ $\left(L_{\infty, v} \equiv C_{0}\right)$ that

$$
\begin{aligned}
& \left\|W_{t}^{(\beta)} f-f\right\|_{p, v} \leq \int_{\mathbb{R}_{+}^{n}}\left|\omega_{v}^{(\beta)}(|y| ; t)\right|\left\|T^{y} f(.)-f(.)\right\|_{p, v} y_{n}^{2 v} d y \\
& \stackrel{(20)}{=} t^{-\frac{n+2 v}{\beta}} \int_{\mathbb{R}_{+}^{n}}\left|\omega_{v}^{(\beta)}\left(t^{-\frac{1}{\beta}}|y| ; 1\right)\right|\left\|T^{y} f(.)-f(.)\right\|_{p, v} y_{n}^{2 v} d y\left(\operatorname{set} y=t^{\frac{1}{\beta}} z, d y=t^{\frac{n}{\beta}} d z\right) \\
& =\int_{\mathbb{R}_{+}^{n}}\left|\omega_{v}^{(\beta)}(|z| ; 1)\right|\left\|T^{t^{\frac{1}{\beta}} z} f(.)-f(.)\right\|_{p, v} z_{n}^{2 v} d z .
\end{aligned}
$$

Since $\left\|T^{t^{\frac{1}{p}} z} f(.)-f(.)\right\|_{p, v} \leq 2\|f\|_{p, v}$ and

$$
\lim _{t \rightarrow 0^{+}}\left\|T^{t^{\frac{1}{p}} z} f(.)-f(.)\right\|_{p, v}=0([18])
$$

it follows from Lebesgue dominated convergence theorem that

$$
\lim _{t \rightarrow 0^{+}}\left\|W_{t}^{(\beta)} f-f\right\|_{p, v}=0,1 \leq p \leq \infty ; \quad\left(L_{0, \infty} \equiv C_{0} \text { and in this case convergence is uniform. }\right)
$$

Since $W_{t}^{(\beta)} f \rightarrow f$ pointwise (in fact, uniformly) as $t \rightarrow 0$ for any $f \in L_{p, v} \cap C_{0}$ and this class is dense in $L_{p, v},(1 \leq p<\infty)$, then owing to (f) (of the Lemma 2.1) and famous theorem on pointwise (a.e.) convergence [28], p.60, it follows that $\lim _{t \rightarrow 0^{+}} W_{t}^{(\beta)} f(x)=f(x)$ for almost all $x \in \mathbb{R}_{+}^{n}$. The proof of Lemma 2.1 is complete.

By making use of the generalized beta-semigroup $W_{t}^{(\beta)} f$, it is possible to obtain the following onedimensional integral representation of the generalized Riesz potentials $I_{v}^{\alpha} f$.
Lemma 2.4. Let $0<\alpha<n+2 v$ and $f \in L_{p, v}\left(\mathbb{R}_{+}^{n}\right), 1 \leq p<\frac{n+2 v}{\alpha}$. Then the generalized Riesz potentials $I_{v}^{\alpha} f$ admit the following one-dimensional representation:

$$
\begin{equation*}
\left(I_{v}^{\alpha} f\right)(x)=\frac{1}{\Gamma\left(\frac{\alpha}{\beta}\right)} \int_{0}^{\infty} t^{\frac{\alpha}{\beta}-1}\left(W_{t}^{(\beta)} f\right)(x) d t \tag{26}
\end{equation*}
$$

where $0<\beta \leq 2$ or $\beta=2 k, k \in \mathbb{N}$.
The formula (26) has exactly the same form as formula (17) in our paper [27] and resembles the classical Balakrishnan formulas for fractional powers of operators (see [23], p.121). It is clear that the formulas (11) and (12) are special cases of (26) (put $\beta=1$ and $\beta=2$). Note that this formula is given in [15] and proved in complete analogy with Theorem 2 from [27].
3. A Wavelet-Type Transform Generated by the β-Semigroup $W_{t}^{(\beta)} f$ and Inversion of Generalized Riesz Potentials

In this section it will be assumed that the parameter β is even natural number. By making use of the β-semigroup (19) we define the following integral transform (cf. [3], p. 339):

$$
\begin{equation*}
(A g)(x, t) \equiv\left(A_{\beta, v, \mu} g\right)(x, t)=\int_{0}^{\infty}\left(W_{t \eta}^{(\beta)} g\right)(x) d \mu(\eta) \tag{27}
\end{equation*}
$$

Here $x \in \mathbb{R}_{+}^{n}, t>0, g \in L_{p, v}$ and μ is a finite Borel measure on $[0, \infty)$ with $\mu([0, \infty))=0$. From now on such a signed Borel measure μ will be called a wavelet measure and the relevant integral transform $(A g)(x, t)$ will be called a wavelet-type transform.

The integral operator (27) is bounded in $L_{p, v}-$ spaces. Indeed, by the Lemma 2.1-(e) and the Minkowski inequality, we have for $1 \leq p \leq \infty$

$$
\|(A g)(., t)\|_{p, v} \leq \int_{0}^{\infty}\left\|W_{t \eta}^{(\beta)} g\right\|_{p, v} d|\mu|(\eta) \leq c(\beta)\|\mu\|\|g\|_{p, v},
$$

where $\|\mu\|=\int_{[0, \infty)} d|\mu|(\eta)<\infty$.
The transform (27) enables one to get a new explicit inversion formula for the generalized Riesz potentials $I_{v}^{\alpha} f,\left(f \in L_{p, v}, 1 \leq p<\frac{n+2 v}{\alpha}\right)$. For this, we need some lemmas.

Lemma 3.1. (see [12], formula 3.238(3).)

$$
\int_{1}^{s} t^{-\frac{\alpha}{\beta}-1}(s-t)^{\frac{\alpha}{\beta}-1} d t=\frac{\Gamma\left(\frac{\alpha}{\beta}\right)}{\Gamma\left(1+\frac{\alpha}{\beta}\right)} \frac{1}{s}(s-1)^{\frac{\alpha}{\beta}},(s>1, \alpha>0, \beta>0) .
$$

Lemma 3.2. (cf. Lemma 1.3 from [20]) Let

$$
K_{\theta}(\tau)=\frac{1}{\tau}\left(I_{+}^{\theta+1} \mu\right)(\tau),(\theta>0, \tau>0)
$$

where

$$
\left(I_{+}^{\theta+1} \mu\right)(\tau)=\frac{1}{\Gamma(1+\theta)} \int_{0}^{\tau}(\tau-\eta)^{\theta} d \mu(\eta),(\theta>0)
$$

is the Riemann-Liouville fractional integral of order $(\theta+1)$ of the measure μ. Suppose that μ satisfies the following conditions:

$$
\begin{align*}
& \int_{1}^{\infty} \eta^{\gamma} d|\mu|(\eta)<\infty \text { for some } \gamma>\theta ; \tag{28}\\
& \left.\int_{0}^{\infty} \eta^{j} d \mu(\eta)=0, \forall j=0,1, \ldots,[\theta] \text { (the integer part of } \theta\right) . \tag{29}
\end{align*}
$$

Then $K_{\theta}(\tau)$ has a decreasing integrable majorant and

$$
\int_{0}^{\infty} K_{\theta}(\tau) d \tau \equiv c_{\theta, \mu}=\left\{\begin{array}{c}
\Gamma(-\theta) \int_{0}^{\infty} \eta^{\theta} d \mu(\eta), \text { if } \theta \neq 1,2, \ldots \tag{30}\\
\frac{(-1)^{\theta+1}}{\theta!} \int_{0}^{\infty} \eta^{\theta} \ln \eta d \mu(\eta), \text { if } \theta=1,2, \ldots
\end{array}\right\}
$$

In particular case, when $0<\theta<1$, the conditions (28)-(29) and relation (30) have the simpler form:

$$
\begin{align*}
& \int_{1}^{\infty} \eta d|\mu|(\eta)<\infty \tag{31}\\
& \int_{0}^{\infty} d \mu(\eta)=0 \tag{32}\\
& \int_{0}^{\infty} K_{\theta}(\tau) d \tau \equiv c_{\theta, \mu}=\Gamma(-\theta) \int_{0}^{\infty} \eta^{\theta} d \mu(\eta) \tag{33}
\end{align*}
$$

Lemma 3.3. Let $f \in L_{p, v}, 1 \leq p<\frac{n+2 v}{\alpha}$, and the integral transform Ag be defined as in (27). Then for $\varphi=I_{v}^{\alpha} f$,

$$
\begin{equation*}
(A \varphi)(x, t)=\frac{1}{\Gamma\left(\frac{\alpha}{\beta}\right)} \int_{0}^{\infty}\left(\int_{0}^{\infty}(\tau-\eta t)_{+}^{\frac{\alpha}{\beta}-1}\left(W_{\tau}^{(\beta)} f\right)(x) d \tau\right) d \mu(\eta) \tag{34}
\end{equation*}
$$

where $a_{+}^{\lambda}=\left\{\begin{array}{ll}a^{\lambda}, & \text { if } a>0 \\ 0, & \text { if } a \leq 0\end{array}\right\}$ with $\lambda=\frac{\alpha}{\beta}-1$ and $a=\tau-\eta t$.
Proof. Since the operators $I_{v}^{\alpha} f$ and $W_{t}^{(\beta)}$ have a convolution structure, they are commutative and therefore,

$$
\begin{aligned}
(A \varphi)(x, t) & =\int_{0}^{\infty}\left(W_{t \eta}^{(\beta)} I_{v}^{\alpha} f\right)(x) d \mu(\eta)=\int_{0}^{\infty}\left(I_{v}^{\alpha} W_{t \eta}^{(\beta)} f\right)(x) d \mu(\eta) \quad \text { (we use (26)) } \\
& =\frac{1}{\Gamma\left(\frac{\alpha}{\beta}\right)} \int_{0}^{\infty}\left(\int_{0}^{\infty} \tau^{\frac{\alpha}{\beta}-1}\left(W_{\tau}^{(\beta)} W_{t \eta}^{(\beta)} f\right)(x) d \tau\right) d \mu(\eta) \\
& =\frac{1}{\Gamma\left(\frac{\alpha}{\beta}\right)} \int_{0}^{\infty}\left(\int_{0}^{\infty} \tau^{\frac{\alpha}{\beta}-1}\left(W_{\tau+t \eta}^{(\beta)} f\right)(x) d \tau\right) d \mu(\eta) \\
& =\frac{1}{\Gamma\left(\frac{\alpha}{\beta}\right)} \int_{0}^{\infty}\left(\int_{0}^{\infty}(\tau-\eta t)_{+}^{\frac{\alpha}{\beta}-1}\left(W_{\tau}^{(\beta)} f\right)(x) d \tau\right) d \mu(\eta)
\end{aligned}
$$

Lemma 3.4. Denote

$$
\begin{equation*}
\left(D_{\varepsilon}^{\alpha} \varphi\right)(x) \equiv\left(D_{\varepsilon, \beta}^{\alpha} \varphi\right)(x)=\int_{\varepsilon}^{\infty} t^{-\frac{\alpha}{\beta}-1}(A \varphi)(x, t) d t,(\varepsilon>0) \tag{35}
\end{equation*}
$$

Then for $\varphi=I_{v}^{\alpha} f,\left(f \in L_{p, v}, 1 \leq p<\frac{n+2 v}{\alpha}\right)$ we have

$$
\begin{equation*}
\left(D_{\varepsilon}^{\alpha} \varphi\right)(x)=\int_{0}^{\infty}\left(W_{\varepsilon \tau}^{(\beta)} f\right)(x) K_{\frac{\alpha}{\beta}}(\tau) d \tau \tag{36}
\end{equation*}
$$

where $K_{\theta}(\tau)$ is defined as in Lemma 3.2.

Proof. Using (34) and Fubini's theorem, we have

$$
\begin{aligned}
\left(D_{\varepsilon}^{\alpha} \varphi\right)(x) & =\frac{1}{\Gamma\left(\frac{\alpha}{\beta}\right)} \int_{\varepsilon}^{\infty} t^{-\frac{\alpha}{\beta}-1}\left(\int_{0}^{\infty} d \mu(\eta) \int_{0}^{\infty}(\tau-\eta t)_{+}^{\frac{\alpha}{\beta}-1}\left(W_{\tau}^{(\beta)} f\right)(x) d \tau\right) d t \\
& =\frac{1}{\Gamma\left(\frac{\alpha}{\beta}\right)} \int_{0}^{\infty}\left(W_{\tau}^{(\beta)} f\right)(x)\left(\int_{0}^{\frac{\tau}{\varepsilon}} \eta^{\frac{\alpha}{\beta}-1} d \mu(\eta) \int_{\varepsilon}^{\frac{\tau}{\eta}} t^{-\frac{\alpha}{\beta}-1}\left(\frac{\tau}{\eta}-t\right)^{\frac{\alpha}{\beta}-1} d t\right) d \tau \\
& =\frac{1}{\Gamma\left(\frac{\alpha}{\beta}\right)} \int_{0}^{\infty}\left(W_{\varepsilon \tau}^{(\beta)} f\right)(x)\left(\int_{0}^{\tau} \eta^{\frac{\alpha}{\beta}-1} d \mu(\eta) \int_{1}^{\frac{\tau}{\eta}} t^{-\frac{\alpha}{\beta}-1}\left(\frac{\tau}{\eta}-t\right)^{\frac{\alpha}{\beta}-1} d t\right) d \tau
\end{aligned}
$$

(we use Lemma 3.1)

$$
\begin{aligned}
& =\int_{0}^{\infty}\left(W_{\varepsilon \tau}^{(\beta)} f\right)(x)\left(\frac{1}{\tau} \frac{1}{\Gamma\left(1+\frac{\alpha}{\beta}\right)_{0}} \int_{0}^{\tau}(\tau-\eta)^{\frac{\alpha}{\beta}} d \mu(\eta)\right) d \tau \\
& =\int_{0}^{\infty}\left(W_{\varepsilon \tau}^{(\beta)} f\right)(x) K_{\frac{\alpha}{\beta}}(\tau) d \tau .
\end{aligned}
$$

Lemma 3.5. Let the family of operators $D_{\varepsilon}^{\alpha} \equiv D_{\varepsilon, \beta}^{\alpha},(\varepsilon>0)$ be defined as in (35) and let $\beta>\alpha$. Suppose that the wavelet measure μ satisfies the conditions $\int_{0}^{\infty} d \mu(\eta)=0$ and $\int_{0}^{\infty} \eta d|\mu|(\eta)<\infty$. Then the maximal operator

$$
\begin{equation*}
f(x) \longmapsto \sup _{\varepsilon>0}\left|\left(D_{\varepsilon}^{\alpha} I_{v}^{\alpha} f\right)(x)\right| \tag{37}
\end{equation*}
$$

is weak (p, p) type for $1 \leq p<\frac{n+2 v}{\alpha}$.
Proof. The condition $\beta>\alpha$ yields $0<\alpha / \beta<1$. From Lemma 3.2 it follows that the function $K_{\frac{\alpha}{\beta}}(\tau)$ has a decreasing integrable majorant and therefore, $\int_{0}^{\infty}\left|K_{\frac{\alpha}{\beta}}(\tau)\right| d \tau<\infty$. Then by making use of (36) and Lemma 2.1-(f), we have

$$
\left|\left(D_{\varepsilon}^{\alpha} I_{v}^{\alpha} f\right)(x)\right| \leq \sup _{t>0}\left|\left(W_{t}^{(\beta)} f\right)(x)\right| \int_{0}^{\infty}\left|K_{\frac{\alpha}{\beta}}(\tau)\right| d \tau \leq C\left(M_{v} f\right)(x)
$$

Since the Hardy-Littlewood type maximal operator $M_{v} f$ is weak (p, p) type (see e.g. [13, 14]), then the maximal operator (37) also is weak (p, p) type for $1 \leq p<\frac{n+2 v}{\alpha}$.

Now, we can formulate the main theorem of this section.
Theorem 3.6. Let $\alpha>0,1 \leq p<\frac{n+2 v}{\alpha}, f \in L_{p, v}$ and the parameter $\beta>\alpha$ is of the form $\beta=2 k, k \in \mathbb{N}$. Suppose that μ is a finite Borel measure on $[0, \infty)$ satisfying the following conditions:
(a) $\int_{0}^{\infty} d \mu(\eta)=0$ and
(b) $\int_{1}^{\infty} \eta d|\mu|(\eta)<\infty$.

Then

$$
\begin{equation*}
\int_{0}^{\infty}\left(A I_{v}^{\alpha} f\right)(x, t) t^{-\frac{\alpha}{\beta}-1} d t \equiv \lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{\infty}\left(A I_{v}^{\alpha} f\right)(x, t) t^{-\frac{\alpha}{\beta}-1} d t=c_{\frac{\alpha}{\beta}, \mu} f(x) \tag{39}
\end{equation*}
$$

where the operator A and the coefficient $c_{\theta, \mu}$ (with $\theta=\frac{\alpha}{\beta}$) are defined as in (27) and (33) respectively. The limit in (39) exists in the $L_{p, v}$-norm and pointwise for almost all $x \in \mathbb{R}_{+}^{n}$. If $f \in C_{0} \cap L_{p, v}$, the convergence in (39) is uniform.

Proof. By making use of (35) and (36) we have

$$
\begin{equation*}
\int_{\varepsilon}^{\infty}\left(A I_{v}^{\alpha} f\right)(x, t) t^{-\frac{\alpha}{\beta}-1} d t \equiv\left(D_{\varepsilon}^{\alpha} \varepsilon_{v}^{\alpha} f\right)(x)=\int_{0}^{\infty}\left(W_{\varepsilon \tau}^{(\beta)} f\right)(x) K_{\frac{\alpha}{\beta}}(\tau) d \tau \tag{40}
\end{equation*}
$$

Since $\beta>\alpha$, then $\theta=\frac{\alpha}{\beta}<1$ and therefore $[\theta]=0$. Thus, the conditions (28)-(29) of the Lemma 3.2 become in the form (31)-(32), that are coincides with the conditions (38). These conditions guarantee that the function $K_{\frac{\alpha}{\beta}}(\tau)$ in Lemma 3.2 has a decreasing integrable majorant and satisfied the equality (33). Hence, we have for $\beta=2 k>\alpha$ and $f \in L_{p, v}, 1 \leq p<\frac{n+2 v}{\alpha}$,

$$
\begin{aligned}
& \int_{\varepsilon}^{\infty}\left(A I_{v}^{\alpha} f\right)(x, t) t^{-\frac{\alpha}{\beta}-1} d t-C_{\frac{\alpha}{\beta}, \mu} f(x) \stackrel{(33)}{=}\left(D_{\varepsilon}^{\alpha} I_{v}^{\alpha} f\right)(x)-f(x) \int_{0}^{\infty} K_{\frac{\alpha}{\beta}}(\tau) d \tau \\
& \stackrel{(40)}{=} \int_{0}^{\infty}\left[\left(W_{\varepsilon \tau}^{(\beta)} f\right)(x)-f(x)\right] K_{\frac{\alpha}{\beta}}(\tau) d \tau
\end{aligned}
$$

and therefore,

$$
\begin{equation*}
\left\|D_{\varepsilon}^{\alpha} I_{v}^{\alpha} f-c_{\frac{\alpha}{\beta}, \mu} f\right\|_{p, v} \leq \int_{0}^{\infty}\left\|W_{\varepsilon \tau}^{(\beta)} f-f\right\|_{p, v}\left|K_{\frac{\alpha}{\beta}}(\tau)\right| d \tau \tag{41}
\end{equation*}
$$

The application of Lemma 2.1-(i) and Lebesgue convergence theorem gives

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left\|D_{\varepsilon}^{\alpha} \alpha_{v}^{\alpha} f-\mathcal{C}_{\frac{\alpha}{\beta}, \mu} f\right\|_{p, v}=0 \tag{42}
\end{equation*}
$$

For $f \in C_{0} \cap L_{p, v}$ we have

$$
\lim _{\varepsilon \rightarrow 0} \sup _{x}\left|D_{\varepsilon}^{\alpha} I_{v}^{\alpha} f(x)-c_{\frac{\alpha}{\beta}, \mu} f(x)\right|=0
$$

The proof of pointwise convergence, as expected, is based on the maximal function technique. Since the maximal operator $f(x) \mapsto \sup _{\varepsilon>0}\left|D_{\varepsilon}^{\alpha} I_{v}^{\alpha} f(x)\right|$ is weak (p, p) type for $1 \leq p<\frac{n+2 v}{\alpha}$ (see Lemma 3.5) and the family
($\left.D_{\varepsilon}^{\alpha} I_{v}^{\alpha} f\right)(x)$ converges to $\mathcal{C}_{\frac{\alpha}{\beta}, \mu} f(x)$ pointwise (in fact, uniformly) as $\varepsilon \rightarrow 0$ for any $f \in C_{0} \cap L_{p, v}$ (this class is dense in $L_{p, v}$), then owing to Theorem 3.12 from [29], p.60, it follows that

$$
\left(D_{\varepsilon}^{\alpha} I_{v}^{\alpha} f\right)(x) \rightarrow C_{\frac{\alpha}{\beta}, \mu} f(x) \text { a.e., as } \varepsilon \rightarrow 0^{+}
$$

The proof is complete.
Example 3.7. As easily to see that the measures
(a) $d \mu(\eta)=(1-\eta) e^{-\eta} d \eta$ and (b) $d \mu(\eta)=h(\eta) d \eta$, where $h(\eta)=\left\{\begin{array}{c}1,0 \leq \eta<1 \\ -1,1 \leq \eta<2 \\ 0,2 \leq \eta<\infty\end{array}\right\}$ are satisfy the conditions (31)-(32), and with accordance to (33), $c_{\frac{\alpha}{\beta}, \mu} \neq 0$ for these measures. It is easy to construct many another examples of wavelet measure μ on $[0, \infty)$ which are satisfy the conditions (31)-(32) with $\mathcal{C}_{\frac{\alpha}{\beta}, \mu} \neq 0$.

4. A Characterization of the Generalized Riesz Potential Spaces

Generalized Riesz potential space is defined as follows:

$$
\begin{equation*}
I_{v}^{\alpha}\left(L_{p, v}\right)=\left\{\varphi: \varphi=I_{v}^{\alpha} f, f \in L_{p, v}\left(\mathbb{R}_{+}^{n}\right)\right\}, 1 \leq p<\frac{n+2 v}{\alpha} \tag{43}
\end{equation*}
$$

The norm in the space $I_{v}^{\alpha}\left(L_{p, v}\right)$ is defined by the relation (cf. [23], p.553) $\|\varphi\|_{L_{p, v}}=\|f\|_{p, v^{\prime}}$, which makes $I_{v}^{\alpha}\left(L_{p, v}\right)$ a Banach space. We are going to give a new (wavelet) characterization of the space $I_{v}^{\alpha}\left(L_{p, v}\right)$. Note that most of the known characterizations of the classical Riesz potential spaces $I^{\alpha}\left(L_{p}\right)$ and its generalizations $L_{p, v}^{\alpha}\left(\mathbb{R}^{n}\right)$ (Samko's spaces) are given in terms of finite differences, the order of which increases with parameter α (see [23], [24], [21], [22]). A wavelet approach to characterization of classical Riesz's potentials is given by B. Rubin [21], p.235-237. As seen from Rubin's theorem in [21], p.235, the number of vanishing moments of the wavelet measure μ increases with α. In [5,27] it has been shown that the usage of the concept "beta-semigroup" (which is a natural generalization of the well-known Gauss-Weierstrass and Poisson semigroups) enables one to minimize the number of conditions on wavelet measure, no matter how big the order α of potentials is. As seen from the following theorem, the using of the additional parameter β (order of the semigroup $W_{t}^{(\beta)} f, t>0$) in the characterization of the generalized Riesz potential spaces gives rise to minimize the number of vanishing moments, more precisely, only one vanishing moment of measure μ is sufficient.
Theorem 4.1. Let $0<\alpha<n+2 v, 1<p<\frac{n+2 v}{\alpha}$ and $\beta=2 k>\alpha,(k \in \mathbb{N})$. Suppose that μ is a finite Borel measure on $[0, \infty)$ satisfying the following conditions:
(a) $\int_{0}^{\infty} d \mu(\eta)=0$;
(b) $\int_{1}^{\infty} \eta d|\mu|(\eta)<\infty$;
(c) $\mathcal{C}_{\frac{\alpha}{\beta}, \mu} \neq 0$,
where $c_{\frac{\alpha}{\beta}, \mu}$ is defined by (33): $c_{\frac{\alpha}{\beta}, \mu}=\Gamma\left(-\frac{\alpha}{\beta}\right) \int_{0}^{\infty} \eta^{\frac{\alpha}{\beta}} d \mu(\eta)$.
Denote

$$
\begin{equation*}
\left(D_{\varepsilon}^{\alpha} \varphi\right)(x) \equiv\left(D_{\varepsilon, \beta}^{\alpha} \varphi\right)(x)=\int_{\varepsilon}^{\infty} t^{-\frac{\alpha}{\beta}-1}(A \varphi)(x, t) d t,(\varepsilon>0) \tag{45}
\end{equation*}
$$

where the wavelet-type transform $A \varphi$ is defined as in (27). Then,

$$
\varphi \in I_{v}^{\alpha}\left(L_{p, v}\right) \Leftrightarrow \varphi \in L_{q, v}, q=\frac{p(n+2 v)}{n+2 v-\alpha p} \text { and } \sup _{\varepsilon>0}\left\|D_{\varepsilon}^{\alpha} \varphi\right\|_{p, v}<\infty .
$$

Proof. Let $\varphi \in I_{v}^{\alpha}\left(L_{p, v}\right)$. Then $\varphi=I_{v}^{\alpha} f$, for some $f \in L_{p, v}$. The suitable analog of the Hardy-LittlewoodSobolev's theorem [3] claimed that $\varphi \in L_{q, v}$, where $\frac{1}{p}-\frac{1}{q}=\frac{\alpha}{n+2 v}$, i.e. $q=\frac{p(n+2 v)}{n+2 v-\alpha p}$. Moreover, since the $\lim _{\varepsilon \rightarrow 0} D_{\varepsilon}^{\alpha} \varphi$ exists in the $L_{p, v}$-sense (see, Theorem 3.6, formula (39)), then

$$
\sup _{\varepsilon>0}\left\|D_{\varepsilon}^{\alpha} \varphi\right\|_{p, v}<\infty
$$

Let us prove the "sufficient part". We will use some ideas from [21], p. 222 and [26] (see also [27]). Denote by $\phi_{+} \equiv \phi_{+}\left(\mathbb{R}_{+}^{n}\right)$ the Semyanisty-Lizorkin type space of rapidly decreasing C^{∞}-functions which are even with respect to x_{n} and such that

$$
\omega \in \phi_{+} \Leftrightarrow \int_{\mathbb{R}_{+}^{n}} \omega(x) x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{n}^{2 k_{n}} x_{n}^{2 v} d x=0, \forall k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{Z}^{+} .
$$

The class ϕ_{+}is dense in $L_{p, v}\left(\mathbb{R}_{+}^{n}\right)$ and the operator I_{v}^{α} is an automorphism of $\phi_{+}([7])$. (The density of classical Lizorkin spaces ϕ in $L_{p}\left(\mathbb{R}^{n}\right)$, and much more information about its generalizations can be found in the paper by S.G. Samko [25]; see also [23], p. 487). The action of a distribution f as a functional on the test function $\omega \in \phi_{+}$will be denoted by (f, ω). For a locally integrable on \mathbb{R}_{+}^{n} function f we set

$$
(f, \omega)=\int_{\mathbb{R}_{+}^{n}} f(x) \omega(x) x_{n}^{2 v} d x
$$

provided that the integral is finite for all $\omega \in \phi_{+}$. It is not difficult to show that, being a convolution-type operator, I_{v}^{α} has the following property:

$$
\begin{equation*}
\left(I_{v}^{\alpha} f, \omega\right)=\left(f, I_{v}^{\alpha} \omega\right), \forall \omega \in \phi_{+}, \alpha>0, f \in L_{p, v} \tag{46}
\end{equation*}
$$

It is known that if $(f, \omega)=(g, \omega), \forall \omega \in \phi_{+}$, then $f=g+P$, where $P=P(x), x \in \mathbb{R}_{+}^{n}$ is a polynomial which is even with respect to the last variable x_{n} (see [7]). Now, denote $\mathbf{D}_{\varepsilon}^{\alpha} \varphi=\frac{1}{c_{\frac{\alpha}{\beta}, \mu}} D_{\varepsilon}^{\alpha} \varphi$, where $D_{\varepsilon}^{\alpha} \varphi$ is defined by (45). Since $\sup _{\varepsilon>0}\left\|\mathbf{D}_{\varepsilon}^{\alpha} \varphi\right\|_{p, v}<\infty$, by Banach-Alaoglu theorem, there exists a sequence $\left(\varepsilon_{k}\right)$ and a function $f \in L_{p, v}$ such that

$$
\begin{equation*}
\lim _{\varepsilon_{k} \rightarrow 0}\left(\mathbf{D}_{\varepsilon_{k}}^{\alpha} \varphi, \omega\right)=(f, \omega), \forall \omega \in \phi_{+} \tag{47}
\end{equation*}
$$

From (45), (27) and (19) it follows that the integral operator $\mathbf{D}_{\varepsilon_{k}}^{\alpha} \varphi$ can be represented as generalized convolution with some radial kernel. Therefore, we have

$$
\begin{equation*}
\left(\mathbf{D}_{\varepsilon_{k}}^{\alpha} \varphi, v\right)=\left(\varphi, \mathbf{D}_{\varepsilon_{k}}^{\alpha} v\right), \forall v \in \phi_{+} \tag{48}
\end{equation*}
$$

Firstly, we are going to show that

$$
\left(I_{v}^{\alpha} f, \omega\right)=(\varphi, \omega), \forall \omega \in \phi_{+}
$$

For this, we have for all $\omega \in \phi_{+}$:

$$
\begin{align*}
& \left(I_{v}^{\alpha} f, \omega\right) \stackrel{(46)}{=}\left(f, I_{v}^{\alpha} \omega\right) \stackrel{(47)}{=} \lim _{\varepsilon_{k} \rightarrow 0}\left(\mathbf{D}_{\varepsilon_{k}}^{\alpha} \varphi, I_{v}^{\alpha} \omega\right) \stackrel{(48)}{=} \lim _{\varepsilon_{k} \rightarrow 0}\left(\varphi, \mathbf{D}_{\varepsilon_{k}}^{\alpha} I_{v}^{\alpha} \omega\right) \\
& \stackrel{(40)}{=} \lim _{\varepsilon_{k} \rightarrow 0}\left(\varphi, \frac{1}{C_{\frac{\alpha}{\beta}, \mu}} \int_{0}^{\infty}\left(W_{\varepsilon_{k} \tau}^{(\beta)} \omega\right)(x) K_{\frac{\alpha}{\beta}}(\tau) d \tau\right) . \tag{49}
\end{align*}
$$

We must show that the last limit is equal to (φ, ω). Using the Hölder's inequality and then Minkowski one, we have

$$
\left.\| \varphi, \frac{1}{C_{\frac{\alpha}{\beta}, \mu}} \int_{0}^{\infty}\left(W_{\varepsilon_{k} \tau}^{(\beta)} \omega\right)(x) K_{\frac{\alpha}{\beta}}(\tau) d \tau\right)-(\varphi, \omega) \left\lvert\, \leq \frac{1}{\left|C_{\frac{\alpha}{\beta}, \mu}\right|}\|\varphi\|_{p, v}\left\|\int_{0}^{\infty}\left(W_{\varepsilon_{k} \tau}^{(\beta)} \omega\right)(x) K_{\frac{\alpha}{\beta}}(\tau) d \tau-c_{\frac{\alpha}{\beta}, \mu} \omega(x)\right\|_{p^{\prime}, v}\right.
$$

(we use the relation $\mathcal{C}_{\frac{\alpha}{\beta}, \mu}=\int_{0}^{\infty} K_{\frac{\alpha}{\beta}}(\tau) d \tau$)

$$
\begin{equation*}
\leq \frac{1}{\left|c_{\frac{\alpha}{\beta}, \mu}\right|}\|\varphi\|_{p, v} \int_{0}^{\infty}\left|K_{\frac{\alpha}{\beta}}(\tau)\right|\left\|W_{\varepsilon_{k} \tau}^{(\beta)} \omega-\omega\right\|_{p^{\prime}, v} d \tau,\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right) . \tag{50}
\end{equation*}
$$

It follows from the Lebesgue convergence theorem, the last expression tends to zero as $\varepsilon_{k} \rightarrow 0$. Hence, $\left(I_{v}^{\alpha} f, \omega\right)=(\varphi, \omega), \forall \omega \in \phi_{+}$. This implies that, $I_{v}^{\alpha} f=\varphi+P$, where $P=P(x)$ is a polynomial (which is even with respect to the variable x_{n}). But, $\varphi \in L_{q, v}$ and $I_{v}^{\alpha} f \in L_{q, v}$ (with $q=\frac{p(n+2 v)}{n+2 v-\alpha p}$), then $P=0$ and therefore, $I_{v}^{\alpha} f=\varphi$. Finally, $\varphi \in I_{v}^{\alpha}\left(L_{p, v}\right)$ and the proof is complete.

Acknowledgment

The authors sincerely thank referees for their valuable comments on the article.

References

[1] I.A. Aliev, S. Bayrakci, On inversion of B-elliptic potentials by the method of Balakrishnan-Rubin, Fractional Calculus and Applied Analysis, 1 (4) (1998) 365-384.
[2] I.A. Aliev, S. Bayrakci, On inversion of Bessel potentials associated with the Laplace-Bessel differential operator, Acta Math. Hungar. 95 (1-2) (2002) 125-145.
[3] I.A. Aliev, B. Rubin, Wavelet-like transforms for admissible semi-groups; inversion formulas for potentials and Radon transforms, The Journal of Fourier Analysis and Applications, 11 (3) (2005) 333-352.
[4] I.A. Aliev, B. Rubin, S. Sezer, S.B. Uyhan, Composite wavelet transforms; applications and perspectives, in:Gestur Olafsson, et al.(Eds.), Radon transforms, Geometry and Wavelets, in:Contemp, Math., Amer. Math. Soc. (2008) 1-27.
[5] I.A. Aliev, Bi-parametric potentials, relevant function spaces and wavelet-like transform, Integral Equations and Operator Theory (2009) 151-167.
[6] I.A. Aliev, Riesz transforms generated by a generalized shift operator, Izvestiya Akad. Nauk Azerbaijan Rep. (Ser. Fiz. Techn. Mat. Nauk) 1 (1987) 7-13.
[7] I.A. Aliev, Investigation on the Fourier-Bessel harmonic analysis, Doctoral Dissertation, Baku, 1993 (in Russian).
[8] W. Feller, An introduction to probability theory and its applications, Wiley and Sons, New York, 1971.
[9] A.D. Gadjiev, I.A. Aliev, Riesz and Bessel potentials generated by a generalized translation and their inverses, Proc. IV. All-Union Winter Conf. Theory of funtions and Approximation, Saratov (Russia) (1988) 47-53.
[10] A.D. Gadjiev, I.A. Aliev, On a class of potential type operators generated by a generalized shift operator, Reports Seminar of the I.N. Vekua Inst. Appl. Math, Tbilisi 3 (2) (1988) 21-24.
[11] I.A. Golubov, On the summability method of Abel-Poisson type for multiple Fourier integrals, Math. USSR Sbornik 36 (2) (1980) 213-229.
[12] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products, 5th ed, Academic Press, 1994.
[13] V.S. Guliev, Sobolev's theorem for Riesz B-potentials, Dokl. Rus. Akad. Nauk 358 (4) (1998) 450-451.
[14] V.S. Guliev, On maximal function and fractional integral associated with the Bessel differential operator, Mathematical Inequalities and Applications 6 (2003) 317-330.
[15] S. Keles, S. Bayrakcı, On β-semigroup generated by Fourier-Bessel transform and Riesz potential associated with β-semigroup, EÜFBED 6 (2) (2013) 175-186.
[16] I.A. Kipriyanov, Singular elliptic boundary problems, Mirovozrenie Zhizn Moskow, Fizmatlit, Nauka, 1997.
[17] A. Koldobsky, Fourier Analysis in convex geometry, Math. Surveys Monogr., Amer. Math. Soc., vol. 116, 2005.
[18] J. Lofstorm, J. Peetre, Approximation theorems connected with generalized translation, Math. Ann. 181 (1969) 255-268.
[19] B. Rubin, Intersection bodies and generalized cosine transforms, Advances in Math. 218 (3) (2008) 696-727.
[20] B. Rubin, Fractional integrals and wavelet transforms associated with Blaschke-Levy representation on the sphere, Israel J. Math. 114 (1999) 1-27.
[21] B. Rubin, Fractional integrals and potentials, Pitman Monogr. Surv. Pure Appl. Math. 82, 1996.
[22] B. Rubin, A method of characterization and inversion of Bessel and Riesz potentials, Sov. Math. (IZ-VUZ), 30 (5) (1986) 78-89.
[23] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, 1993.
[24] S.G. Samko, Hypersingular integrals and their applications, Internat. Ser. Monogr. Math, vol.5, Taylor\&Francis, 2002.
[25] S.G. Samko, Denseness of Lizorkin-type spaces ϕ_{v} in $L_{p}\left(\mathbb{R}^{n}\right)$, Math. Zametki 31 (6) (1982) 655-665.
[26] S.G. Samko, On spaces of Riesz potentials, Math. USSR Izv. 10 (5) (1976) 1089-1117.
[27] S. Sezer, I.A. Aliev, A new characterization of the Riesz potential spaces with the aid of a composite wavelet transform, J. Math. Anal. Appl. 372 (2010) 549-558.
[28] E. Stein, G. Weiss, On the theory of harmonic funtions of several variables, The Theory of H^{p} Spaces, Acta. Math. 103 (1-2) (1960) 25-62.
[29] E. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton NJ, 1971.
[30] Yu.V. Zasorin, On the symetry properties of the Fourier-Bessel transform, Nonclassical equations of Mathematical Physics, Novosibirsk (1986) 52-58.

[^0]: 2010 Mathematics Subject Classification. Primary 26A33; Secondary 42B35, 42C40, 44A35, 45P05
 Keywords. Wavelet-type transform; generalized Riesz potentials; Riesz potential spaces; semigroup; generalized translation operator.

 Received: 05 August 2014; Accepted: 14 May 2015
 Communicated by Dragan S. Djordjević
 This paper was supported by the Scientific Research Project Administration Unit of Akdeniz University and TUBITAK (TURKEY).
 Email addresses: ialiev@akdeniz.edu.tr (Ilham A. Aliev), mat.kci@hotmail.com (Esra Sağlık)

